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Abstract These Smarandache spaces are right theories for objectives by logic. However,

the mathematical combinatorics is a combinatorial theory for branches in classical mathemat-

ics motivated by a combinatorial speculation. Both of them are unifying theories for sciences

and contribute more and more to mathematics in the 21st century. In this paper, I introduce

these two subjects and mainly concentrate on myself research works on mathematical com-

binatorics finished in past three years, such as those of map geometries, pseudo-manifolds of

dimensional n, topological or differential structures on smoothly combinatorial manifolds. All

of those materials have established the pseudo-manifold geometry and combinatorially Finsler

geometry or Riemannian geometry. Other works for applications of Smarandache multi-spaces

to algebra and theoretical physics are also partially included in this paper.

Keywords Smarandache multi-space, mathematical combinatorics, Smarandache n-

manifold, map geometry, topological and differential structures, geometrical inclusions.

§1. Introduction

Today, we have known two heartening mathematical theories for sciences. One of them
is the Smarandache multi-space theory, came into being by purely logic ([22]− [23]). Another
is the mathematical combinatorics motivated by a combinatorial speculation for branches in
classical mathematics([7], [16]). The former is more like a philosophical notion. However, the
later can be enforced in practice, which opened a new way for mathematics in the 21st century,
namely generalizing classical mathematics by its combinatorialization.

Then what is a Smarandache multi-space? Let us begin from a famous proverb. See Fig.1.1.
In this proverb, six blind men were asked to determine what an elephant looked like by feeling
different parts of the elephant’s body.
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Fig.1.1

The man touched the elephant’s leg, tail, trunk, ear, belly or tusk claims it’s like a pillar, a
rope, a tree branch, a hand fan, a wall or a solid pipe, respectively. They entered into an endless
argument. Each of them insisted his view right. All of you are right!A wise man explains to
them: Why are you telling it differently is because each one of you touched the different part
of the elephant. So, actually the elephant has all those features what you all said.

Certainly, Smarandache multi-spaces are related with the natural space. For this space, a
view of the sky by eyes of a man stand on the earth is shown in Fig.1.2. The bioelectric structure
of human’s eyes decides that he or she can not see too far, or too tiny thing without the help
of precision instruments. The picture shown in Fig.1.3 was made by the Hubble telescope in
1995.

Fig.1.2 Fig.1.3

Physicists are usually to write (t, x1, x2, x3) in R4 to represent an event. For two events
A1 = (t1, x1, x2, x3) and A2 = (t2, y1, y2, y3), their spacetime interval 4s is defined by

42s = −c24t2 +
√

(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

where c is the speed of light in the vacuum. The Einstein’s general relativity states that
all laws of physics take the same form in any reference system and his equivalence principle
says that there are no difference for physical effects of the inertial force and the gravitation in
a field small enough.
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Combining his two principles, Einstein got his gravitational equation

Rµν − 1
2
Rgµν + λgµν = −8πGTµν ,

where

Rµν = Rνµ = Rα
µαν and R = gνµRνµ, Rα

µiν = ∂Γi
µi

∂xν − ∂Γi
µν

∂xi + Γα
µiΓ

i
αν − Γα

µνΓi
αi, Γg

mn =
1
2gpq(∂gmp

∂un + ∂gnp

∂um − ∂gmn

∂up ).

Applying the Einstein’s equation of gravitational field and the cosmological principle,
namely there are no difference at different points and different orientations at a point of a
cosmos on the metric 104l.y. with the Robertson-Walker metric

ds2 = −c2dt2 + a2(t)[
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2)].

Friedmann got a standard model of the universe which classifies universes into three types:
static, contracting and expanding. This model also brought about the birth of the Big Bang
model in thirties of the 20th century. The following diagram describes the developing process
of our cosmos in different periods after the Big Bang.

Fig.1.4

Today, more and more evidences indicate that our universe is in accelerating expansion.
In 1934, R.Tolman first showed that blackbody radiation in an expanding universe cools but
retains its thermal distribution and remains a blackbody. G.Gamow, R.Alpher and R.Herman
predicted that a Big Bang universe will have a blackbody cosmic microwave background with
temperature about 5K in 1948. Afterward, A.Penzias and R.Wilson discovered the 3K cosmic
microwave background (CMB) radiation in 1965, which made the two physicists finally won the
Noble Prize of physics in 1978. G.F.Smoot and J.C.Mather also won the Noble Prize of physics
for their discovery of the blackbody form and anisotry of the cosmic microwave background
radiation in 2006. In Fig.1.5, the CMB timeline and a drawing by a artificial satellite WMAP
in 2003 are shown.
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Fig.1.5

We have known that all matters are made of atoms and sub-atomic particles, held together
by four fundamental forces, i.e., gravity, electromagnetism, strong nuclear force and weak force.
They are partially explained by Quantum Theory (electromagnetism, strong nuclear force and
weak force) and Relativity Theory(gravity). The Einstein’s unifying theory of fields wishs
to describe the four fundamental forces, i.e., combine Quantum Theory and Relativity Theory.
His target was nearly realized in 80s in last century, namely the establishing of string/M-theory.

There are five already known string theories, i.e., E8×E8 heterotic string, SO(32) heterotic
string, SO(32) Type I string, Type IIA and Type IIB, each of them is an extreme theory of
M-theory such as those shown in Fig.1.6.

Fig.1.6

Then what is the right theory for the universe? A right theory for the universe Σ should be

Σ = {E8 × E8 heterotic string}
⋃
{SO(32) heterotic string}

⋃
{SO(32) type I string}

⋃
{type IIA string}

⋃
{type IIB string}

⋃
A

⋃
· · ·

⋃
B · · ·

⋃
C,

where A, · · · , B, · · · , C denote some unknown theories for the universe Σ.
Generally, what is a right theory for an objective ∆? We all know that the foundation of
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science is the measures and metrics. Different characteristic Ai by different metric describes
the different side ∆i of ∆. Therefore, a right theory for ∆ should be

∆ =
⋃

i≥1

∆i =
⋃

i≥1

Ai.

Now Smarandache multi-spaces are formally defined in the next, which convinces us that
Smarandache multi-spaces are nothing but mathematics for right theories of objectives.

Definition 1.1.([9],[22]) A Smarandache multi-space is a union of n different spaces
equipped with some different structures for an integer n ≥ 2.

For example, let n be an integer, Z1 = ({0, 1, 2, · · · , n−1},+) an additive group ( mod n)
and P = (0, 1, 2, · · · , n− 1) a permutation. For any integer i, 0 ≤ i ≤ n− 1, define

Zi+1 = P i(Z1),

such that P i(k) +i P i(l) = P i(m) in Zi+1 if k + l = m in Z1, where +i denotes the binary

operation +i : (P i(k), P i(l)) → P i(m). Then we know that
n⋃

i=1

Zi is a Smarandache multi-
space.

The mathematical combinatorics is a combinatorial theory for classical mathematics es-
tablished by the following conjecture on mathematical sciences.

Conjecture 1.1.([7], [16]) Every mathematical science can be reconstructed from or made
by combinatorization.

This conjecture means that
(i) One can selects finite combinatorial rulers to reconstruct or make generalization for

classical mathematics and
(ii) One can combine different branches into a new theory and this process ended until it

has been done for all mathematical sciences.
Applications of the mathematical combinatorics to geometry, algebra and physics can be

found in these references [9]− [17]. For terminologies and notations not defined in this paper,
we follow [1], [4] for differential geometry and [21], [24] for topology.

§2. Smaradache Geometries

2.1. Geometrical multi-space
A multi-metric space is defined in the following.

Definition 2.1 A multi-metric space is a union
m⋃
1

Mi such that each Mi is a space with

a metric ρi for any integer i, 1 ≤ i ≤ m.
2.2. Smarandache geometries
The axiom system of the Euclid geometry consists following five axioms.
(A1) There is a straight line between any two points.
(A2) A finite straight line can produce a infinite straight line continuously.
(A3) Any point and a distance can describe a circle.
(A4) All right angles are equal to one another.
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(A5) If a straight line falling on two straight lines make the interior angles on the same
side less than two right angles, then the two straight lines, if produced indefinitely, meet on
that side on which are the angles less than the two right angles.

The axiom (A5) can be also replaced by:
(A5’) Given a line and a point exterior this line, there is one line parallel to this line.
The Lobachevshy-Bolyai-Gauss geometry, also called hyperbolic geometry is a geometry

with axioms (A1)− (A4) and the following axiom (L5):
(L5) There are infinitely many line parallels to a given line passing through an exterior

point.
The Riemann geometry, also called elliptic geometry is a geometry with axioms (A1)−(A4)

and the following axiom (R5):
(R5) There is no parallel to a given line passing through an exterior point.
These two geometries are mixed non-Euclid geometry. F.Smarandache asked the following

question in 1969 for new mixed non-euclid geometries.
Question 2.1. Are there other geometries by denying axioms in Euclid geometry not like

the hyperbolic or Riemann geometry?
He also specified his question to the following concrete question.
Question 2.2. Are there paradoxist geometry, non-geometry, counter-projective geometry

and anti-geometry defined by definitions follows?
2.2.1. Paradoxist geometry
In this geometry, its axioms are (A1) − (A4) and with one of the following as the axiom

(P5).
(i) There are at least a straight line and a point exterior to it in this space for which any

line that passes through the point intersect the initial line.
(ii) There are at least a straight line and a point exterior to it in this space for which only

one line passes through the point and does not intersect the initial line.
(iii) There are at least a straight line and a point exterior to it in this space for which

only a finite number of lines l1, l2, · · · , lk, k ≥ 2 pass through the point and do not intersect the
initial line.

(iv) There are at least a straight line and a point exterior to it in this space for which an
infinite number of lines pass through the point (but not all of them) and do not intersect the
initial line.

(v) There are at least a straight line and a point exterior to it in this space for which any
line that passes through the point and does not intersect the initial line.

2.2.2. Non-Geometry
The non-geometry is a geometry by denial some axioms of (A1)− (A5) such as follows.
(A1−) It is not always possible to draw a line from an arbitrary point to another arbitrary

point.
(A2−) It is not always possible to extend by continuity a finite line to an infinite line.
(A3−) It is not always possible to draw a circle from an arbitrary point and of an arbitrary

interval.
(A4−) Not all the right angles are congruent.
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(A5−) If a line, cutting two other lines, forms the interior angles of the same side of it
strictly less than two right angle, then not always the two lines extended towards infinite cut
each other in the side where the angles are strictly less than two right angle.

2.2.3. Counter-Projective geometry
Denoted by P the point set, L the line set and R a relation included in P ×L. A counter-

projective geometry is a geometry with counter-axioms following.
(C1) There exist: either at least two lines, or no line, that contains two given distinct

points.
(C2) Let p1, p2, p3 be three non-collinear points, and q1, q2 two distinct points. Suppose

that {p1.q1, p3} and {p2, q2, p3} are collinear triples. Then the line containing p1, p2 and the
line containing q1, q2 do not intersect.

(C3) Every line contains at most two distinct points.
2.2.4. Anti-Geometry
A geometry by denial some axioms of the Hilbert’s 21 axioms of Euclidean geometry.
Definition 2.2.([6]) An axiom is said Smarandachely denied if the axiom behaves in at

least two different ways within the same space, i.e., validated and invalided, or only invalided
but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied
axiom(1969).

For example, let us consider an Euclidean plane R2 and three non-collinear points A,B and
C. Define s-points as all usual Euclidean points on R2 and s-lines as any Euclidean line that
passes through one and only one of points A,B and C. This geometry then is a Smarandache
geometry because two axioms are Smarandachely denied comparing with an Euclid geometry.

(i) The axiom (A5) that through a point exterior to a given line there is only one parallel
passing through it is now replaced by two statements: one parallel and no parallel. Let L be an
s-line passing through C and not parallel to AB in the Euclidean sense. Notice that through
any s-point collinear with A or B there is one s-line parallel to L and through any other s-point
there are no s-lines parallel to L such as those shown in Fig.2.1(a).

Fig.2.1

(ii) The axiom that through any two distinct points there exists one line passing through
them is now replaced by; one s-line and no s-line. Notice that through any two distinct s-points
D, E collinear with one of A,B and C, there is one s-line passing through them and through
any two distinct s-points F, G lying on AB or non-collinear with one of A,B and C, there is
no s-line passing through them such as those shown in Fig.2.1(b).
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Iseri constructed s-manifolds for dimensional 2 Smarandache manifolds in [5] as follows.

An s-manifold is any collection of these equilateral triangular disks Ti, 1 ≤ i ≤ n satisfying
conditions following:

(i) Each edge e is the identification of at most two edges ei, ej in two distinct triangular
disks Ti, Tj , 1 ≤ i ≤ n and i 6= j;

(ii) Each vertex v is the identification of one vertex in each of five, six or seven distinct
triangular disks, called elliptic, euclidean or hyperbolic point.

These vertices are classified by the number of the disks around them. A vertex around
five, six or seven triangular disks is called respective an elliptic vertex, an Euclid vertex or a
hyperbolic vertex, which can be realized in R3 such as shown in Fig.2.2 for an elliptic point
and Fig.2.3 for a hyperbolic point.

Fig.2.2

Fig.2.3

Iseri proved in [5] that there are Smarandache geometries, particularly, paradoxist geome-
tries, non-geometries, counter-projective geometries and anti-geometries in s-manifolds.

Now let ∆i, 1 ≤ i ≤ 7 denote those of closed s-manifolds with vertex valency 5, 6, 7, 5 or 6,
5 or 7, 6 or 7, 5 or 6 or 7, respectively. Then a classification for closed s-manifolds was obtained
in [7].

Theorem 2.1.([7]) |∆i| = +∞ for i = 2, 3, 4, 6, 7 and |∆1| = 2, |∆5| ≥ 2.

2.3. Smarandache manifolds

For any integer n, n ≥ 1, an n-manifold is a Hausdorff space Mn, i.e., a space that satisfies
the T2 separation axiom, such that for any p ∈ Mn, there is an open neighborhood Up, p ∈ Up

a subset of Mn and a homeomorphism ϕp : Up → Rn or Cn, respectively.
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A Smarandache manifold is an n-dimensional manifold that support a Smarandache geom-
etry.

Question 2.3. Can we construct Smarandache n-manifolds for any integer n ≥ 2?

§3. Constructing Smarandache 2-manifolds

3.1. Maps geometries

Closed s-manifolds in Iseri’s model is essentially Smarandache 2-manifolds, special trian-
gulations of spheres with vertex valency 5, 6 or 7. A generalization of his idea induced a general
construction for Smarandache 2-manifolds, namely map geometries on 2-manifolds.

Let us introduce some terminologies in graph theory first. A graph G is an ordered 3-tuple
(V, E; I), where V, E are finite sets, V 6= ∅ and I : E → V × V . Call V the vertex set and E

the edge set of G, denoted by V (G) and E(G), respectively. A graph can be represented by a
diagram on the plane, in which vertices are elements in V and two vertices u, v is connected by
an edge e if and only if there is a ς ∈ I enabling ς(e) = (u, v).

The classification theorem for 2-dimensional manifolds in topology says that each 2-manifold
is homomorphic to the sphere P0, or to a 2-manifold Pp by adding p handles on P0, or to a
2-manifold Nq by adding q crosscaps on P0. By definition, the former is said an orientable
2-manifold of genus p and the later a non-orientable 2-manifold of genus q. This classification
for 2-dimensional manifolds can be also described by polygon representations of 2-manifolds
with even sides stated following again.

Any compact 2-manifold is homeomorphic to one of the following standard 2-manifolds:
(P0) the sphere: aa−1;
(Pn) the connected sum of n, n ≥ 1 tori:

a1b1a
−1
1 b−1

1 a2b2a
−1
2 b−1

2 · · · anbna−1
n b−1

n ;

(Qn) the connected sum of n, n ≥ 1 projective planes:

a1a1a2a2 · · · anan.

A combinatorial map M is a connected topological graph cellularly embedded in a 2-manifold
M2. For example, the graph K4 on the Klein bottle with one face length 4 and another 8 is
shown in Fig.3.1.

Fig.3.1
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Definition 3.7. For a combinatorial map M with each vertex valency≥ 3, endow each
vertex u, u ∈ V (M) a real number µ(u), 0 < µ(u) < 4π

ρM (u) . Call (M, µ) a map geometry
without boundary, µ : V (M) → R an angle function on M .

As an example, Fig.3.2 presents a map geometry without boundary on a map K4 on the
plane.

Fig.3.2

In this map geometry, lines behaviors are shown in Fig.3.3.

Fig.3.3

Definition 3.8. For a map geometry (M, µ) without boundary and faces f1, f2, · · · , fl

∈ F (M), 1 ≤ l ≤ φ(M) − 1, if S(M) \ {f1, f2, · · · , fl} is connected, then call (M, µ)−l =
(S(M) \ {f1, f2, · · · , fl}, µ) a map geometry with boundary f1, f2, · · · , fl, where S(M) denotes
the locally orientable 2-manifold underlying M .

An example for map geometries with boundary is presented in Fig.3.4

Fig.3.4

Similar to these results of Iseri, we obtained a result for Smarandache 2-manifolds in [9].

Theorem 3.1.([9]) There are Smarandache 2-manifolds in map geometries with or without
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boundary, particularly,
(1) For a map M on a 2-manifold with order≥ 3, vertex valency≥ 3 and a face f ∈ F (M),

there is an angle factor μsuch that (M, µ) and (M, µ)−1 is a paradoxist geometry by denial
the axiom (A5) with these axioms (A5), (L5) and (R5).

(2) There are non-geometries in map geometries with or without boundary.
(3) Unless axioms I-3, II-3, III-2, V-1 and V-2 in the Hilbert’s axiom system for an Euclid

geometry, an anti-geometry can be gotten from map geometries with or without boundary by
denial other axioms in this axiom system.

(4) Unless the axiom (C3), a counter-projective geometry can be gotten from map geome-
tries with or without boundary by denial axioms (C1) and (C2).

§4. Constructing Smarandache n-manifolds

The constructions applied in map geometries can be generalized to differential n-manifolds
for Smarandache n-manifolds, which also enables us to affirm that Smarandache geometries
include nearly all existent differential geometries, such as Finsler geometry and Riemannian
geometry, etc..

4.1. Differentially Smarandache n-manifolds
A differential n-manifold (Mn,A) is an n-manifold Mn,Mn =

⋃
i∈I

Ui, endowed with a Cr

differential structure A = {(Uα, ϕα)|α ∈ I} on Mn for an integer r with following conditions
hold.

(1) {Uα;α ∈ I} is an open covering of Mn;
(2) For ∀α, β ∈ I, atlases (Uα, ϕα) and (Uβ , ϕβ) are equivalent, i.e., Uα

⋂
Uβ = ∅ or

Uα

⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ−1
β : ϕβ(Uα

⋂
Uβ

) → ϕβ(Uβ) and ϕβϕ−1
α : ϕβ(Uα

⋂
Uβ

) → ϕα(Uα)

are Cr;
(3) A is maximal, i.e., if (U,ϕ) is an atlas of Mn equivalent with one atlas in A, then

(U,ϕ) ∈ A.
An n-manifold is smooth if it is endowed with a C∞ differential structure.
Construction 4.1 Let Mn be an n-manifold with an atlas A = {(Up, ϕp)|p ∈ Mn}.

For ∀p ∈ Mn with a local coordinates (x1, x2, · · · , xn), define a spatially directional mapping
ω : p → Rn action on ϕp by

ω : p → ϕω
p (p) = ω(ϕp(p)) = (ω1, ω2, · · · , ωn),

i.e., if a line L passes through ϕ(p) with direction angles θ1, θ2, · · · , θn with axes e1, e2, · · · , en

in Rn, then its direction becomes

θ1 − ϑ1

2
+ σ1, θ2 − ϑ2

2
+ σ2, · · · , θn − ϑn

2
+ σn,

after passing through ϕp(p), where for any integer 1 ≤ i ≤ n, ωi ≡ ϑi(mod4π), ϑi ≥ 0 and
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σi =





π, if 0 ≤ ωi < 2π,

0, if 2π < ωi < 4π.

A manifold Mn endowed with such a spatially directional mapping ω : Mn → Rn is called
an n-dimensional pseudo-manifold, denoted by (Mn,Aω).

Definition 4.1. A spatially directional mapping ω : Mn → Rn is euclidean if for any
point p ∈ Mn with a local coordinates (x1, x2, · · · , xn), ω(p) = (2πk1, 2πk2, · · · , 2πkn) with
ki ≡ 1(mod2) for 1 ≤ i ≤ n, otherwise, non-euclidean.

Definition 4.2. Let ω : Mn → Rn be a spatially directional mapping and p ∈ (Mn,Aω),
ω(p)( mod 4π) = (ω1, ω2, · · · , ωn). Call a point p elliptic, euclidean or hyperbolic in direction
ei, 1 ≤ i ≤ n if 0 ≤ ωi < 2π, ωi = 2π or 2π < ωi < 4π.

Then we got serval results for Smarandache n-manifolds following.
Theorem 4.1.([14]) For a point p ∈ Mn with local chart (Up, ϕp), ϕω

p = ϕp if and only if
ω(p) = (2πk1, 2πk2, · · · , 2πkn) with ki ≡ 1( mod 2) for 1 ≤ i ≤ n.

Corollary 4.1. Let (Mn,Aω) be a pseudo-manifold. Then ϕω
p = ϕp if and only if every

point in Mn is euclidean.
Theorem 4.2.([14]) Let (Mn,Aω) be an n-dimensional pseudo-manifold and p ∈ Mn. If

there are euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic points
in a same direction in (Up, ϕp), then (Mn,Aω) is a Smarandache n-manifold.

4.2. Tangent and cotangent vector spaces
The tangent vector space at a point of a smoothly Smarandache n-manifold is introduced

in the following.
Definition 4.3. Let (Mn,Aω) be a smoothly differential Smarandache n-manifold and

p ∈ Mn. A tangent vector v at p is a mapping v : Xp → R with these following conditions
hold.

(1) ∀g, h ∈ Xp,∀λ ∈ R, v(h + λh) = v(g) + λv(h);
(2) ∀g, h ∈ Xp, v(gh) = v(g)h(p) + g(p)v(h).
Denote all tangent vectors at a point p ∈ (Mn,Aω) by TpM

n and define addition“+”and
scalar multiplication“·”for ∀u, v ∈ TpM

n, λ ∈ R and f ∈ Xp by

(u + v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM
n is a vector space under these two opera-

tions“+”and“·”with basis determined in the next theorem.
Theorem 4.3.([14]) For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =

(x,
1x

0
2, · · · , x0

n), if there are just s euclidean directions along ei1 , ei2 , · · · , eis
for a point , then

the dimension of TpM
n is

dimTpM
n = 2n− s

with a basis

{ ∂

∂xij
|p | 1 ≤ j ≤ s}

⋃
{ ∂−

∂xl
|p, ∂+

∂xl
|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s}.

The cotangent vector space at a point of (Mn,Aω) is defined in the next.
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Definition 4.4. For ∀p ∈ (Mn,Aω), the dual space T ∗p Mn is called a co-tangent vector
space at p.

Definition 4.5. For f ∈ =p, d ∈ T ∗p Mn and v ∈ TpM
n, the action of d on f , called a

differential operator d : =p → R, is defined by

df = v(f).

Then we immediately got the basis of cotangent vector space at a point.
Theorem 4.4.([14]) For any point p ∈ (Mn,Aω) with a local chart (Up, ϕp), ϕp(p) =

(x,
1x

0
2, · · · , x0

n), if there are just s euclidean directions along ei1 , ei2 , · · · , eis for a point , then
the dimension of T ∗p Mn is

dimT ∗p Mn = 2n− s

with a basis

{dxij |p | 1 ≤ j ≤ s}
⋃
{d−xl

p, d
+xl|p | 1 ≤ l ≤ n and l 6= ij , 1 ≤ j ≤ s},

where
dxi|p( ∂

∂xj
|p) = δi

j and dεixi|p( ∂εi

∂xj
|p) = δi

j ,

for εi ∈ {+,−}, 1 ≤ i ≤ n.
4.3. Pseudo-manifold geometries
Here we introduce Minkowski norms on these pseudo-manifolds (Mn,Aω).
Definition 4.6. A Minkowski norm on a vector space V is a function F : V → R such

that
(1) F is smooth on V \{0} and F (v) ≥ 0 for ∀v ∈ V ;
(2) F is 1-homogenous, i.e., F (λv) = λF (v) for ∀λ > 0;
(3) For all y ∈ V \{0}, the symmetric bilinear form gy : V × V → R with

gy(u, v) =
∑

i,j

∂2F (y)
∂yi∂yj

is positive definite for u, v ∈ V .
Denote by TMn =

⋃
p∈(Mn,Aω)

TpM
n.

Definition 4.7. A pseudo-manifold geometry is a pseudo-manifold (Mn,Aω) endowed
with a Minkowski norm F on TMn.

Then we found the following result.
Theorem 4.5.([14]) There are pseudo-manifold geometries.
4.4. Principal fiber bundles and connections
Although the dimension of each tangent vector space maybe different, we can also introduce

principal fiber bundles and connections on pseudo-manifolds as follows.
Definition 4.8. A principal fiber bundle (PFB) consists of a pseudo-manifold (P,Aω

1 ), a
projection π : (P,Aω

1 ) → (M,Aπ(ω)
0 ), a base pseudo-manifold (M,Aπ(ω)

0 ) and a Lie group G,
denoted by (P, M, ωπ, G) such that (1), (2) and (3) following hold.

(1) There is a right freely action of G on (P,Aω
1 ), i.e., for ∀g ∈ G, there is a diffeomorphism

Rg : (P,Aω
1 ) → (P,Aω

1 ) with Rg(pω) = pωg for ∀p ∈ (P,Aω
1 ) such that pω(g1g2) = (pωg1)g2 for
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∀p ∈ (P,Aω
1 ), ∀g1, g2 ∈ G and pωe = pω for some p ∈ (Pn,Aω

1 ), e ∈ G if and only if e is the
identity element of G.

(2) The map π : (P,Aω
1 ) → (M,Aπ(ω)

0 ) is onto with π−1(π(p)) = {pg|g ∈ G}, πω1 = ω0π,
and regular on spatial directions of p, i.e., if the spatial directions of p are (ω1, ω2, · · · , ωn),
then ωi and π(ωi) are both elliptic, or euclidean, or hyperbolic and |π−1(π(ωi))| is a constant
number independent of p for any integer i, 1 ≤ i ≤ n.

(3) For ∀x ∈ (M,Aπ(ω)
0 ) there is an open set U with x ∈ U and a diffeomorphism T

π(ω)
u :

(π)−1(Uπ(ω)) → Uπ(ω) × G of the form Tu(p) = (π(pω), su(pω)), where su : π−1(Uπ(ω)) → G

has the property su(pωg) = su(pω)g for ∀g ∈ G, p ∈ π−1(U).
Definition 4.9. Let (P, M, ωπ, G) be a PFB with dimG = r. A subspace family H =

{Hp|p ∈ (P,Aω
1 ),dimHp = dimTπ(p)M} of TP is called a connection if conditions (1) and (2)

following hold.
(1) For ∀p ∈ (P,Aω

1 ), there is a decomposition

TpP = Hp

⊕
Vp

and the restriction π∗|Hp
: Hp → Tπ(p)M is a linear isomorphism.

(2) H is invariant under the right action of G, i.e., for p ∈ (P,Aω
1 ), ∀g ∈ G,

(Rg)∗p(Hp) = Hpg.

Then we obtained an interesting dimensional formula for Vp.
Theorem 4.6.([14]) Let (P, M, ωπ, G) be a PFB with a connection H. ∀p ∈ (P,Aω

1 ), if
the number of euclidean directions of p is λP (p), then

dimVp =
(dimP − dimM)(2dimP − λP (p))

dimP
.

4.5. Geometrical inclusions in Smarandache geometries
We obtained geometrical theorems and inclusions in Smarandache geometries following.
Theorem 4.7.([14]) A pseudo-manifold geometry (Mn, ϕω) with a Minkowski norm on

TMn is a Finsler geometry if and only if all points of (Mn, ϕω) are euclidean.
Corollary 4.2. There are inclusions among Smarandache geometries, Finsler geometry,

Riemann geometry and Weyl geometry:

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Finsler geometry} ⊃ {Riemann geometry} ⊃ {Weyl geometry}.

Theorem 4.8.([14]) A pseudo-manifold geometry (Mn
c , ϕω) with a Minkowski norm on

TMn is a Kähler geometry if and only if F is a Hermite inner product on Mn
c with all points

of (Mn, ϕω) being euclidean.
Corollary 4.3. There are inclusions among Smarandache geometries, pseudo-manifold

geometry and Kähler geometry:

{Smarandache geometries} ⊃ {pseudo−manifold geometries}
⊃ {Kähler geometry}.
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§5. Geometry on Combinatorial manifolds

The combinatorial speculation for geometry on manifolds enables us to consider these geo-
metrical objects consisted by manifolds with different dimensions, i.e., combinatorial manifolds.
Certainly, each combinatorial manifold is a Smarandache manifold itself. Similar to the con-
struction of Riemannian geometry, by introducing metrics on combinatorial manifolds we can
construct topological or differential structures on them and obtained an entirely new geomet-
rical theory, which also convinces us those inclusions of geometries in Smarandache geometries
established in Section 4 again.

For an integer s ≥ 1, let n1, n2, · · · , ns be an integer sequence with 0 < n1 < n2 < · · · < ns.

Choose s open unit balls Bn1
1 , Bn2

2 , · · · , Bns
s , where

s⋂
i=1

Bni
i 6= ∅ in Rn1+2+···ns . Then a unit

open combinatorial ball of degree s is a union

B̃(n1, n2, · · · , ns) =
s⋃

i=1

Bni
i .

Definition 5.1. For a given integer sequence n1, n2, · · · , nm,m ≥ 1 with 0 < n1 < n2 <

· · · < ns, a combinatorial manifold M̃ is a Hausdorff space such that for any point p ∈ M̃ , there
is a local chart (Up, ϕp) of p, i.e., an open neighborhood Up of p in M̃ and a homoeomorphism
ϕp : Up → B̃(n1(p), n2(p), · · · , ns(p)(p)) with {n1(p), n2(p), · · · , ns(p)(p)} ⊆ {n1, n2, · · · , nm}
and

⋃
p∈M̃

{n1(p), n2(p), · · · , ns(p)(p)} = {n1, n2, · · · , nm}, denoted by M̃(n1, n2, · · · , nm) or M̃

on the context and
Ã = {(Up, ϕp)|p ∈ M̃(n1, n2, · · · , nm))},

an atlas on M̃(n1, n2, · · · , nm). The maximum value of s(p) and the dimension ŝ(p) of
s(p)⋂
i=1

Bni
i

are called the dimension and the intersectional dimensional of M̃(n1, n2, · · · , nm) at the point
p, respectively.

A combinatorial manifold M̃ is called finite if it is just combined by finite manifolds.
A finite combinatorial manifold is given in Fig.5.1.

Fig.5.1

5.1. Topological structures
5.1.1. Connectedness
Definition 5.1. For two points p, q in a finitely combinatorial manifold M̃(n1, n2, · · · , nm),

if there is a sequence B1, B2, · · · , Bs of d-dimensional open balls with two conditions following
hold.
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(1) Bi ⊂ M̃(n1, n2, · · · , nm) for any integer i, 1 ≤ i ≤ s and p ∈ B1, q ∈ Bs;
(2) The dimensional number dim(Bi

⋂
Bi+1) ≥ d for ∀i, 1 ≤ i ≤ s− 1.

Then points p, q are called d-dimensional connected in M̃(n1, n2, · · · , nm) and the sequence
B1, B2, · · · , Be a d-dimensional path connecting p and q, denoted by P d(p, q).

If each pair p, q of points in the finitely combinatorial manifold M̃(n1, n2, · · · , nm) is
d-dimensional connected, then M̃(n1, n2, · · · , nm) is called d-pathwise connected and say its
connectivity≥ d.

Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold and d, d ≥ 1 an integer. We
construct a labelled graph Gd[M̃(n1, n2, · · · , nm)] by

V (Gd[M̃(n1, n2, · · · , nm)]) = V1

⋃
V2,

where
V1 = {ni −manifolds Mni in M̃(n1, n2, · · · , nm)|1 ≤ i ≤ m},

and
V2 = {isolated intersection points OMni ,Mnj ofMni ,Mnj in M̃(n1, n2, · · · , nm) for 1 ≤

i, j ≤ m}.
Label ni for each ni-manifold in V1 and 0 for each vertex in V2 and

E(Gd[M̃(n1, n2, · · · , nm)]) = E1

⋃
E2,

where
E1 = {(Mni ,Mnj )|dim(Mni

⋂
Mnj ) ≥ d, 1 ≤ i, j ≤ m},

and
E2 = {(OMni ,Mnj ,Mni), (OMni ,Mnj ,Mnj )|Mni tangent Mnj at the point OMni ,Mnj for 1 ≤

i, j ≤ m}.

Fig.5.2

For example, these correspondent labelled graphs gotten from finitely combinatorial man-
ifolds in Fig.5.1 are shown in Fig.5.2, in where d = 1 for (a) and (b), d = 2 for (c) and (d).

For a given integer sequence 1 ≤ n1 < n2 < · · · < nm,m ≥ 1, denote byHd(n1, n2, · · · , nm)
all these finitely combinatorial manifolds M̃(n1, n2, · · · , nm) with connectivity≥ d, where d ≤ n1

and G(n1, n2, · · · , nm) all these connected graphs G[n1, n2, · · · , nm] with vertex labels 0, n1,
n2, · · · , nm and conditions following hold.

(1) The induced subgraph by vertices labelled with 1 in G is a union of complete graphs;
(2) All vertices labelled with 0 can only be adjacent to vertices labelled with 1.
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Then we knew a relation between sets Hd(n1, n2, · · · , nm) and G(n1, n2, · · · , nm).
Theorem 5.1.([17]) Let 1 ≤ n1 < n2 < · · · < nm,m ≥ 1 be a given integer sequence. Then

every finitely combinatorial manifold M̃ ∈ Hd(n1, n2, · · · , nm) defines a labelled connected
graph G[n1, n2, · · · , nm] ∈ G(n1, n2, · · · , nm). Conversely, every labelled connected graph
G[n1, n2, · · · , nm] ∈ G(n1, n2, · · · , nm) defines a finitely combinatorial manifold M̃ ∈ Hd(n1, n2,

· · · , nm) for any integer 1 ≤ d ≤ n1.
5.1.2. Homotopy
Denoted by f ' g two homotopic mappings f and g. Following the same pattern of

homotopic spaces, we define homotopically combinatorial manifolds in the next.
Definition 5.2. Two finitely combinatorial manifolds M̃(k1, k2, · · · , kl) and M̃(n1, n2,

· · · , nm) are said to be homotopic if there exist continuous maps
f : M̃(k1, k2, · · · , kl) → M̃(n1, n2, · · · , nm),
g : M̃(n1, n2, · · · , nm) → M̃(k1, k2, · · · , kl),

such that gf ' identity
: M̃(k1, k2, · · · , kl) → M̃(k1, k2, · · · , kl)

and
fg ' identity : M̃(n1, n2, · · · , nm) → M̃(n1, n2, · · · , nm).
Then we obtained the following result.
Theorem 5.2.([17]) Let M̃(n1, n2, · · · , nm) and M̃(k1, k2, · · · , kl) be finitely combinato-

rial manifolds with an equivalence $ : G[M̃(n1, n2, · · · , nm)] → G[M̃(k1, k2, · · · , kl)]. If for
∀M1,M2 ∈ V (G[M̃(n1, n2, · · · , nm)]), Mi is homotopic to $(Mi) with homotopic mappings

fMi
: Mi → $(Mi), gMi

: $(Mi) → Mi

such that
fMi |Mi

⋂
Mj

= fMj
|Mi

⋂
Mj

, gMi
|Mi

⋂
Mj

= gMj
|Mi

⋂
Mj

providing (Mi,Mj) ∈ E(G[M̃(n1, n2, · · · , nm)]) for 1 ≤ i, j ≤ m, then M̃(n1, n2, · · · , nm) is
homotopic to M̃(k1, k2, · · · , kl).

5.1.3. Fundamental d-groups
Definition 5.3. Let M̃(n1, n2, · · · , nm) be a finitely combinatorial manifold. For an integer

d, 1 ≤ d ≤ n1 and ∀x ∈ M̃(n1, n2, · · · , nm), a fundamental d-group at the point x, denoted by
πd(M̃(n1, n2, · · · , nm), x) is defined to be a group generated by all homotopic classes of closed
d-pathes based at x.

If d = 1 and M̃(n1, n2, · · · , nm) is just a manifold M , we get that

πd(M̃(n1, n2, · · · , nm), x) = π(M, x).

Whence, fundamental d-groups are a generalization of fundamental groups in topology. We
obtained the following characteristics for fundamental d-groups of finitely combinatorial mani-
folds.

Theorem 5.3.([17]) Let M̃(n1, n2, · · · , nm) be a d-connected finitely combinatorial man-
ifold with 1 ≤ d ≤ n1. Then

(1) For ∀x ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= (
⊕

M∈V (Gd)

πd(M))
⊕

π(Gd),
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where Gd = Gd[M̃(n1, n2, · · · , nm)], πd(M), π(Gd) denote the fundamental d-groups of a man-
ifold M and the graph Gd, respectively and

(2) For ∀x, y ∈ M̃(n1, n2, · · · , nm),

πd(M̃(n1, n2, · · · , nm), x) ∼= πd(M̃(n1, n2, · · · , nm), y).

A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm) is said to be simply d-
connected if πd(M̃(n1, n2, · · · , nm), x) is trivial. As a consequence, we get the following result
by Theorem 2.7.

Corollary 5.1. A d-connected finitely combinatorial manifold M̃(n1, n2, · · · , nm) is simply
d-connected if and only if

(1) For ∀M ∈ V (Gd[M̃(n1, n2, · · · , nm)]), M is simply d-connected
and
(2) Gd[M̃(n1, n2, · · · , nm)] is a tree.
5.1.4. Euler-Poincare characteristic
The integer

χ(M) =
∞∑

i=0

(−1)iαi,

with αi the number of i-dimensional cells in a CW -complex M is called the Euler-Poincare
characteristic of the complex M. Now define a clique sequence {Cl(i)}i≥1 in the graph G[M̃ ]
by the following programming.

STEP 1. Let Cl(G[M̃ ]) = l0. Construct

Cl(l0) = {Kl0
1 ,Kl0

2 , · · · ,Ki0
p |Kl0

i Â G[M̃ ] and Kl0
i ∩Kl0

j = ∅,
or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ p}.

STEP 2. Let G1 =
⋃

Kl∈Cl(l)

Kl and Cl(G[M̃ ] \G1) = l1. Construct

Cl(l1) = {Kl1
1 ,Kl1

2 , · · · ,Ki1
q |Kl1

i Â G[M̃ ] and Kl1
i ∩Kl1

j = ∅
or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ q}.

STEP 3. Assume we have constructed Cl(lk−1) for an integer k ≥ 1. Let

Gk =
⋃

Klk−1∈Cl(l)

Klk−1

and
Cl(G[M̃ ] \ (G1 ∪ · · · ∪Gk)) = lk.

We construct

Cl(lk) = {Klk
1 ,Klk

2 , · · · ,Klk
r |Klk

i Â G[M̃ ] and Klk
i ∩Klk

j = ∅,
or a vertex ∈ V(G[M̃]) for i 6= j, 1 ≤ i, j ≤ r}.

STEP 4. Continue STEP 3 until we find an integer t such that there are no edges in

G[M̃ ] \
t⋃

i=1

Gi.
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By this clique sequence {Cl(i)}i≥1, we calculated the Euler-Poincare characteristic of
finitely combinatorial manifolds.

Theorem 5.4.([17]) Let M̃ be a finitely combinatorial manifold. Then

χ(M̃) =
∑

Kk∈Cl(k),k≥2

∑

Mij
∈V (Kk),1≤j≤s≤k

(−1)s+1χ(Mi1

⋂
· · ·

⋂
Mis

).

5.2. Differential structures
5.2.1. Differentially combinatorial manifolds
These differentially combinatorial manifolds are defined in next definition.
Definition 5.4. For a given integer sequence 1 ≤ n1 < n2 < · · · < nm, a combina-

torially Ch differential manifold (M̃(n1, n2, · · · , nm); Ã) is a finitely combinatorial manifold
M̃(n1, n2, · · · , nm), M̃(n1, n2, · · · , nm) =

⋃
i∈I

Ui, endowed with a atlas Ã = {(Uα;ϕα)|α ∈ I}

on M̃(n1, n2, · · · , nm) for an integer h, h ≥ 1 with conditions following hold.
(1) {Uα;α ∈ I} is an open covering of M̃(n1, n2, · · · , nm);
(2) For ∀α, β ∈ I, local charts (Uα;ϕα) and (Uβ ;ϕβ) are equivalent, i.e., Uα

⋂
Uβ = ∅ or

Uα

⋂
Uβ 6= ∅ but the overlap maps

ϕαϕ−1
β : ϕβ(Uα

⋂
Uβ) → ϕβ(Uβ) and ϕβϕ−1

α : ϕβ(Uα

⋂
Uβ) → ϕα(Uα)

are Ch mappings;
(3) Ã is maximal, i.e., if (U ;ϕ) is a local chart of M̃(n1, n2, · · · , nm) equivalent with one

of local charts in Ã, then (U ;ϕ) ∈ Ã.
Denote by (M̃(n1, n2, · · · , nm); Ã) a combinatorially differential manifold. A finitely combi-

natorial manifold M̃(n1, n2, · · · , nm) is said to be smooth if it is endowed with a C∞ differential
structure.

5.2.2. Tangent and cotangent vector spaces
Definition 5.5. Let (M̃(n1, n2, · · · , nm), Ã) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). A tangent vector v at p is a mapping v : Xp → R with conditions
following hold.

(1) ∀g, h ∈ Xp,∀λ ∈ R, v(h + λh) = v(g) + λv(h);
(2) ∀g, h ∈ Xp, v(gh) = v(g)h(p) + g(p)v(h).
Denoted all tangent vectors at p ∈ M̃(n1, n2, · · · , nm) by TpM̃(n1, n2, · · · , nm) and define

addition“+”and scalar multiplication“·”for ∀u, v ∈ TpM̃(n1, n2, · · · , nm), λ ∈ R and f ∈
Xp by

(u + v)(f) = u(f) + v(f), (λu)(f) = λ · u(f).

Then it can be shown immediately that TpM̃(n1, n2, · · · , nm) is a vector space under these two
operations“+”and“·”with a basis determined in next theorem.

Theorem 5.5.([17]) For any point p ∈ M̃(n1, n2, · · · , nm) with a local chart (Up; [ϕp]),
the dimension of TpM̃(n1, n2, · · · , nm) is

dimTpM̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑

i=1

(ni − ŝ(p)),
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with a basis matrix

[
∂

∂x
]s(p)×ns(p)

=




1
s(p)

∂
∂x11 · · · 1

s(p)
∂

∂x1ŝ(p)
∂

∂x1(ŝ(p)+1) · · · ∂
∂x1n1 · · · 0

1
s(p)

∂
∂x21 · · · 1

s(p)
∂

∂x2ŝ(p)
∂

∂x2(ŝ(p)+1) · · · ∂
∂x2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
1

s(p)
∂

∂xs(p)1 · · · 1
s(p)

∂
∂xs(p)ŝ(p)

∂
∂xs(p)(ŝ(p)+1) · · · · · · ∂

∂x
s(p)(ns(p)−1)

∂

∂x
s(p)ns(p)




,

where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely there is a smoothly functional matrix
[vij ]s(p)×ns(p)

such that for any tangent vector v at a point p of M̃(n1, n2, · · · , nm),

v = [vij ]s(p)×ns(p)
¯ [

∂

∂x
]s(p)×ns(p)

,

where [aij ]k×l ¯ [bts]k×l =
k∑

i=1

l∑
j=1

aijbij .

Definition 5.6. For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã), the dual space T ∗p M̃(n1, n2, · · · , nm) is
called a co-tangent vector space at p.

Definition 5.7. For f ∈ Xp, d ∈ T ∗p M̃(n1, n2, · · · , nm) and v ∈ TpM̃(n1, n2, · · · , nm), the
action of d on f , called a differential operator d : Xp → R, is defined by

df = v(f).

Then we then obtained the result on the basis of cotangent vector space at a point following.
Theorem 5.6.([17]) For ∀p ∈ (M̃(n1, n2, · · · , nm); Ã) with a local chart (Up; [ϕp]), the

dimension of T ∗p M̃(n1, n2, · · · , nm) is

dimT ∗p M̃(n1, n2, · · · , nm) = ŝ(p) +
s(p)∑

i=1

(ni − ŝ(p)),

with a basis matrix

[dx]s(p)×ns(p)
=




dx11

s(p) · · · dx1ŝ(p)

s(p) dx1(ŝ(p)+1) · · · dx1n1 · · · 0
dx21

s(p) · · · dx2ŝ(p)

s(p) dx2(ŝ(p)+1) · · · dx2n2 · · · 0

· · · · · · · · · · · · · · · · · ·
dxs(p)1

s(p) · · · dxs(p)ŝ(p)

s(p) dxs(p)(ŝ(p)+1) · · · · · · dxs(p)ns(p)−1 dxs(p)ns(p)




,

where xil = xjl for 1 ≤ i, j ≤ s(p), 1 ≤ l ≤ ŝ(p), namely for any co-tangent vector d at a point
p of M̃(n1, n2, · · · , nm), there is a smoothly functional matrix [uij ]s(p)×s(p) such that,

d = [uij ]s(p)×ns(p)
¯ [dx]s(p)×ns(p)

.
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5.2.3. Tensor fields
Definition 5.8. Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and p ∈

M̃(n1, n2, · · · , nm). A tensor of type (r, s) at the point p on M̃(n1, n2, · · · , nm) is an (r + s)-
multilinear function τ ,

τ : T ∗p M̃ × · · · × T ∗p M̃︸ ︷︷ ︸
r

×TpM̃ × · · · × TpM̃︸ ︷︷ ︸
s

→ R,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗p M̃ = T ∗p M̃(n1, n2, · · · , nm).
Then we found the next result.
Theorem 5.7([17]) Let M̃(n1, n2, · · · , nm) be a smoothly combinatorial manifold and

p ∈ M̃(n1, n2, · · · , nm). Then

T r
s (p, M̃) = TpM̃ ⊗ · · · ⊗ TpM̃︸ ︷︷ ︸

r

⊗T ∗p M̃ ⊗ · · · ⊗ T ∗p M̃︸ ︷︷ ︸
s

,

where TpM̃ = TpM̃(n1, n2, · · · , nm) and T ∗p M̃ = T ∗p M̃(n1, n2, · · · , nm), particularly,

dimT r
s (p, M̃) = (ŝ(p) +

s(p)∑

i=1

(ni − ŝ(p)))r+s.

5.2.4. Exterior differentiations
For the exterior differentiations on combinatorial manifolds, we find results following.
Theorem 5.8.([17]) Let M̃ be a smoothly combinatorial manifold. Then there is a unique

exterior differentiation d̃ : Λ(M̃) → Λ(M̃) such that for any integer k ≥ 1, d̃(Λk) ⊂ Λk+1(M̃)
with conditions following hold.

(1) d̃ is linear, i.e., for ∀ϕ,ψ ∈ Λ(M̃), λ ∈ R,

d̃(ϕ + λψ) = d̃ϕ ∧ ψ + λd̃ψ,

and for ϕ ∈ Λk(M̃), ψ ∈ Λ(M̃),

d̃(ϕ ∧ ψ) = d̃ϕ + (−1)kϕ ∧ d̃ψ.

(2) For f ∈ Λ0(M̃), d̃f is the differentiation of f .
(3) d̃2 = d̃ · d̃ = 0.
(4) d̃ is a local operator, i.e., if U ⊂ V ⊂ M̃ are open sets and α ∈ Λk(V ), then

d̃(α|U ) = (d̃α)|U .
Theorem 5.9.([17]) Let ω ∈ Λ1(M̃). Then for ∀X, Y ∈ X(M̃),

d̃ω(X, Y ) = X(ω(Y ))− Y (ω(X))− ω([X, Y ]).

5.2.5. Connections on combinatorial manifolds
Definition 5.9. Let M̃ be a smoothly combinatorial manifold. A connection on tensors of

M̃ is a mapping D̃ : X(M̃)×T r
s M̃ → T r

s M̃ with D̃Xτ = D̃(X, τ) such that for ∀X, Y ∈ X(M̃),
τ, π ∈ T r

s (M̃), λ ∈ R and f ∈ C∞(M̃),
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(1) D̃X+fY τ = D̃Xτ + fD̃Y τ ; and D̃X(τ + λπ) = D̃Xτ + λD̃Xπ;
(2) D̃X(τ ⊗ π) = D̃Xτ ⊗ π + σ ⊗ D̃Xπ;
(3) For any contraction C on T r

s (M̃),

D̃X(C(τ)) = C(D̃Xτ).

Then we got results following.
Theorem 5.10.([17]) Let M̃ be a smoothly combinatorial manifold. Then there exists a

connection D̃ locally on M̃ with a form

(D̃Xτ)|U = Xσςτ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν)

∂

∂xµ1ν1
⊗ · · · ⊗ ∂

∂xµrνr
⊗ dxκ1λ1 ⊗ · · · ⊗ dxκsλs ,

for ∀Y ∈ X(M̃) and τ ∈ T r
s (M̃), where

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs),(µν) =

∂τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs)

∂xµν

+
r∑

a=1

τ
(µ1ν1)···(µa−1νa−1)(σς)(µa+1νa+1)···(µrνr)
(κ1λ1)(κ2λ2)···(κsλs) Γµaνa

(σς)(µν)

−
s∑

b=1

τ
(µ1ν1)(µ2ν2)···(µrνr)
(κ1λ1)···(κb−1λb−1)(µν)(σb+1ςb+1)···(κsλs)Γ

σς
(σbςb)(µν),

and Γκλ
(σς)(µν) is a function determined by

D̃ ∂
∂xµν

∂

∂xσς
= Γκλ

(σς)(µν)

∂

∂xσς
,

on (Up; [ϕp]) = (Up;xµν) of a point p ∈ M̃ , also called the coefficient on a connection.
Theorem 5.11.([17]) Let M̃ be a smoothly combinatorial manifold with a connection D̃.

Then for ∀X, Y ∈ X(M̃),

T̃ (X, Y ) = D̃XY − D̃Y X − [X, Y ]

is a tensor of type (1, 2) on M̃ .
If T ( ∂

∂xµν , ∂
∂xσς ) ≡ 0, we call T torsion-free. This enables us getting the next useful result.

Theorem 5.12.([17]) A connection D̃ on tensors of a smoothly combinatorial manifold M̃

is torsion-free if and only if Γκλ
(µν)(σς) = Γκλ

(σς)(µν).
5.2.6. Combinatorially Finsler geometry

Definition 5.10. A combinatorially Finsler geometry is a smoothly combinatorial manifold
M̃ endowed with a Minkowski norm F̃ on TM̃ , denoted by (M̃ ; F̃ ).

Then we got the following result.
Theorem 5.13.([17]) There are combinatorially Finsler geometries.
Theorem 5.14.([17]) A combinatorially Finsler geometry (M̃(n1, n2, · · · , nm); F̃ ) is a

Smarandache geometry if m ≥ 2.
Because combinatorially Finsler geometries are subsets of Smarandache geometries, we

obtained the next consequence.
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Corollary 5.2. There are inclusions among Smarandache geometries, Finsler geometry,
Riemannian geometry and Weyl geometry:

{Smarandache geometries} ⊃ {combinatorially F insler geometries}
⊃ {Finsler geometry} and {combinatorially Riemannian geometries}
⊃ {Riemannian geometry} ⊃ {Weyl geometry}.

5.2.7. Integration on combinatorial manifolds
For a smoothly combinatorial manifold M̃(n1, · · · , nm), there must be an atlas C =

{(Ũα, [ϕα])|α ∈ Ĩ} on M̃(n1, · · · , nm) consisting of positively oriented charts such that for

∀α ∈ Ĩ, ŝ(p)+
s(p)∑
i=1

(ni−ŝ(p)) is an constant ñŨα
for ∀p ∈ Ũα. Denote such atlas on M̃(n1, · · · , nm)

by C
M̃

and an integer family H
M̃

(n,m) = {nŨα
|α ∈ Ĩ}.

Definition 5.11. Let M̃ be a smoothly combinatorial manifold with orientation O and
(Ũ ; [ϕ]) a positively oriented chart with a constant ñ ∈ H

M̃
(n,m). Suppose ω ∈ ΛñŨ (M̃), Ũ ⊂

M̃ has compact support C̃ ⊂ Ũ . Then define

∫

C̃

ω =
∫

ϕ∗(ω|Ũ ).

Now if C
M̃

is an atlas of positively oriented charts with an integer set H
M̃

, let P̃ =
{(Ũα, ϕα, gα)|α ∈ Ĩ} be a partition of unity subordinate to C

M̃
. For ∀ω ∈ Λn(M̃), ñ ∈

H
M̃

(n,m), an integral of ω on P̃ is defined by
∫

P̃

ω =
∑

α∈Ĩ

∫
gαω.

Definition 5.12. Let M̃ be a smoothly combinatorial manifold. A subset D of M̃ is with
boundary if its points can be classified into two classes following.

Class 1 (interior point IntD) For ∀p ∈ IntD, there is a neighborhood Vp of p enable
Vp ⊂ D.

Case 2 (boundary ∂D) For ∀p ∈ ∂D, there is integers µ, ν for a local chart (Up; [ϕp]) of
p such that xµν(p) = 0 but

Up

⋂
D = {q|q ∈ Up, x

κλ ≥ 0 for ∀{κ, λ} 6= {µ, ν}}.
We then generalized the famous Stokes’ theorem on manifolds in next theorem.
Theorem 5.15.([18]) Let M̃ be a smoothly combinatorial manifold with an integer set

H
M̃

(n,m) and D̃ a boundary subset of M̃ . For ñ ∈ H
M̃

if ω ∈ Λñ(M̃) has compact support,
then

∫

D̃

dω =
∫

∂D̃

ω,

with the convention
∫

∂D̃
ω = 0 while ∂D̃ = ∅.

Corollaries following are immediately obtained by Theorem 5.15.
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Corollary 5.3. Let M̃ be a homogenously combinatorial manifold with an integer set
H

M̃
(n,m) and D̃ a boundary subset of M̃ . For ñ ∈ H

M̃
(n,m) if ω ∈ Λñ(M̃) has a compact

support, then

∫

D̃

dω =
∫

∂D̃

ω,

particularly, if M̃ is nothing but a manifold, the Stokes theorem holds.
Corollary 5.4. Let M̃ be a smoothly combinatorial manifold with an integer setH

M̃
(n,m).

For ñ ∈ H
M̃

(n,m), if ω ∈ Λñ(M̃) has a compact support, then

∫

M̃

ω = 0.

§6. Applications to other fields

6.1. Applications to algebra
The mathematical combinatorics can be also used to generalize algebraic systems, groups,

rings, vector spaces, ... etc. in algebra as follows ([10]− [12]).
Definition 6.1 For any integers n, n ≥ 1 and i, 1 ≤ i ≤ n, let Ai be a set with an operation

set O(Ai) such that (Ai, O(Ai)) is a complete algebraic system. Then the union

n⋃

i=1

(Ai, O(Ai))

is called an n multi-algebra system.

Definition 6.2 Let G̃ =
n⋃

i=1

Gi be a complete multi-algebra system with a binary operation

set O(G̃) = {×i, 1 ≤ i ≤ n}. If for any integer i, 1 ≤ i ≤ n, (Gi;×i) is a group and for
∀x, y, z ∈ G̃ and any two binary operations “×”and “◦”, × 6= ◦, there is one operation, for
example the operation × satisfying the distribution law to the operation “◦”provided their
operation results exist , i.e.,

x× (y ◦ z) = (x× y) ◦ (x× z),

(y ◦ z)× x = (y × x) ◦ (z × x),

then G̃ is called a multi-group.

Definition 6.3. Let R̃ =
m⋃

i=1

Ri be a complete multi-algebra system with a double binary

operation set O(R̃) = {(+i,×i), 1 ≤ i ≤ m}. If for any integers i, j, i 6= j, 1 ≤ i, j ≤ m,
(Ri; +i,×i) is a ring and for ∀x, y, z ∈ R̃,

(x +i y) +j z = x +i (y +j z), (x×i y)×j z = x×i (y ×j z),

and



78 Linfan Mao No. 1

x×i (y +j z) = x×i y +j x×i z, (y +j z)×i x = y ×i x +j z ×i x,

provided all these operation results exist, then R̃ is called a multi-ring. If for any integer
1 ≤ i ≤ m, (R; +i,×i) is a filed, then R̃ is called a multi-filed.

Definition 6.4. Let Ṽ =
k⋃

i=1

Vi be a complete multi-algebra system with a binary operation

set O(Ṽ ) = {(+̇i, ·i) | 1 ≤ i ≤ m} and F̃ =
k⋃

i=1

Fi a multi-filed with a double binary operation

set O(F̃ ) = {(+i,×i) | 1 ≤ i ≤ k}. If for any integers i, j, 1 ≤ i, j ≤ k and ∀a,b, c ∈ Ṽ ,
k1, k2 ∈ F̃ ,

(i) (Vi; +̇i, ·i) is a vector space on Fi with vector additive +̇i and scalar multiplication ·i;
(ii) (a+̇ib)+̇jc = a+̇i(b+̇jc);
(iii) (k1 +i k2) ·j a = k1 +i (k2 ·j a);

provided all those operation results exist, then Ṽ is called a multi-vector space on the multi-filed
F̃ with a binary operation set O(Ṽ ), denoted by (Ṽ ; F̃ ).

Elementary structural results for these multi-groups, multi-rings, multi-vector spaces,...
can be found in references [9]− [13].

6.2. Applications to theoretical physics
Some physicists had applied Smarandache multi-spaces to solve many world problem by

conservation laws, such as works in [2]. In fact, although the Bag Bang model is an application
of the Einstein’s gravitational equation to the universe, it throughout persists in the uniqueness
of universes since one can not see other things happening in the spatial beyond the visual sense
of mankind. This situation have been modified by physicists in theoretical physics such as those
of gauge theory and string/M-theory adhered to a microspace at each point ([3]).

According the geometrical theory established in the last section, we can also introduce
curvature tensors R(αβ)(µν) on smoothly combinatorial manifolds in the following way.

Definition 6.1. Let M̃ be a smoothly combinatorial manifold with a connection D̃. For
∀X, Y, Z ∈ X(M̃), define a combinatorially curvature operator R̃(X, Y ) : X(M̃) → X(M̃) by

R̃(X, Y )Z = D̃XD̃Y Z − D̃Y D̃XZ − D̃[X,Y ]Z,

and a combinatorially curvature tensor
R̃ : X(M̃)×X(M̃)×X(M̃) → X(M̃) by R̃(Z, X, Y ) = R̃(X, Y )Z.

Then at each point p ∈ M̃ , there is a type (1, 3) tensor R̃p : TpM̃ × TpM̃ × TpM̃ → TpM̃

determined by R̃(w, u, v) = R̃(u, v)w for ∀u, v, w ∈ TpM̃ . Now let (Up; [ϕp]) be a local chart at
the point p, applying Theorems 5.5 and 5.6, we can find that

R̃(
∂

∂xµν
,

∂

∂xκλ
)

∂

∂xσς
= R̃ηθ

(σς)(µν)(κλ)

∂

∂xηθ
,

where

R̃ηθ
(σς)(µν)(κλ) =

∂Γηθ
(σς)(κλ)

∂xµν
−

∂Γηθ
(σς)(µν)

∂xκλ
+ Γϑι

(σς)(κλ)Γ
ηθ
(ϑι)(µν) − Γϑι

(σς)(µν)Γ
ηθ
(ϑι)(κλ),
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and Γσς
(µν)(κλ) ∈ C∞(Up) determined by

D̃ ∂
∂xµν

∂

∂xκλ
= Γσς

(κλ)(µν)

∂

∂xσς
.

Now we define R̃(µν)(κλ) = R̃(κλ)(νµ) = R̃σς
(µν)(σς)(κλ) and R = g(κλ)(µν)R̃(κλ)(νµ).

Then similar to the establishing of Einstein’s gravitational equation, we know that

R̃(µν)(κλ) −
1
2
Rg(µν)(κλ) = −8πGT(µν)(κλ),

if we take smoothly combinatorial manifolds to describe the spacetime. Thereby there are
Smarandache multi-space solutions in the Einstein’s gravitational equation, particularly, solu-
tions of combinatorially Euclidean spaces. For example, let

dΩ2(r, θ, ϕ) =
dr2

1−Kr2
+ r2(dθ2 + sin2 θdϕ2).

Then we can choose a multi-time system {t1, t2, · · · , tn} to get a cosmic model of n, n ≥ 2
combinatorially R4 spaces with line elements

ds2
1 = −c2dt21 + a2(t1)dΩ2(r, θ, ϕ),

ds2
2 = −c2dt22 + a2(t2)dΩ2(r, θ, ϕ),

· · · · · · ,

ds2
n = −c2dt2n + a2(tn)dΩ2(r, θ, ϕ).

As a by-product for the universe R3, there are maybe n − 1 beings in the universe with
different time system two by two for an integer n ≥ 2 not alike that of humanity. So it is very
encouraging for scientists looking for those beings in theory or experiments.
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