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Abstract In this paper, we using the elementary method to study the convergent property of

one class Dirichlet series involving a special sequences, and give several interesting identities

for it.
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§1. Introduction and Results

For any positive integer n and m ≥ 2, the Smarandache-type function Bm(n) is defined as
the largest m-th power dividing n. That is,

Bm(n) = max{xm : xm | n}(∀n ∈ N∗).

For example, B2(1) = 1, B2(2) = 1, B2(3) = 1, B2(4) = 2, B2(5) = 1, B2(6) = 1, B2(7) = 1,
B2(8) = 2, B2(9) = 3, · · · . This function was first introduced by Professor Smarandache. In
[1], Henry Bottomley presented that Bm(n) is a multiplicative function. That is,

(∀a, b ∈ N)(a, b) = 1 ⇒ Bm(a · b) = Bm(a) ·Bm(b).

It is easily to show that Bm(pα) = pim, α = im + l, (i ≥ 0, 0 ≤ l < m), where p is a prime.
So, if n = pα1

1 pα2
2 · · · pαr

r is the prime powers decomposition of n, then the following identity is
obviously:

Bm(n) = Bm(pα1
1 pα2

2 · · · pαr
r ) = pi1m

1 pi2m
2 · · · pirm

r ,

where αj = ijm + lj (ij ≥ 0, 0 ≤ lj < m).
Similarly, for any positive integer n and any fixed positive integer m, we define another

Smarandache function Cm(n) as following:

Cm(n) = max{x ∈ N : xm | n}(∀n ∈ N∗).

Obviously, Cm(n) is also a multiplicative function.
From the definition of Bm(n) and Cm(n), we may immediately get

Bm(n) = Cm(n)m.
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Now let k be a fixed positive integer, for any positive integer n, we define the arithmetical
function δk(n) as following:

δk(n) = max{d : d | n, (d, k) = 1}.

For example, δ2(1) = 1, δ2(2) = 1, δ2(3) = 1, δ2(4) = 1, δ3(6) = 2, · · · . About the
elementary properties of this function, many scholars have studied it and got some useful results
(see reference [2], [3]). In reference [2], Xu Zhefeng studied the divisibility of δk(n) by ϕ(n), and
proved that ϕ(n) | δk(n) if and only if n = 2α3β , where α > 0, β ≥ 0, α, β ∈ N . In reference
[3], Liu Yanni and Gao Peng studied the mean value properties of δk(bm(n)), and obtained an
interesting mean value formula for it. That is, they proved the following conclusion:

Let k and m are two fixed positive integers. Then for any real number x ≥ 1, we have the
asymptotic formula

∑

n≤x

δk(bm(n)) =
x2

2
ζ(2m)
ζ(m)

∏

p|k

pm + 1
pm−1(p + 1)

+ O(x
3
2+ε),

where ε denotes any fixed positive number, ζ(s) is the Riemann zeta-function, and
∏

p|k
denotes

the product over all different prime divisors of k.
Let A denotes the set of all positive integers n satisfying the equation Bm(n) = δk(n).

That is, A = {n ∈ N, Bm(n) = δk(n)}. In this paper, we using the elementary method to study
the convergent property of the Dirichlet series involving the set A, and give several interesting
identities for it. That is, we shall prove the following conclusions:

Theorem 1. Let m ≥ 2 be a fixed positive integer. Then for any real number s > 1, we
have the identity:

∞∑
n=1
n∈A

1
ns

= ζ(ms)
∏

p|k

(1− 1
pms )2

1− 1
ps

.

Theorem 2. For any complex number s with Re(s) > 2, we have the identity:

∞∑
n=1
n∈A

Bm(n)
ns

= ζ(ms− 1)
∏

p|k

(1− 1
pms )2

1− 1
ps

,

where ζ(s) is the Riemann zeta-function, and
∏
p

denotes the product over all primes.

§2. Proof of the theorems

Now we complete the proof of our Theorems. First we define the arithmetical function
a(n) as follows:

a(n) =





1, if n ∈ A,

0, if otherwise.
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For any real number s > 0, it is clear that

∞∑
n=1
n∈A

1
ns

=
∞∑

n=1

a(n)
ns

<
∞∑

n=1

1
ns

,

and
∞∑

n=1

1
ns

is convergent if s > 1, thus
∞∑

n=1
n∈A

1
ns

is also convergent if s > 1. Now we find the set A.

From the definition of Bm(n) and δk(n) we know that Bm(n) and δk(n) both are multiplicative
functions. So in order to find all solutions of the equation Bm(n) = δk(n), we only discuss the
case n = pα. Let α = im + l, where i ≥ 0, 0 ≤ l < m, then Bm(n) = pim. If n = pα, (p, k) = 1,

now δk(n) = pα, then the equation Bm(n) = δk(n) has solution if and only if α = im, i ≥ 0.
If n = pα, p | k, now δk(n) = 1, then the equation Bm(n) = δk(n) has solution if and only if
α = l, 0 ≤ l < m.

Thus, by the Euler product formula, we have

∞∑
n=1
n∈A

1
ns

=
∏
p

(
1 +

a(p)
ps

+
a(p2)
p2s

+ · · ·+ a(pm−1)
p(m−1)s

+ · · ·
)

=
∏

p|k

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

p(m−1)s

) ∏

p†k

(
1 +

1
pms

+
1

p2ms
+ · · ·

)

=
∏

p|k

1− 1
pms

1− 1
ps

∏

p†k

1
1− 1

pms

=
∏
p

1
1− 1

pms

∏

p|k

(1− 1
pms )2

1− 1
ps

= ζ(ms)
∏

p|k

(1− 1
pms )2

1− 1
ps

.

This completes the proof of Theorem 1.

Now we come to prove Theorem 2. Let s = σ + it be a complex number. Note that

Bm(n) ¿ n, so it is clear that
∞∑

n=1

Bm(n)
ns

is an absolutely convergent series for Re(s) > 2, by
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the Euler product formula and the definition of Bm(n) we get

∞∑
n=1
n∈A

Bm(n)
ns

=
∏
p

(
1 +

Bm(p)
ps

+
Bm(p2)

p2s
+ · · ·

)

=
∏

p|k

(
1 +

Bm(p)
ps

+
Bm(p2)

p2s
+ · · ·+ Bm(pm−1)

p(m−1)s

)

∏

p†k

(
1 +

Bm(pm)
pms

+
Bm(p2m)

p2ms
+ · · ·

)

=
∏

p|k

(
1 +

1
ps

+
1

p2s
+ · · ·+ 1

p(m−1)s

) ∏

p†k

(
1 +

pm

pms
+

p2m

p2ms
+ · · ·

)

=
∏

p|k

1− 1
pms

1− 1
ps

∏

p†k

1
1− 1

pms−1

=
∏
p

1
1− 1

pms−1

∏

p|k

(1− 1
pms )2

1− 1
ps

= ζ(ms− 1)
∏

p|k

(1− 1
pms )2

1− 1
ps

.

This completes the proof of Theorem 2.
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