Scientia Magna

Vol. 3 (2007), No. 3, 52-55

An infinity series involving the Smarandache-type function

Jing Li
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China
lj5118@163.com

Abstract

In this paper, we using the elementary method to study the convergent property of one class Dirichlet series involving a special sequences, and give several interesting identities for it.

Keywords Riemann zeta-function, infinity series, identity.

§1. Introduction and Results

For any positive integer n and $m \geq 2$, the Smarandache-type function $B_{m}(n)$ is defined as the largest m-th power dividing n. That is,

$$
B_{m}(n)=\max \left\{x^{m}: x^{m} \mid n\right\}\left(\forall n \in N^{*}\right)
$$

For example, $B_{2}(1)=1, B_{2}(2)=1, B_{2}(3)=1, B_{2}(4)=2, B_{2}(5)=1, B_{2}(6)=1, B_{2}(7)=1$, $B_{2}(8)=2, B_{2}(9)=3, \cdots$. This function was first introduced by Professor Smarandache. In [1], Henry Bottomley presented that $B_{m}(n)$ is a multiplicative function. That is,

$$
(\forall a, b \in N)(a, b)=1 \Rightarrow B_{m}(a \cdot b)=B_{m}(a) \cdot B_{m}(b) .
$$

It is easily to show that $B_{m}\left(p^{\alpha}\right)=p^{i m}, \alpha=i m+l,(i \geq 0,0 \leq l<m)$, where p is a prime. So, if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$ is the prime powers decomposition of n, then the following identity is obviously:

$$
B_{m}(n)=B_{m}\left(p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}\right)=p_{1}^{i_{1} m} p_{2}^{i_{2} m} \cdots p_{r}^{i_{r} m}
$$

where $\alpha_{j}=i_{j} m+l_{j}\left(i_{j} \geq 0,0 \leq l_{j}<m\right)$.
Similarly, for any positive integer n and any fixed positive integer m, we define another Smarandache function $C_{m}(n)$ as following:

$$
C_{m}(n)=\max \left\{x \in N: x^{m} \mid n\right\}\left(\forall n \in N^{*}\right) .
$$

Obviously, $C_{m}(n)$ is also a multiplicative function.
From the definition of $B_{m}(n)$ and $C_{m}(n)$, we may immediately get

$$
B_{m}(n)=C_{m}(n)^{m} .
$$

Now let k be a fixed positive integer, for any positive integer n, we define the arithmetical function $\delta_{k}(n)$ as following:

$$
\delta_{k}(n)=\max \{d: d \mid n,(d, k)=1\} .
$$

For example, $\delta_{2}(1)=1, \delta_{2}(2)=1, \delta_{2}(3)=1, \delta_{2}(4)=1, \delta_{3}(6)=2, \cdots$. About the elementary properties of this function, many scholars have studied it and got some useful results (see reference [2], [3]). In reference [2], Xu Zhefeng studied the divisibility of $\delta_{k}(n)$ by $\varphi(n)$, and proved that $\varphi(n) \mid \delta_{k}(n)$ if and only if $n=2^{\alpha} 3^{\beta}$, where $\alpha>0, \beta \geq 0, \alpha, \beta \in N$. In reference [3], Liu Yanni and Gao Peng studied the mean value properties of $\delta_{k}\left(b_{m}(n)\right)$, and obtained an interesting mean value formula for it. That is, they proved the following conclusion:

Let k and m are two fixed positive integers. Then for any real number $x \geq 1$, we have the asymptotic formula

$$
\sum_{n \leq x} \delta_{k}\left(b_{m}(n)\right)=\frac{x^{2}}{2} \frac{\zeta(2 m)}{\zeta(m)} \prod_{p \mid k} \frac{p^{m}+1}{p^{m-1}(p+1)}+O\left(x^{\frac{3}{2}+\epsilon}\right)
$$

where ϵ denotes any fixed positive number, $\zeta(s)$ is the Riemann zeta-function, and $\prod_{p \mid k}$ denotes the product over all different prime divisors of k.

Let \mathcal{A} denotes the set of all positive integers n satisfying the equation $B_{m}(n)=\delta_{k}(n)$. That is, $\mathcal{A}=\left\{n \in N, B_{m}(n)=\delta_{k}(n)\right\}$. In this paper, we using the elementary method to study the convergent property of the Dirichlet series involving the set \mathcal{A}, and give several interesting identities for it. That is, we shall prove the following conclusions:

Theorem 1. Let $m \geq 2$ be a fixed positive integer. Then for any real number $s>1$, we have the identity:

$$
\sum_{\substack{n=1 \\ n \in \mathcal{A}}}^{\infty} \frac{1}{n^{s}}=\zeta(m s) \prod_{p \mid k} \frac{\left(1-\frac{1}{p^{m s}}\right)^{2}}{1-\frac{1}{p^{s}}}
$$

Theorem 2. For any complex number s with $\operatorname{Re}(s)>2$, we have the identity:

$$
\sum_{\substack{n=1 \\ n \in \mathcal{A}}}^{\infty} \frac{B_{m}(n)}{n^{s}}=\zeta(m s-1) \prod_{p \mid k} \frac{\left(1-\frac{1}{p^{m s}}\right)^{2}}{1-\frac{1}{p^{s}}}
$$

where $\zeta(s)$ is the Riemann zeta-function, and \prod_{p} denotes the product over all primes.

§2. Proof of the theorems

Now we complete the proof of our Theorems. First we define the arithmetical function $a(n)$ as follows:

$$
a(n)= \begin{cases}1, & \text { if } n \in \mathcal{A} \\ 0, & \text { if otherwise }\end{cases}
$$

For any real number $s>0$, it is clear that

$$
\sum_{\substack{n=1 \\ n \in \mathcal{A}}}^{\infty} \frac{1}{n^{s}}=\sum_{n=1}^{\infty} \frac{a(n)}{n^{s}}<\sum_{n=1}^{\infty} \frac{1}{n^{s}},
$$

and $\sum_{n=1}^{\infty} \frac{1}{n^{s}}$ is convergent if $s>1$, thus $\sum_{\substack{n=1 \\ n \in \mathcal{A}}}^{\infty} \frac{1}{n^{s}}$ is also convergent if $s>1$. Now we find the set \mathcal{A}. From the definition of $B_{m}(n)$ and $\delta_{k}(n)$ we know that $B_{m}(n)$ and $\delta_{k}(n)$ both are multiplicative functions. So in order to find all solutions of the equation $B_{m}(n)=\delta_{k}(n)$, we only discuss the case $n=p^{\alpha}$. Let $\alpha=i m+l$, where $i \geq 0,0 \leq l<m$, then $B_{m}(n)=p^{i m}$. If $n=p^{\alpha},(p, k)=1$, now $\delta_{k}(n)=p^{\alpha}$, then the equation $B_{m}(n)=\delta_{k}(n)$ has solution if and only if $\alpha=i m, i \geq 0$. If $n=p^{\alpha}, p \mid k$, now $\delta_{k}(n)=1$, then the equation $B_{m}(n)=\delta_{k}(n)$ has solution if and only if $\alpha=l, 0 \leq l<m$.

Thus, by the Euler product formula, we have

$$
\begin{aligned}
\sum_{\substack{n=1 \\
n \in \mathcal{A}}}^{\infty} \frac{1}{n^{s}} & =\prod_{p}\left(1+\frac{a(p)}{p^{s}}+\frac{a\left(p^{2}\right)}{p^{2 s}}+\cdots+\frac{a\left(p^{m-1}\right)}{p^{(m-1) s}}+\cdots\right) \\
& =\prod_{p \mid k}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots+\frac{1}{p^{(m-1) s}}\right) \prod_{p \nmid k}\left(1+\frac{1}{p^{m s}}+\frac{1}{p^{2 m s}}+\cdots\right) \\
& =\prod_{p \mid k} \frac{1-\frac{1}{p^{m s}}}{1-\frac{1}{p^{s}}} \prod_{p \nmid k} \frac{1}{1-\frac{1}{p^{m s}}} \\
& =\prod_{p} \frac{1}{1-\frac{1}{p^{m s}}} \prod_{p \mid k} \frac{\left(1-\frac{1}{p^{m s}}\right)^{2}}{1-\frac{1}{p^{s}}} \\
& =\zeta(m s) \prod_{p \mid k} \frac{\left(1-\frac{1}{\left.p^{m s}\right)^{2}}\right.}{1-\frac{1}{p^{s}}} .
\end{aligned}
$$

This completes the proof of Theorem 1.

Now we come to prove Theorem 2. Let $s=\sigma+i t$ be a complex number. Note that $B_{m}(n) \ll n$, so it is clear that $\sum_{n=1}^{\infty} \frac{B_{m}(n)}{n^{s}}$ is an absolutely convergent series for $\operatorname{Re}(s)>2$, by
the Euler product formula and the definition of $B_{m}(n)$ we get

$$
\begin{aligned}
\sum_{\substack{n=1 \\
n \in \mathcal{A}}}^{\infty} \frac{B_{m}(n)}{n^{s}}= & \prod_{p}\left(1+\frac{B_{m}(p)}{p^{s}}+\frac{B_{m}\left(p^{2}\right)}{p^{2 s}}+\cdots\right) \\
= & \prod_{p \mid k}\left(1+\frac{B_{m}(p)}{p^{s}}+\frac{B_{m}\left(p^{2}\right)}{p^{2 s}}+\cdots+\frac{B_{m}\left(p^{m-1}\right)}{p^{(m-1) s}}\right) \\
& \prod_{p \nmid k}\left(1+\frac{B_{m}\left(p^{m}\right)}{p^{m s}}+\frac{B_{m}\left(p^{2 m}\right)}{p^{2 m s}}+\cdots\right) \\
= & \prod_{p \mid k}\left(1+\frac{1}{p^{s}}+\frac{1}{p^{2 s}}+\cdots+\frac{1}{p^{(m-1) s}}\right) \prod_{p \dagger k}\left(1+\frac{p^{m}}{p^{m s}}+\frac{p^{2 m}}{p^{2 m s}}+\cdots\right) \\
= & \prod_{p \mid k} \frac{1-\frac{1}{p^{m s}}}{1-\frac{1}{p^{s}}} \prod_{p \dagger k} \frac{1}{1-\frac{1}{p^{m s-1}}} \\
= & \prod_{p} \frac{1}{1-\frac{1}{p^{m s-1}}} \prod_{p \mid k} \frac{\left(1-\frac{1}{p^{m s}}\right)^{2}}{1-\frac{1}{p^{s}}} \\
= & \zeta(m s-1) \prod_{p \mid k} \frac{\left(1-\frac{1}{\left.p^{m s}\right)^{2}}\right.}{1-\frac{1}{p^{s}}} .
\end{aligned}
$$

This completes the proof of Theorem 2.

References

[1] Henry Bottomley, Some Smarandache-type Multiplicative Functions, Smarandache Notions, 13(2002), 134-139.
[2] Zhefeng Xu, On the function $\varphi(n)$ and $\delta_{k}(n)$, Research On Smarandache Problems In Number Theory, Hexis, 2005, 9-11.
[3] Liu Yanni and Gao Peng, On the m-power free part of an integer, Scientia Magna, 1(2005), No. 1, 203-206.
[4] Zhang Pei, An Equation involving the function $\delta_{k}(n)$, Scientia Magna, 2(2006) No. 4.
[5] Tom M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.
[6] Pan Chengdong and Pan Chengbiao, Foundation of Analytic Number Theory, Beijing, Science Press, 1997.
[7] Yang Hai and Fu Ruiqing, On the K-power Part Residue Function, Scientia Magna Journal, 1(2005), No. 1.

