Scientia Magna

Vol. 2 (2006), No. 4, 91-94

On the integer part of the M-th root and the largest M-th power not exceeding N

Xiaoying Du
Department of Mathematics, Northwest University
Xi'an, Shaanxi, P.R.China

Abstract

The main purpose of this paper is using the elementary methods to study the properties of the integer part of the m-th root and the largest m-th power not exceeding n, and give some interesting identities involving these numbers.

Keywords The integer part of the m-th root, the largest m-th power not exceeding n, Dirichlet series, identities.

§1. Introduction and Results

Let m be a fixed positive integer. For any positive integer n, we define the arithmetical function $a_{m}(n)$ as the integer part of the m-th root of n. That is, $a_{m}(n)=\left[n^{\frac{1}{m}}\right]$, where $[x]$ denotes the greatest integer not exceeding to x. For example, $a_{2}(1)=1, a_{2}(2)=1, a_{2}(3)=1$, $a_{2}(4)=2, a_{2}(5)=2, a_{2}(6)=2, a_{2}(7)=2, a_{2}(8)=2, a_{2}(9)=3, a_{2}(10)=3, \cdots$. In [1], Professor F. Smarandache asked us to study the properties of the sequences $\left\{a_{k}(n)\right\}$. About this problem, Z. H. Li [2] studied its mean value properties, and given an interesting asymptotic formula:

$$
\sum_{\substack{n \leq x \\ n \in \mathcal{A}_{k}}} a_{m}(n)=\frac{1}{\zeta(k)} \frac{m}{m+1} x^{\frac{m+1}{m}}+O(x)
$$

where \mathcal{A}_{k} denotes the set of all k-th power free numbers, $\zeta(k)$ is the Riemann zeta-function. X. L. He and J. B. Guo [3] also studied the mean value properties of $\sum_{n \leq x} a(n)$, and proved that

$$
\sum_{n \leq x} a(n)=\sum_{n \leq x}\left[x^{\frac{1}{k}}\right]=\frac{k}{k+1} x^{\frac{k+1}{k}}+O(x)
$$

Let n be a positive integer. It is clear that there exists one and only one integer k such that

$$
k^{m} \leq n<(k+1)^{m} .
$$

Now we define $b_{m}(n)=k^{m}$. That is, $b_{m}(n)$ is the largest m-th power not exceeding n. If $m=2$, then $b_{2}(1)=1, b_{2}(2)=1, b_{2}(3)=1, b_{2}(4)=4, b_{2}(5)=4, b_{2}(6)=4, b_{2}(7)=4, b_{2}(8)=4$, $b_{2}(9)=9, b_{2}(10)=9, \cdots$. In problem 40 and 41 of [1], Professor F. Smarandache asked us to study the properties of the sequences $\left\{b_{2}(n)\right\}$ and $\left\{b_{3}(n)\right\}$. For these problems, some people
had studied them, and obtained many results. For example, W. P. Zhang [4] gave an useful asymptotic formula:

$$
\sum_{n \leq x} d(u(n))=\frac{2}{9 \pi^{4}} A x \ln ^{3} x+B x \ln ^{2} x+C x \ln x+D x+O\left(x^{\frac{5}{6}+\varepsilon}\right)
$$

where $u(n)$ denotes the largest cube part not exceeding $n, A=\prod_{p}\left(1-\frac{1}{(p+1)^{2}}\right), B, C$ and D are constants, ε denotes any fixed positive number.
And in [5], J. F. Zheng made further studies for $\sum_{n \leq x} d\left(b_{m}(n)\right)$, and proved that
$\sum_{n \leq x} d\left(b_{m}(n)\right)=\frac{1}{k k!}\left(\frac{6}{k \pi^{2}}\right)^{k-1} A_{0} x \ln ^{k} x+A_{1} x \ln ^{k-1} x+\cdots+A_{k-1} x \ln x+A_{k} x+O\left(x^{1-\frac{1}{2 k}+\varepsilon}\right)$,
where $A_{0}, A_{1}, \cdots A_{k}$ are constants, especially when k equals to $2, A_{0}=1$.
In this paper, we using the elementary methods to study the convergent properties of two Dirichlet serieses involving $a_{m}(n)$ and $b_{m}(n)$, and give some interesting identities. That is, we shall prove the following conclusions:

Theorem 1. Let m be a fixed positive integer. Then for any real number $s>1$, the Dirichlet series $f(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{s}(n)}$ is convergent and

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{s}(n)}=\left(\frac{1}{2^{s-1}}-1\right) \zeta(s)
$$

where $\zeta(s)$ is the Riemann zeta-function.
Theorem 2. Let m be a fixed positive integer. Then for any real number $s>\frac{1}{m}$, the Dirichlet series $g_{m}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{m}^{s}(n)}$ is convergent and

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{m}^{s}(n)}=\left(\frac{1}{2^{m s-1}}-1\right) \zeta(m s)
$$

From our Theorems, we may immediately deduce the following:
Corollary 1. Taking $s=2$ or $s=3$ in Theorem 1, then we have the identities

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{2}(n)}=-\frac{\pi^{2}}{12} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{3}(n)}=-\frac{3}{4} \zeta(3)
$$

Corollary 2. Taking $m=2$ and $s=2$ or $m=2$ and $s=3$ in Theorem 2, then we have the identities

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{2}^{2}(n)}=-\frac{7}{720} \pi^{4} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{2}^{3}(n)}=-\frac{31}{30240} \pi^{6}
$$

Corollary 3. Taking $m=3$ and $s=2$ or $m=3$ and $s=3$ in Theorem 2, then we have the identities

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{3}^{2}(n)}=-\frac{31}{30240} \pi^{6} \quad \text { and } \quad \sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{3}^{3}(n)}=-\frac{255}{256} \zeta(9)
$$

Corollary 4. For any positive integer s and $m \geq 2$, we have

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{m}^{s}(n)}=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{s}^{m}(n)}
$$

§2. Proof of the theorems

In this section, we shall complete the proof of our Theorems. For any positive integer n, let $a_{m}(n)=k$. It is clear that there are exactly $(k+1)^{m}-k^{m}$ integer n such that $a_{m}(n)=k$. So we may get

$$
f(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{s}(n)}=\sum_{k=1}^{\infty} \sum_{\substack{n=1 \\ a_{m}(n)=k}}^{\infty} \frac{(-1)^{n}}{k^{s}}
$$

where if k be an odd number, then $\sum_{\substack{n=1 \\ a_{m}(n)=k}}^{\infty} \frac{(-1)^{n}}{k^{s}}=\frac{-1}{k^{s}}$. And if k be an even number, then $\sum_{\substack{n=1 \\ a_{m}(n)=k}}^{\infty} \frac{(-1)^{n}}{k^{s}}=\frac{1}{k^{s}}$. Combining the above two cases we have

$$
\begin{aligned}
f(s) & =\sum_{\substack{t=1 \\
k=2 t}}^{\infty} \frac{1}{(2 t)^{s}}+\sum_{\substack{t=1 \\
k=2 t-1}}^{\infty} \frac{-1}{(2 t-1)^{s}} \\
& =\sum_{t=1}^{\infty} \frac{1}{(2 t)^{s}}-\left(\sum_{t=1}^{\infty} \frac{1}{t^{s}}-\sum_{t=1}^{\infty} \frac{1}{(2 t)^{s}}\right) \\
& =\sum_{t=1}^{\infty} \frac{2}{2^{s} t^{s}}-\sum_{t=1}^{\infty} \frac{1}{t^{s}}
\end{aligned}
$$

From the integral criterion, we know that $f(s)$ is convergent if $s>1$. If $s>1$, then $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, so we have

$$
f(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{a_{m}^{s}(n)}=\left(\frac{1}{2^{s-1}}-1\right) \zeta(s) .
$$

This completes the proof of Theorem 1.

Using the same method of proving Theorem 1 we have

$$
\begin{aligned}
g_{m}(s) & =\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{m}^{s}(n)} \\
& =\sum_{k=1}^{\infty} \sum_{\substack{n=1 \\
b_{m}(n)=k^{m}}}^{\infty} \frac{(-1)^{n}}{k^{m s}} \\
& =\sum_{\substack{t=1 \\
k=2 t}}^{\infty} \frac{1}{(2 t)^{m s}}+\sum_{\substack{t=1 \\
k=2 t-1}}^{\infty} \frac{-1}{(2 t-1)^{m s}} \\
& =\sum_{t=1}^{\infty} \frac{2}{2^{m s} t^{m s}}-\sum_{t=1}^{\infty} \frac{1}{t^{m s}} .
\end{aligned}
$$

From the integral criterion, we know that $g_{m}(s)$ is also convergent if $s>\frac{1}{m}$. If $s>1$, $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}$, so we may easily deduce

$$
g_{m}(s)=\sum_{n=1}^{\infty} \frac{(-1)^{n}}{b_{m}^{s}(n)}=\left(\frac{1}{2^{m s-1}}-1\right) \zeta(m s)
$$

This completes the proof of Theorem 2.
From our two Theorems, and note that $\zeta(2)=\frac{\pi^{2}}{6}, \zeta(4)=\frac{\pi^{4}}{90}, \zeta(6)=\frac{\pi^{6}}{945}$ (see [6]), we may immediately deduce Corollary 1,2 , and 3 . Then, Corollary 4 can also be obtained from Theorem 2.

References

[1] F. Smarandache, Only problems, not solutions, Xiquan Publ. House, Chicago, 1993.
[2] Li Zhanhu, On the intrger part of the m-th root and the k-th power free number, Research on Smarandache problems in number theory (Vol.II), Hexis, 2005, 41-43.
[3] He Xiaolin and Guo Jinbao, On the 80th problem of the F.Smarandache (I), Smarandache Notions Journal, 14(2004), 70-73.
[4] Zhang Wenpeng, On the cube part sequence of a positive integer, Journal of Xian Yang Teacher's College, 18(2003), 5-7.
[5] Zheng Jianfeng, On the inferior and superior k-th power part of a positive integer and divisor function, Smarandache Notions Journal, 14(2004), 88-91.
[6] T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, New York, 1976.

Scientia Magna

Vol. 2 (2006), No. 4, 95-97

On the ten's complement factorial Smarandache function

Jason Earls
RR 1, Box 43-5 Fritch, TX 79036
jcearls@cableone.net

Sequence A110396 by Amarnath Murthy in the on-line encyclopedia of integer sequences [1] is defined as "the 10 's complement factorial of n ." Let $t(n)$ denote the difference between n and the next power of 10 . This is the ten's complement of a number. E.g., $t(27)=73$, because $100-27=73$. Hence the $10^{\prime} s$ complement factorial simply becomes

$$
\begin{aligned}
t c f(n)= & \left(10^{\prime} s \text { complement of } n\right) *\left(10^{\prime} s \text { complement of } n-1\right) \cdots \\
& \left(10^{\prime} s \text { complement of } 2\right) *\left(10^{\prime} s \text { complement of } 1\right)
\end{aligned}
$$

How would the Smarandache function behave if this variation of the factorial function were used in place of the standard factorial function? The Smarandache function $S(n)$ is defined as the smallest integer m such that n evenly divides m factorial. Let $T S(n)$ be the smallest integer m such that n divides the ($10^{\prime} s$ complement factorial of m.)

This new $T S(n)$ function produces the following sequence (which is A109631 in the OEIS [2]).
$n=1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20 \cdots$,
$T S(n)=1,2,1,2,5,2,3,2,1,5,12,2,22,3,5,4,15,2,24,5 \cdots$.
For example, $T S(7)=3$, because 7 divides $(10-3) *(10-2) *(10-1)$; and 7 does not divide (10 's complement factorial of m) for $m<3$.

Not surprisingly, the $T S(n)$ function differs significantly from the standard Smarandache function. Here are graphs displaying the behavior of each for the first 300 terms:

Four Problems Concerning the New $T S(n)$ Function

1. The Smarandache function and the ten's complement factorial Smarandache function have many values in common. Here are the initial solutions to $S(n)=T S(n)$:
$1,2,5,10,15,20,25,30,40,50,60,75,100,120,125,128,150,175,200,225,250,256$, $300,350,375,384,400,450,500,512,525,600,625,640,675,700,750,768, \cdots$.

Why are most of the solutions multiples of 5 or 10 ? Are there infinitely many solutions?
2. After a computer search for all values of n from 1 to 1000 , the only solution found for $T S(n)=T S(n+1)$ is 374 . We conjecture there is at least one more solution. But are there infinitely many?
3. Let $Z(n)=T S(S(n))-S(T S(n))$. Is $Z(n)$ positive infinitely often? Negative infinitely often? The $Z(n)$ sequence seems highly chaotic with most of its values positive. Here is a graph of the first 500 terms:

4. The first four solutions to $T S(n)+T S(n+1)=T S(n+2)$ are $128,186,954$, and 1462. Are there infinitely many solutions?

References

[1] Sequence A110396, The on-line encyclopedia of integer sequences, published electronically at http://www.research.att.com/ njas/sequences/ Editor: N. J. A. Sloane.
[2] Sequence A109631, The on-line encyclopedia of integer sequences, published electronically at http://www.research.att.com/njas/sequences/ Editor: N. J. A. Sloane.

