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Abstract

In this study, we identify the instantaneous Pfaffi an vector of the closed motion
defined along the striction curve of the ruled surface ϕ∗ which is a Mannheim
offset of closed ruled surface ϕ in E3. Using this vector, we get the Steiner
rotation vector and the Steiner translation vector of this motion and give new
characteristic results about the pitch and the angle of the pitch which are the
integral invariants of Mannheim offsets of ruled surface.

1 Introduction

Ruled surface was found and investigated by Gaspard Monge who established the
partial differential equation that satisfies all ruled surface. In differential geometry,
the ruled surface have been treated in different ways. These surfaces can be generated
by moving a line along a chosen curve or formed by one parameter set of lines [1, 2].
The ruled surfaces are one of the easiest of all surfaces to parametrize. The ruled
surfaces are very important in many areas of sciences for instance Computer-Aided
Geometric Design (CAGD), Computer-Aided Manufacturing (CAM), kinematics and
geometric modelling.
From past to today, characteristic properties of the ruled surfaces and their integral

invariants have been examined in Euclidean and non-Euclidean spaces, [3—19]. Müller
showed that the pitch of closed ruled surface is integral invariant [3]. Ravani and Ku
studied Bertrand offsets of ruled surface in [5]. Based on this study, Kasap and Ku-
ruoğlu gave integral invariants of Bertrand offsets of ruled surface in [6]. Moreover, the
involute-evolute offsets of ruled surface is defined by Kasap et al. in [7] and Mannheim
offsets of ruled surface is defined by Orbay et al. in [8]. These offset surfaces are
defined using the geodesic Frenet frame which was given in [4, 5]. According to the
involute-evolute offsets of ruled surface [7] Şentürk and Yüce have calculated integral
invariants of these offsets with respect to the geodesic Frenet frame [9].
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Using the directions defined on a surface or a curve, a wide range of offsets of that
surface or that curve can be found out and Bertrand, Involute-Evolute, Mannheim and
Smarandache are cited as samples for this kind of offset. Mannheim curves have been
investigated in the Euclidean space E3 by Liu and Wang in [10, 11] and Mannheim
offsets of ruled surface in the Euclidean space E3 have been considered by Orbay et al.
in [8]. It is shown that a theory similar to that of the Mannheim partner curves can
be developed for ruled surface.
In this paper, based on Mannheim offsets of ruled surface in [8] we have calculated

the instantaneous Pfaffi an vector, the Steiner rotation vector, the Steiner translation
vector, the pitch and the angle of the pitch of these offsets according to the geodesic
Frenet frame.

2 Preliminaries

In this section, we will present some basic concepts related to ruled surface, geodesic
Frenet frame and Mannheim offsets of ruled surface.

2.1 Differential Geometry of Ruled Surface with Geodesic Frenet
Frame

A ruled surface M in E3 is generated by a one-parameter family of straight lines. The
straight lines are called the rulings. The equation of the ruled surface can be written
as,

ϕ(s, v) = α(s) + ve(s) and ‖e(s)‖ = 1

where (α) is a curve which is called the base curve of the ruled surface, s is the arc-
length parameter of α(s) and the curve which is drawn by e(s) on the unit sphere S2 is
called the spherical indicatrix curve and e is also called the spherical indicatrix vector
of the ruled surface, [4, 5].
If ruled surface satisfies the condition ϕ(s+P, v) = ϕ(s, v) for all s ∈ I , then ruled

surface is called closed.
The unit normal vector of ϕ along a general generator l = ϕ (s0, v) of the ruled

surface approaches a limiting direction as v infinitely decreases. This direction is called
the asymptotic normal direction and defined as by [4, 5]

g (s) =
e× es
‖es‖

where es =
de

ds
.

The point on which the unit normal vector of ϕ is perpendicular to g asymptotic normal
direction is called the striction point (or central point) on l and the curve drawn by
these points are called the striction curve of ϕ [4, 5]. The striction curve of the ruled
surface ϕ can be written as

c(s) = α(s)− 〈αs, es〉〈es, es〉
e(s).
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In this case, we will take the striction curve as the base curve of the ruled surface. So
the ruled surface can be defined as

ϕ(s, v) = c(s) + ve(s).

The direction of the unit normal at a striction point is called the central normal of the
ruled surface ϕ and it is calculated by [4, 5]

t =
es
‖es‖

.

The orthonormal system {e, t,g} is called the geodesic Frenet frame of the ruled surface
ϕ such that [4, 5] 

e = e,

t = es
‖es‖ ,

g = e×es
‖e×es‖ .

(1)

The derivative formulae of the geodesic Frenet frame are given as follows [4, 5]
eq = t,

tq = γg − e,

gq = −γt,

(2)

where q is called the arc-parameter of spherical indicatrix curve (e) and γ is called the
geodesic curvature of (e) with respect to the unit sphere S2.
Similarly, if we differentiate the equation (1) with respect to the arc-parameter of

α, we can give the following equations [4, 5]:
es = qst,

ts = −qse+ γqsg,

gs = −γqst.

These equations can be considered the analogue of the equation (2). Moreover, the
above equation system can be written as a matrix form: de

dt
dg

 =
 0 qs 0
−qs 0 γqs
0 −γqs 0

 e
t
g

 (3)

with the aim of this matrix, the Pfaffi an forms (connection forms) of the geodesic Frenet
frame {e, t,g} can be obtained such that w1 = γqs, w2 = 0 and w3 = qs [6].

COROLLARY 1 ([5]). The geodesic curvature of (e) with respect to the unit sphere
S2 is obtained by the equation (2)

γ =
〈e, es × ess〉
‖es‖3

.
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If the successive rulings intersect, the ruled surface is called developable. The dis-
tribution parameter of the ruled surface is defined by

Pe =
det(αs, e, es)

〈es, es〉
.

THEOREM 1 ([5]). The ruled surface is developable if and only if Pe = 0.

THEOREM 2 ([5]). Let (c) be a striction curve of a developable surface with
direction e. The spherical indicatrix, e, is tangent of its striction curve.

2.2 Mannheim Offsets of Ruled Surfaces

The ruled surface ϕ∗ is said to be Mannheim offset of the ruled surface ϕ if there exists
a one to one correspondence between their rulings such that the asymptotic normal of
ϕ and the central normal of ϕ∗ are linearly dependent at the striction points of their
corresponding rulings. The base ruled surface ϕ (s, v), can be expressed as

ϕ (s, v) = c (s) + ve (s) and ‖e(s)‖ = 1,

where (c) is its striction curve and s is the arc length along (c).
If ϕ∗is a Mannheim offset of ϕ, then we can write e∗

t∗

g∗

 =
 cos θ sin θ 0

0 0 1
sin θ − cos θ 0

 e
t
g

 , (4)

where {e, t,g} and {e∗, t∗,g∗} are the geodesic Frenet frames at the point c(s) and
c∗(s) of the striction curves of ϕ and ϕ∗, respectively and θ is the angle between e and
e∗ as shown in Figure 1, [8].
The equation of the offset surface ϕ∗ can be written as, in terms of its base surface

ϕ,
ϕ∗ (s, v) = c∗ (s) + ve∗ (s) = c (s) +R (s)g (s) + v[cos θe (s) + sin θt (s)], (5)

where R is the distance between the corresponding striction points of ϕ and ϕ∗, [8].

THEOREM 3 ([8]). Let the ruled surface ϕ∗ be Mannheim offset of the ruled surface
ϕ. Then ϕ is developable if and only if R is constant.

3 Integral Invariants of Mannheim Offsets of Ruled
Surfaces

Let the ruled surface ϕ∗ be a Mannheim offset of a ruled surface ϕ, {e, t,g} and
{e∗, t∗,g∗} be the geodesic Frenet frames at the striction point of the ruled surfaces ϕ
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Figure 1: The relation between {e, t,g} frame and {e∗, t∗,g∗} frame.

and ϕ∗. Then, if we differentiate the equation (4) with respect to the arc-parameter of
(c), we obtain the following equations

e∗s = γqs sin θt
∗ − (θs + qs)g∗,

t∗s = −γqs sin θe∗ + γqs cos θg∗,

g∗s = (θs + qs) e
∗ − γqs cos θt∗.

Thus for the Pfaffi an forms (connection forms) of the system {e∗, t∗,g∗}, we get the
following equations 

w1
∗ = γqs cos θ,

w2
∗ = (θs + qs) ,

w3
∗ = γqs sin θ.

(6)

Substituting w1 = γqs, w2 = 0 and w3 = qs the Pfaffi an forms (connection forms) of
the system {e, t,g} in the equation (6), we can write

w1
∗ = w1 cos θ,

w2
∗ = θs + w3,

w3
∗ = w1 sin θ.

Let H∗ = sp {e∗, t∗,g∗} be the moving space where {e∗, t∗,g∗} is the moving frame
along the striction curve (c∗) of ϕ∗ and H∗′ be the fixed space. H∗/H∗′ is used as the
motion of H∗ according to H∗′. For the instantaneous Pfaffi an vector of the motion
H∗/H∗′, we get

−→w ∗ = w1 cos θe
∗ + (θs + w3) t

∗ + w1 sin θg
∗.

Let H = sp {e, t,g} be the moving space where {e, t,g} is the moving frame along the
striction curve (c) of ϕ , H

′
be the fixed space and H/H

′
be a closed motion, then the
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instantaneous Pfaffi an vector of the motion is [6]

−→w = γqse+ qsg = w1e+ w3g.

and using this equation we can write w∗

−→w ∗ = −→w + θst∗.

From the Pfaffi an forms (connection forms) of the system {e∗, t∗,g∗} and the instan-
taneous Pfaffi an vector of the motion H∗/H∗

′
, we obtain that

~D∗ =

∮
(c∗)

−→
w∗

=

∮
(c+Rg)

~w +

∮
(c+Rg)

θst
∗

= ~D + e

 ∮
(Rg)

w1

+ g
 ∮
(Rg)

w3 +

∮
(c+Rg)

θs


where

−→
D =

∮
(c)

−→w is the Steiner rotation vector of the motion H/H ′ which is defined

along the striction curve of ϕ [12].

THEOREM 4. The angle of the pitch of closed Mannheim offsets of ruled surfaces
with geodesic Frenet frame which are drawn by the spherical indicatrix vector, the
asymptotic normal vector and the central normal vector,respectively, we can write

λe∗ = cos θλe + cos θ

( ∮
(Rg)

w1

)
,

λt∗ = λg +
∮

(Rg)

w3 +
∮
(c∗)

θs,

λg∗ = sin θλe + sin θ

( ∮
(Rg)

w1

)
.

(7)

PROOF. We know that the angle of pitch of closed ruled surface ϕ with geodesic
Frenet frame is calculated by [6]

λe =

∮
(c)

〈−→
D, e

〉
=

∮
(c)

w1. (8)
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Like that the angle of pitch of closed ruled surface ϕ with geodesic Frenet frame which
is drawn by the central normal [6]

λt =

∮
(c)

〈−→
D, t

〉
=

∮
(c)

w2 = 0 (9)

and the angle of pitch of closed ruled surface ϕ with geodesic Frenet frame which is
drawn by the asymptotic normal [6]

λg =

∮
(c)

〈−→
D,g

〉
=

∮
(c)

w3. (10)

For the angle of the pitch of closed ruled surface ϕ∗ with geodesic Frenet frame, we
can write

λe∗ =
〈−→
D∗, e∗

〉
=

〈
~D + e

 ∮
(Rg)

w1

+ g
 ∮
(Rg)

w3 +

∮
(c+Rg)

θs

 , cos θe+ sin θt

〉

= cos θλe + sin θλt + cos θ

 ∮
(Rg)

w1


= cos θλe + cos θ

 ∮
(Rg)

w1

 .

Similarly the angle of the pitch of closed ruled surfaces ϕ∗ with geodesic Frenet frame
which are drawn by the asymptotic normal and the central normal,respectively, we can
write

λt∗ =
〈−→
D∗, t∗

〉
=

〈
~D + e

 ∮
(Rg)

w1

+ g
 ∮
(Rg)

w3 +

∮
(c+Rg)

θs

 ,g

〉

=
〈
~D,g

〉
+

∮
(Rg)

w3 +

∮
(c∗)

θs

= λg +

∮
(Rg)

w3 +

∮
(c∗)

θs
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and

λg∗ =
〈−→
D∗,g∗

〉
=

〈
~D + e

 ∮
(Rg)

w1

+ g
 ∮
(Rg)

w3 +

∮
(c+Rg)

θs

 , sin θe− cos θt
〉

= sin θ
〈
~D, e

〉
− cos θ

〈
~D, t

〉
+ sin θ

 ∮
(Rg)

w1


= sin θλe + sin θ

 ∮
(Rg)

w1

 .

COROLLARY 2. If we take θ = 0, then we have the following equalities from the
equations (7), 

λe∗ = λe +
∮

(Rg)

w1,

λt∗ = λg +
∮

(Rg)

w3,

λg∗ = 0.

COROLLARY 3. If we take θ = π/2, then we have the following equalities from
the equations (7), 

λe∗ = 0,

λt∗ = λg +
∮

(Rg)

w3,

λg∗ = λe +
∮

(Rg)

w1.

For the Steiner translation vector of the motion H∗/H∗
′
, we can write that

−→
V ∗ =

∮
(c∗)

−→
dc∗

and from the equation (5), we have

−→
V ∗ =

∮
(c+Rg)

−−−−−−−→
d (c+Rg) =

∮
(c+Rg)

−→
dc +R

 ∮
(c+Rg)

dg

+ g
 ∮
(c+Rg)

−→
dR

 . (11)

and if we substitute the equation (3) in the last equation, we obtain that

−→
V ∗ = ~V −Rλet+

∮
(Rg)

−→
dc + g

 ∮
(c+Rg)

−→
dR

− Rt
 ∮
(Rg)

w1

 (12)
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where
−→
V =

∮
(c)

−→
dc is the Steiner translation vector [12] of the motion H/H

′
.

THEOREM 5. The pitch of closed Mannheim offsets of ruled surfaces with geodesic
Frenet frame which are drawn by the spherical indicatrix vector, the asymptotic normal
vector and the central normal vector, respectively, we can write

Le∗ = cos θLe + sin θLt +

〈 ∮
(Rg)

−→
dc, e∗

〉
−Rλg∗ ,

Lt∗ = Lg +

〈 ∮
(Rg)

−→
dc, t∗

〉
+
∮
(c∗)

−→
dR,

Lg∗ = sin θLe − cos θLt +Rλ∗e +
〈 ∮
(Rg)

−→
dc,g∗

〉
.

(13)

PROOF. We know that the pitch of closed ruled surface ϕ with geodesic Frenet
frame is calculated by, [6]

Le =
〈−→
V , e

〉
=

∮
(c)

< e,
−→
dc > .

Like that the pitch of closed ruled surface ϕ with geodesic Frenet frame which is drawn
by the central normal is calculated by, [6]

Lt =
〈−→
V , t

〉
=

∮
(c)

< t,
−→
dc > (14)

and the pitch of closed ruled surface ϕ with geodesic Frenet frame which is drawn by
the asymptotic normal is calculated by, [6]

Lg =
〈−→
V ,g

〉
=

∮
(c)

< g,
−→
dc > . (15)

For the pitch of the closed ruled surface ϕ∗ with geodesic Frenet frame, we can write

Le∗ =
〈−→
V ∗, e∗

〉
=

〈
~V −Rλet+

∮
(Rg)

−→
dc + g

 ∮
(c+Rg)

−→
dR

− Rt
 ∮
(Rg)

w1

 , cos θe+ sin θt

〉

= cos θLe + sin θLt +

〈 ∮
(Rg)

−→
dc, e∗

〉
−Rλg∗ .
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Similarly the pitch of closed ruled surfaces ϕ∗ with geodesic Frenet frame which are
drawn by the asymptotic normal and the central normal, respectively, we can write

Lt∗ =
〈−→
V ∗, t∗

〉
=

〈
~V −Rλet+

∮
(Rg)

−→
dc + g

 ∮
(c+Rg)

−→
dR

− Rt
 ∮
(Rg)

w1

 ,g

〉

= Lg +

〈 ∮
(Rg)

−→
dc, t∗

〉
+

∮
(c∗)

−→
dR

and

Lg∗ =
〈−→
V ∗,g∗

〉
=

〈
~V −Rλet+

∮
(Rg)

−→
dc + g

 ∮
(c+Rg)

−→
dR

− Rt
 ∮
(Rg)

w1

 , sin θe− cos θt
〉

= sin θLe − cos θLt +Rλ∗e +
〈 ∮
(Rg)

−→
dc,g∗

〉
.

COROLLARY 4. If we take θ = 0, then we have the following equalities from the
equations (13),

Le∗ = Le +

〈 ∮
(Rg)

−→
dc, e

〉
,

Lt∗ = Lg +

〈 ∮
(Rg)

−→
dc,g

〉
+

∮
(c∗)

−→
dR,

Lg∗ = −Lt +R(λe +
∮

(Rg)

w1)−
〈 ∮
(Rg)

−→
dc, t

〉
.

COROLLARY 5. If we take θ = π/2, then we have the following equalities from
the equations (13),

Le∗ = Lt +

〈 ∮
(Rg)

−→
dc, t

〉
−R(λe +

∮
(Rg)

w1),

Lt∗ = Lg +

〈 ∮
(Rg)

−→
dc,g

〉
+

∮
(c∗)

−→
dR,

Lg∗ = Le +

〈 ∮
(Rg)

−→
dc, e

〉
.
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[17] M. Önder and H. H. Uğurlu, On the Mannheim surface offsets, New Trends Math.
Sci., 3(2015), 35—45.
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