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Abstract The main purpose of this paper is using the elementary methods to study the

properties of the integer part of the m-th root and the largest m-th power not exceeding n,

and give some interesting identities involving these numbers.
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§1. Introduction and Results

Let m be a fixed positive integer. For any positive integer n, we define the arithmetical
function am(n) as the integer part of the m-th root of n. That is, am(n) = [n

1
m ], where [x]

denotes the greatest integer not exceeding to x. For example, a2(1) = 1, a2(2) = 1, a2(3) = 1,
a2(4) = 2, a2(5) = 2, a2(6) = 2, a2(7) = 2, a2(8) = 2, a2(9) = 3, a2(10) = 3, · · · . In [1],
Professor F. Smarandache asked us to study the properties of the sequences {ak(n)}. About
this problem, Z. H. Li [2] studied its mean value properties, and given an interesting asymptotic
formula: ∑

n≤x
n∈Ak

am(n) =
1

ζ(k)
m

m + 1
x

m+1
m + O(x),

where Ak denotes the set of all k-th power free numbers, ζ(k) is the Riemann zeta-function.
X. L. He and J. B. Guo [3] also studied the mean value properties of

∑

n≤x

a(n), and proved that

∑

n≤x

a(n) =
∑

n≤x

[x
1
k ] =

k

k + 1
x

k+1
k + O(x).

Let n be a positive integer. It is clear that there exists one and only one integer k such
that

km ≤ n < (k + 1)m.

Now we define bm(n) = km. That is, bm(n) is the largest m-th power not exceeding n. If m = 2,
then b2(1) = 1, b2(2) = 1, b2(3) = 1, b2(4) = 4, b2(5) = 4, b2(6) = 4, b2(7) = 4, b2(8) = 4,
b2(9) = 9, b2(10) = 9, · · · . In problem 40 and 41 of [1], Professor F. Smarandache asked us to
study the properties of the sequences {b2(n)} and {b3(n)}. For these problems, some people
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had studied them, and obtained many results. For example, W. P. Zhang [4] gave an useful
asymptotic formula:

∑

n≤x

d(u(n)) =
2

9π4
Ax ln3 x + Bx ln2 x + Cx lnx + Dx + O

(
x

5
6+ε

)
,

where u(n) denotes the largest cube part not exceeding n, A =
∏
p

(1− 1
(p + 1)2

), B, C and D

are constants, ε denotes any fixed positive number.
And in [5], J. F. Zheng made further studies for

∑

n≤x

d(bm(n)), and proved that

∑

n≤x

d(bm(n)) =
1

kk!

(
6

kπ2

)k−1

A0x lnk x+A1x lnk−1 x+ · · ·+Ak−1x lnx+Akx+O
(
x1− 1

2k +ε
)

,

where A0, A1,· · · Ak are constants, especially when k equals to 2, A0 = 1.
In this paper, we using the elementary methods to study the convergent properties of two

Dirichlet serieses involving am(n) and bm(n), and give some interesting identities. That is, we
shall prove the following conclusions:

Theorem 1. Let m be a fixed positive integer. Then for any real number s > 1, the

Dirichlet series f(s) =
∞∑

n=1

(−1)n

as
m(n)

is convergent and

∞∑
n=1

(−1)n

as
m(n)

=
(

1
2s−1

− 1
)

ζ(s),

where ζ(s) is the Riemann zeta-function.
Theorem 2. Let m be a fixed positive integer. Then for any real number s > 1

m , the

Dirichlet series gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

is convergent and

∞∑
n=1

(−1)n

bs
m(n)

=
(

1
2ms−1

− 1
)

ζ(ms).

From our Theorems, we may immediately deduce the following:
Corollary 1. Taking s = 2 or s = 3 in Theorem 1, then we have the identities

∞∑
n=1

(−1)n

a2
m(n)

= −π2

12
and

∞∑
n=1

(−1)n

a3
m(n)

= −3
4
ζ(3).

Corollary 2. Taking m = 2 and s = 2 or m = 2 and s = 3 in Theorem 2, then we have
the identities

∞∑
n=1

(−1)n

b2
2(n)

= − 7
720

π4 and
∞∑

n=1

(−1)n

b3
2(n)

= − 31
30240

π6.

Corollary 3. Taking m = 3 and s = 2 or m = 3 and s = 3 in Theorem 2, then we have
the identities

∞∑
n=1

(−1)n

b2
3(n)

= − 31
30240

π6 and
∞∑

n=1

(−1)n

b3
3(n)

= −255
256

ζ(9).
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Corollary 4. For any positive integer s and m ≥ 2, we have

∞∑
n=1

(−1)n

bs
m(n)

=
∞∑

n=1

(−1)n

bm
s (n)

.

§2. Proof of the theorems

In this section, we shall complete the proof of our Theorems. For any positive integer n,
let am(n) = k. It is clear that there are exactly (k + 1)m − km integer n such that am(n) = k.
So we may get

f(s) =
∞∑

n=1

(−1)n

as
m(n)

=
∞∑

k=1

∞∑
n=1

am(n)=k

(−1)n

ks
,

where if k be an odd number, then
∞∑

n=1
am(n)=k

(−1)n

ks
=
−1
ks

. And if k be an even number, then

∞∑
n=1

am(n)=k

(−1)n

ks
=

1
ks

. Combining the above two cases we have

f(s) =
∞∑

t=1
k=2t

1
(2t)s

+
∞∑

t=1
k=2t−1

−1
(2t− 1)s

=
∞∑

t=1

1
(2t)s

−
( ∞∑

t=1

1
ts
−

∞∑
t=1

1
(2t)s

)

=
∞∑

t=1

2
2sts

−
∞∑

t=1

1
ts

.

From the integral criterion, we know that f(s) is convergent if s > 1. If s > 1, then

ζ(s) =
∞∑

n=1

1
ns

, so we have

f(s) =
∞∑

n=1

(−1)n

as
m(n)

=
(

1
2s−1

− 1
)

ζ(s).

This completes the proof of Theorem 1.
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Using the same method of proving Theorem 1 we have

gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

=
∞∑

k=1

∞∑
n=1

bm(n)=km

(−1)n

kms

=
∞∑

t=1
k=2t

1
(2t)ms

+
∞∑

t=1
k=2t−1

−1
(2t− 1)ms

=
∞∑

t=1

2
2mstms

−
∞∑

t=1

1
tms

.

From the integral criterion, we know that gm(s) is also convergent if s > 1
m . If s > 1,

ζ(s) =
∞∑

n=1

1
ns

, so we may easily deduce

gm(s) =
∞∑

n=1

(−1)n

bs
m(n)

=
(

1
2ms−1

− 1
)

ζ(ms).

This completes the proof of Theorem 2.
From our two Theorems, and note that ζ(2) = π2

6 , ζ(4) = π4

90 , ζ(6) = π6

945 (see [6]), we
may immediately deduce Corollary 1, 2, and 3. Then, Corollary 4 can also be obtained from
Theorem 2.
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Sequence A110396 by Amarnath Murthy in the on-line encyclopedia of integer sequences

[1] is defined as
�

the 10’s complement factorial of n.
�

Let t(n) denote the difference between n

and the next power of 10. This is the ten’s complement of a number. E.g., t(27) = 73, because

100− 27 = 73. Hence the 10′s complement factorial simply becomes

tcf(n) = (10′s complement of n) ∗ (10′s complement of n − 1) · · ·

(10′s complement of 2) ∗ (10′s complement of 1).

How would the Smarandache function behave if this variation of the factorial function were

used in place of the standard factorial function? The Smarandache function S(n) is defined

as the smallest integer m such that n evenly divides m factorial. Let TS(n) be the smallest

integer m such that n divides the ( 10′s complement factorial of m.)

This new TS(n) function produces the following sequence (which is A109631 in the OEIS

[2]).

n = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20 · · · ,

TS(n) = 1, 2, 1, 2, 5, 2, 3, 2, 1, 5, 12, 2, 22, 3, 5, 4, 15, 2, 24, 5 · · · .

For example, TS(7) = 3, because 7 divides (10 − 3) ∗ (10 − 2) ∗ (10 − 1); and 7 does not

divide (10’s complement factorial of m) for m < 3.

Not surprisingly, the TS(n) function differs significantly from the standard Smarandache

function. Here are graphs displaying the behavior of each for the first 300 terms:
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Four Problems Concerning the New TS(n) Function

1. The Smarandache function and the ten’s complement factorial Smarandache function

have many values in common. Here are the initial solutions to S(n) = TS(n):

1, 2, 5, 10, 15, 20, 25, 30, 40, 50, 60, 75, 100, 120, 125, 128, 150, 175, 200, 225, 250, 256,

300, 350, 375, 384, 400, 450, 500, 512, 525, 600, 625, 640, 675, 700, 750, 768, · · · .

Why are most of the solutions multiples of 5 or 10? Are there infinitely many solutions?

2. After a computer search for all values of n from 1 to 1000, the only solution found for

TS(n) = TS(n + 1) is 374. We conjecture there is at least one more solution. But are there

infinitely many?

3. Let Z(n) = TS(S(n))−S(TS(n)). Is Z(n) positive infinitely often? Negative infinitely

often? The Z(n) sequence seems highly chaotic with most of its values positive. Here is a graph

of the first 500 terms:
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4. The first four solutions to TS(n) + TS(n + 1) = TS(n + 2) are 128, 186, 954, and 1462.

Are there infinitely many solutions?
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