Inequalities for the polygamma functions with application ${ }^{1}$

Chaoping Chen
Department of Applied Mathmatics, Hennan Polytechnic University Jiaozuo, Hennan, P. R. China

Abstract

We present some inequalities for the polygamma funtions. As an application, we give the upper and lower bounds for the expression $\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma$, where $\gamma=0.57721 \cdots$ is the Euler's constant.

Keywords Inequality; Polygamma function; Harmonic sequence; Euler's constant.

§1. Inequalities for the Polygamma Function

The gamma function is usually defined for $\operatorname{Re} z>0$ by

$$
\Gamma(z)=\int_{0}^{\infty} t^{z-1} e^{-t} d t
$$

The psi or digamma function, the logarithmic derivative of the gamma function and the polygamma functions can be expressed as

$$
\begin{gathered}
\psi(z)=\frac{\Gamma^{\prime}(z)}{\Gamma(z)}=-\gamma+\sum_{k=0}^{\infty}\left(\frac{1}{1+k}-\frac{1}{z+k}\right) \\
\psi^{n}(z)=(-1)^{n+1} n!\sum_{k=0}^{\infty} \frac{1}{(z+k)^{n+1}}
\end{gathered}
$$

for Rez>0 and $n=1,2, \cdots$, where $\gamma=0.57721 \cdots$ is the Euler's constant.
M. Merkle [2] established the inequality

$$
\frac{1}{x}+\frac{1}{2 x^{2}}+\sum_{k=1}^{2 N} \frac{B_{2 k}}{x^{2 k+1}}<\sum_{k=0}^{\infty} \frac{1}{(x+k)^{2}}<\frac{1}{x}+\sum_{k=1}^{2 N+1} \frac{B_{2 k}}{x^{2 k+1}}
$$

for all real $x>0$ and all integers $N \geq 1$, where B_{k} denotes Bernoulli numbers, defined by

$$
\frac{t}{e^{t}-1}=\sum_{j=0}^{\infty} \frac{B_{j}}{j!} t^{j}
$$

The first five Bernoulli numbers with even indices are

$$
B_{2}=\frac{1}{6}, B_{4}=-\frac{1}{30}, B_{6}=\frac{1}{42}, B_{8}=-\frac{1}{30}, B_{10}=\frac{5}{66} .
$$

[^0]The following theorem 1 establishes a more general result.
Theorem 1. Let $m \geq 0$ and $n \geq 1$ be integers, then we have for $x>0$,

$$
\begin{equation*}
\ln x-\frac{1}{2 x}-\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{2 j} \frac{1}{x^{2 j}}<\psi(x)<\ln x-\frac{1}{2 x}-\sum_{j=1}^{2 m} \frac{B_{2 j}}{2 j} \frac{1}{x^{2 j}} \tag{1}
\end{equation*}
$$

and

$$
\begin{gather*}
\frac{(n-1)!}{x^{n}}+\frac{n!}{2 x^{n+1}}+\sum_{j=1}^{2 m} \frac{B_{2 j}}{(2 j)!} \frac{\Gamma(n+2 j)}{x^{n+2 j}} \\
<(-1)^{n+1} \psi^{(n)}(x)<\frac{(n-1)!}{x^{n}}+\frac{n!}{2 x^{n+1}}+\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{(2 j)!} \frac{\Gamma(n+2 j)}{x^{n+2 j}} . \tag{2}
\end{gather*}
$$

Proof. From Binet's formula [6, p. 103]

$$
\ln \Gamma(x)=\left(x-\frac{1}{2}\right) \ln x-x+\ln \sqrt{2 \pi}+\int_{0}^{\infty}\left(\frac{t}{e^{t}-1}-1+\frac{t}{2}\right) \frac{e^{-x t}}{t^{2}} d t
$$

we conclude that

$$
\begin{equation*}
\psi(x)=\ln x-\frac{1}{2 x}-\int_{0}^{\infty}\left(\frac{t}{e^{t}-1}-1+\frac{t}{2}\right) \frac{e^{-x t}}{t} d t \tag{3}
\end{equation*}
$$

and therefore

$$
\begin{equation*}
(-1)^{n+1} \psi^{(n)}(n)=\frac{(n-1)!}{x^{n}}+\frac{n!}{2 x^{n+1}}+\int_{0}^{\infty}\left(\frac{t}{e^{t}-1}-1+\frac{t}{2}\right) t^{n-1} e^{-x t} d t \tag{4}
\end{equation*}
$$

It follows from Problem 154 in Part I, Chapter 4, of [3] that

$$
\begin{equation*}
\sum_{j=1}^{2 m} \frac{B_{2 j}}{(2 j)!} t^{2 j}<\frac{t}{e^{t}-1}-1+\frac{t}{2}<\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{(2 j)!} t^{2 j} \tag{5}
\end{equation*}
$$

for all integers $m>0$. The inequality (5) can be also found in [4].
From (3) and (5) we conclude (1), and we obtain (2) from (4) and (5). This completes the proof of the theorem 1 .

Note that $\psi(x+1)=\psi(x)+\frac{1}{x}($ see $[1, \mathrm{p} .258]),(1)$ can be written as

$$
\begin{equation*}
\frac{1}{2 x}-\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{2 j} \frac{1}{x^{2 j}}<\psi(x+1)-\ln x<\frac{1}{2 x}-\sum_{j=1}^{2 m} \frac{B_{2 j}}{2 j} \frac{1}{x^{2 j}} \tag{6}
\end{equation*}
$$

and (2) can be written as

$$
\begin{gather*}
\frac{(n-1)!}{x^{n}}-\frac{n!}{2 x^{n+1}}+\sum_{j=1}^{2 m} \frac{B_{2 j}}{(2 j)!} \frac{\Gamma(n+2 j)}{x^{n+2 j}} \\
<(-1)^{n+1} \psi^{(n)}(x)<\frac{(n-1)!}{x^{n}}-\frac{n!}{2 x^{n+1}}+\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{(2 j)!} \frac{\Gamma(n+2 j)}{x^{n+2 j}} . \tag{7}
\end{gather*}
$$

In particular, taking in (6) $m=0$ we obtain for $x>0$,

$$
\begin{equation*}
\frac{1}{2 x}-\frac{1}{12 x^{2}}<\psi(x+1)-\ln x<\frac{1}{2 x} \tag{8}
\end{equation*}
$$

and taking in (7) $m=1$ and $n=1$, we obtain for $x>0$

$$
\begin{equation*}
\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}+\frac{1}{30 x^{5}}-\frac{1}{42 x^{7}}<\frac{1}{x}-\psi^{\prime}(x+1)<\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}+\frac{1}{30 x^{5}} \tag{9}
\end{equation*}
$$

The inequalities (8) and (9) play an important role in the proof of the theorem 2 in Section 2.

§2. Inequalities for Euler's Constant

Euler's constant $\gamma=0.57721 \cdots$ is defined by

$$
\gamma=\lim _{n \rightarrow \infty}\left(1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}-\ln n\right)
$$

It is of interest to investigate the bounds for the expression $\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma$. The inequality

$$
\frac{1}{2 n}-\frac{1}{8 n^{2}}<\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma<\frac{1}{2 n}
$$

is called in literature Franel's inequality [3, Ex. 18].
It is given in [1, p. 258] that $\psi(n)=\sum_{k=1}^{n-1} \frac{1}{k}-\gamma$, and then we have get

$$
\begin{equation*}
\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma=\psi(n+1)-\ln n \tag{10}
\end{equation*}
$$

Taking in (6) $x=n$ we obtain that

$$
\begin{equation*}
\frac{1}{2 n}-\sum_{j=1}^{2 m+1} \frac{B_{2 j}}{2 j} \frac{1}{n^{2 j}}<\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma<\frac{1}{2 n}-\sum_{j=1}^{2 m} \frac{B_{2 j}}{2 j} \frac{1}{n^{2 j}} \tag{11}
\end{equation*}
$$

The inequality (11) provides closer bounds for $\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma$.
L.Tóth [5, p. 264] proposed the following problems:
(i) Prove that for every positive integer n we have

$$
\frac{1}{2 n+\frac{2}{5}}<\sum_{k=1}^{n} \frac{1}{k}-\ln n-\gamma<\frac{1}{2 n+\frac{1}{3}}
$$

(ii) Show that $\frac{2}{5}$ can be replaced by a slightly smaller number, but that $\frac{1}{3}$ can not be replaced by a slightly larger number.

The following Theorem 2 answers the problem due to L.Tóth.
Theorem 2. For every positive integer n,

$$
\begin{equation*}
\frac{1}{2 n+a}<\sum_{i=1}^{n} \frac{1}{i}-\ln n-\gamma<\frac{1}{2 n+b} \tag{12}
\end{equation*}
$$

with the best possible constants

$$
a=\frac{1}{1-\gamma}-2 \quad \text { and } \quad b=\frac{1}{3}
$$

Proof. By (10), the inequality (12) can be rearranged as

$$
b<\frac{1}{\psi(n+1)-\ln n}-2 n \leq a .
$$

Define for $x>0$

$$
\phi(x)=\frac{1}{\psi(x+1)-\ln x}-2 x .
$$

Differentiating ϕ and utilizing (8) and (9) reveals that for $x>\frac{12}{5}$

$$
\begin{aligned}
& (\psi(x+1)-\ln x)^{2} \phi^{\prime}(x)=\frac{1}{x}-\psi^{\prime}(x+1)-2(\psi(x+1)-\ln x)^{2} \\
& <\frac{1}{2 x^{2}}-\frac{1}{6 x^{3}}+\frac{1}{30 x^{5}}-2\left(\frac{1}{2 x}-\frac{1}{12 x^{2}}\right)^{2}=\frac{12-5 x}{360 x^{5}}<0,
\end{aligned}
$$

and then the function ϕ strictly decreases with $x>\frac{12}{5}$.
Straightforward calculation produces

$$
\begin{gathered}
\phi(1)=\frac{1}{1-\gamma}-2=0.36527211862544155 \cdots \\
\phi(2)=\frac{1}{\frac{3}{2}-\gamma-\ln 2}-4=0.35469600731465752 \cdots, \\
\phi(3)=\frac{1}{\frac{11}{6}-\gamma-\ln 3}-6=0.34898948531361115 \cdots .
\end{gathered}
$$

Therefore, the sequence

$$
\phi(n)=\frac{1}{\psi(n+1)-\ln n}-2 n, \quad n \in N
$$

is strictly decreasing. This leads to

$$
\lim _{n \rightarrow \infty} \phi(n)<\phi(n) \leq \phi(1)=\frac{1}{1-\gamma}-2
$$

Making use of asymptotic formula of ψ (see [1, p. 259])

$$
\psi(x)=\ln x-\frac{1}{2 x}-\frac{1}{12 x^{2}}+O\left(x^{-4}\right) \quad(x \rightarrow \infty)
$$

we conclude that

$$
\lim _{n \rightarrow \infty} \phi(n)=\lim _{x \rightarrow \infty} \phi(x)=\lim _{x \rightarrow \infty} \frac{\frac{1}{3}+O\left(x^{-2}\right)}{1+O\left(x^{-1}\right)}=\frac{1}{3}
$$

This completes the proof of the theorem 2.

References

[1] M. Abramowitz and I.Stegun (Eds), Handbook of Mathematical Function with Formulas, Graphs, and Mathematical Tables, 4th printing, with corrections, Applied Mathematics Series 55, National Bureau of Standards, Washington, 1965.
[2] M. Merkle, Logarithmic convexity inequalities for the gemma function, J. Math. Anal. Appl, 203(1996), 369-380.
[3] G. Pólya and G. Szegö, Problems and Theorems in analysis, Vol.I and II, SpringerVerlag, Berlin, Heidelberg, 1972.
[4] Z. Sasvári, Inequalities for binomial coefficients, J. Math. Anal. Appl. 236(1999), 223-226.
[5] L. Tóth, E 3432, Amer. Math. Monthly 98(1991), 264; 99(1992), 684-685.
[6] Zh-x.Wang and D.-R.Guo, Introduction to Special Function, the Series of Advanced Physics of Peking University, Peking University Press, Beijing, China, 2000(Chinese).

[^0]: ${ }^{1}$ This work is supported in part by SF of Henan Innovation Talents at University of P. R. China

