A note on the Smarandache inversion sequence

A.A.K. Majumdar
APU, 1-1 Jumonjibaru
Beppu-shi 875-8577, Oita-ken, Japan
majumdar@apu.ac.jp/aakmajumdar@gmail.com

Abstract

In a recent paper, Muneer [1] introduced the Smarandache inversion sequence. In this paper, we study some properties of the Smarandache inversion sequence. Moreover, we find the necessary and sufficient condition such that $[S I(n)]^{2}+[S I(n+1)]^{2}$ is a perfect square.

Keywords Smarandache reverse sequence, Smarandache inversion, perfect square.

§1. Introduction

The Smarandache reverse sequence is (see, for example, Ashbacher [2])

$$
1,21,321,4321,54321, \cdots
$$

and in general, the $n-t h$ term of the sequence is

$$
S(n)=n(n-1) \cdots 321
$$

In connection with the Smarandache reverse sequence, Muneer [1] introduced the concept of the Smarandache inversion sequence, $S I(n)$, defined as follows :

Definition 1.1. The value of the Smarandache inversion of (positive) integers in a number is the number of order relations of the form $i>j$ (where i and j are digits of the positive integers of the number under consideration), with $S I(0)=0, S I(1)=0$.

More specifically, for the Smarandache reverse sequence number

$$
S(n)=n(n-1) \cdots 321,
$$

the following order relations hold :

$$
\begin{aligned}
& (A-1) n>n-1>\cdots>3>2>1 \\
& (A-2) n-1>n-2>\cdots>3>2>1, \\
& \cdots \\
& (A-(n-1)) 2>1
\end{aligned}
$$

Note that, the number of order relations in $(A-1)$ is $n-1$, that in $(A-2)$ is $n-2$, and so on, and finally, the number of order relation in $(A-(n-1))$ is 1 . We thus have the following result :

Lemma 1.1. $S I(n)=\frac{n(n-1)}{2}$ for any integer $n \geq 1$.
Proof. $S I(n)=(n-1)+(n-2)+\cdots+1=\frac{n(n-1)}{2}$.
Lemma 1.2. For any integer $n \geq 1, \sum_{i=1}^{n} S I(1)=\frac{n\left(n^{2}-1\right)}{6}$.
Proof. Using Lemma 1.1,

$$
\begin{aligned}
\sum_{i=1}^{n} S I(1) & =\sum_{i=1}^{n} \frac{i(i-1)}{2}=\frac{1}{2}\left(\sum_{i=1}^{n} i^{2}-\sum_{i=1}^{n} i\right) \\
& =\frac{1}{2}\left[\frac{n(n+1)(2 n+1)}{6}-\frac{n(n+1)}{2}\right]=\frac{n\left(n^{2}-1\right)}{6}
\end{aligned}
$$

Muneer [1] also derived the following results.
Lemma 1.3. $S I(n+1)+S I(n)=n^{2}$ for any integer $n \geq 1$.
Lemma 1.4. $S I(n+1)-S I(n)=n$ for any integer $n \geq 1$.
Proof. Since

$$
S I(n+1)=\frac{n(n+1)}{2}=\frac{n(n-1)}{2}+n=S I(n)+n
$$

we get the desired result.
Lemma 1.5. $[S I(n+1)]^{2}-[S I(n)]^{2}=n^{3}$ for any integer $n \geq 1$.
Proof. Using Lemma 1.3 and Lemma 1.4,

$$
[S I(n+1)]^{2}-[S I(n)]^{2}=[S I(n+1)+S I(n)][S I(n+1)-S I(n)]=\left(n^{2}\right)(n)=n^{3} .
$$

Lemma 1.6. $S I(n+1) S I(n-1)+S I(n)=\left(\frac{n(n-1)}{2}\right)^{2}$ for any integer $n \geq 1$.
We also have the following recurrence relation.
Lemma 1.7. $S I(n+1)-S I(n-1)=2 n-1$ for any integer $n \geq 1$.
Proof. Using Lemma 1.4,

$$
\begin{aligned}
S I(n+1)-S I(n-1) & =[S I(n+1) S I(n)]+[S I(n)-S I(n-1)] \\
& =n+(n-1)=2 n-1
\end{aligned}
$$

Muneer [1] also considered the equation

$$
\begin{equation*}
[S I(n)]^{2}+[S I(n+1)]^{2}=k^{2} \tag{1}
\end{equation*}
$$

for some integers $n \geq 1, k \geq 1$, and found two solutions, namely, $n=7$ and $n=8$.
In this note, we derive a necessary and sufficient condition such that (1) is satisfied. This is given in the next section.

§2. Main Results

We consider the equation

$$
\begin{equation*}
[S I(n)]^{2}+[S I(n+1)]^{2}=k^{2} \tag{2}
\end{equation*}
$$

for some integers $n \geq 1, k \geq 1$. By definition,

$$
[S I(n)]^{2}+[S I(n+1)]^{2}=\left(\frac{n(n-1)}{2}\right)^{2}+\left(\frac{n(n+1)}{2}\right)^{2}=\frac{1}{2} n^{2}\left(n^{2}+1\right)
$$

We thus arrive at the following result.
Lemma 2.1. The equation (2) has a solution (for n and k) if and only if $\frac{1}{2}\left(n^{2}+1\right)$ is a perfect square.

Lemma 2.2. The Diophantine equation

$$
\begin{equation*}
\frac{1}{2}\left(n^{2}+1\right)=k^{2} \tag{3}
\end{equation*}
$$

has a solution (for n and k) if and only if there is an integer $m \geq 1$ such that $m^{2}+(m+1)^{2}$ is a perfect square, and in that case, $n=2 m+1, k^{2}=m^{2}+(m+1)^{2}$.

Proof. We consider the equation (3) in the equivalent form

$$
\begin{equation*}
n^{2}+1=2 k^{2}, \tag{4}
\end{equation*}
$$

which shows that n must be odd; so let

$$
\begin{equation*}
n=2 m+1 . \tag{5}
\end{equation*}
$$

for some integer $m \geq 1$. Then, from (4),

$$
(2 m+1)^{2}+1=2 k^{2},
$$

that is, $\left(4 m^{2}+4 m+1\right)+1=2 k^{2}$, that is, $m^{2}+(m+1)^{2}=k^{2}$.
Searching for all consecutive integers upto 1500 , we found only four pairs of consecutive integers whose sums of squares are perfect squares. These are

$$
\begin{align*}
& (1) 32+42=52, \tag{6}\\
& (2) 202+212=292, \tag{7}\\
& \text { (3) } 1192+1202=1692, \tag{8}\\
& \text { (4) } 6962+6972=9852 . \tag{9}
\end{align*}
$$

The first two give respectively the solutions
(a) $[S I(7)]^{2}+[S I(8)]^{2}=35^{2}$,
(b) $[S I(41)]^{2}+[S I(42)]^{2}=1189^{2}$,
which were found by Muneer [1], while the other two give respectively the solutions
(c) $[S I(239)]^{2}+[S I(240)]^{2}=40391^{2}$,
(d) $[S I(1393)]^{2}+[S I(1394)]^{2}=1372105^{2}$.

The following lemma, giving the general solution of the Diophantine equation $x^{2}+y^{2}=z^{2}$, is a well-known result (see, for example, Hardy and Wright [3]).

Lemma 2.3. The most general (integer) solution of the Diophantine equation $x^{2}+y^{2}=z^{2}$ is

$$
\begin{equation*}
x=2 a b, \quad y=a^{2}-b^{2}, \quad z=a^{2}+b^{2} \tag{10}
\end{equation*}
$$

where $x>0, y>0, z>0$ are integers with $(x, y)=1$ and x is even, and a and b are of opposite parity with $(a, b)=1$.

Lemma 2.4. The problem of solving the Diophantine equation

$$
\begin{equation*}
m^{2}+(m+1)^{2}=k^{2} \tag{11}
\end{equation*}
$$

is equivalent to the problem of solving the Diophantine equations

$$
x^{2}-2 y^{2}=1
$$

Proof. By Lemma 2.3, the general solution of the Diophantine equation

$$
(m+1)^{2}+m^{2}=k^{2}
$$

has one of the following two forms :
(a) $m=2 a b, m+1=a^{2}-b^{2}, k=a^{2}+b^{2}$ for some integers $a, b \geq 1$ with $(a, b)=1$;
(b) $m=a^{2}-b^{2}, m+1=2 a b, k=a^{2}+b^{2}$ for some integers $a, b \geq 1$ with $(a, b)=1$.

In case (a),

$$
1=(m+1)-m=\left(a^{2}-b^{2}\right)^{2}-2 a b=(a-b)^{2}-2 a b^{2},
$$

which leads to the Diophantine equation $x^{2}-2 y^{2}=1$.
In case (b),

$$
-1=m-(m+1)=\left(a^{2}-b^{2}\right)^{2}-2 a b=(a-b)^{2}-2 a b^{2}
$$

leading to the Diophantine equation $x^{2}-2 y^{2}=-1$.
The general solutions of the Diophantine equations $x^{2}-2 y^{2}= \pm 1$ are given in the following lemma (see, for example, Hardy and Wright [3]).

Lemma 2.5. All solutions of the Diophantine equation

$$
x^{2}-2 y^{2}=1
$$

are given by

$$
\begin{equation*}
x+\sqrt{2} y=(1+\sqrt{2})^{2 n} \tag{12}
\end{equation*}
$$

$n \geq 0$ is an integer; and all solutions of the Diophantine equation

$$
x^{2}-2 y^{2}=-1,
$$

are given by

$$
\begin{equation*}
x+\sqrt{2} y=(1+\sqrt{2})^{2 n+1} \tag{13}
\end{equation*}
$$

$n \geq 0$ is an integer.
Remark 2.1. Lemma 2.5 shows that the Diophantine equation $m^{2}+(m+1)^{2}=k^{2}$ has infinite number of solutions. The first four solutions of the Diophantine equation (11) are given in ($6-9)$. It may be mentioned here that the first and third solutions can be obtained from
(12) corresponding to $n=1$ and $n=2$ respectively, while the second and the fourth solutions can be obtained from (13) corresponding to $n=0$ and $n=1$ respectively. The fifth solution may be obtained from (12) with $n=3$ as follows :

$$
x+\sqrt{2} y=(1+\sqrt{2})^{6}=99+70 \sqrt{2} \Rightarrow x=99, \quad y=70 .
$$

Therefore,

$$
a-b=99, \quad b=70 \Rightarrow a=169, b=70
$$

and finally,

$$
m=2 a b=23660, \quad m+1=a^{2}-b^{2}=23661 .
$$

Corresponding to this, we get the following solution to (2) :

$$
[S I(47321)]^{2}+[S I(47322)]^{2}=1583407981^{2}
$$

§3. Some Observations

In [1], Muneer has found three relations connecting four consecutive Smarandache inversion functions. These are as follows :
(1) $S I(6)+S I(7)+S I(8)+S I(9)=10^{2}$,
(2) $S I(40)+S I(41)+S I(42)+S I(43)=58^{2}$,
(3) $S I(238)+S I(239)+S I(240)+S I(241)=338^{2}$.

Searching for more such relations upto $n=1500$, we got a fourth one :
(4) $S I(1392)+S I(1393)+S I(1394)+S I(1395)=1970^{2}$.

Since

$$
S I(n-1)+S I(n)+S I(n+1)+S I(n+2)=(n-1)^{2}+(n+1)^{2},
$$

the problem of finding four consecutive Smarandache inversion functions whose sum is a perfect square reduces to the problem of solving the Diophantine equation

$$
m^{2}+(m+2)^{2}=k^{2} .
$$

In this respect, we have the following result.
Lemma 3.1. If $m_{0}, m_{0}+1$ and $k_{0}=\sqrt{m_{0}^{2}+\left(m_{0}+1\right)^{2}}$ is a solution of the Diophantine equation

$$
\begin{equation*}
m^{2}+(m+1)^{2}=k^{2} \tag{14}
\end{equation*}
$$

then $2 m_{0}, 2\left(m_{0}+1\right)$ and $l_{0}=2 \sqrt{m_{0}^{2}+\left(m_{0}+1\right)^{2}}$ is a solution of the Diophantine equation

$$
\begin{equation*}
m^{2}+(m+2)^{2}=l^{2} \tag{15}
\end{equation*}
$$

and conversely.
Proof. First, let $m_{0}, m_{0}+1$ and $k_{0}=\sqrt{m_{0}^{2}+\left(m_{0}+1\right)^{2}}$ be a solution of (14), so that

$$
\begin{equation*}
m_{0}^{2}+\left(m_{0}+1\right)^{2}=k_{0}^{2} \tag{16}
\end{equation*}
$$

Multiplying throughout of (1) by 4, we get

$$
\left(2 m_{0}\right)^{2}+\left[2\left(m_{0}+1\right)\right]^{2}=\left(2 k_{0}\right)^{2}
$$

so that $2 m_{0}, 2\left(m_{0}+1\right)$ and $l_{0}=2 k_{0}$ is a solution of (15).
Conversely, let $m_{0}, m_{0}+2$ and $l_{0}=\sqrt{m_{0}^{2}+\left(m_{0}+2\right)^{2}}$ be a solution of (15). Note that, m_{0} and $m_{0}+2$ are of the same parity. Now, both m_{0} and $m_{0}+2$ cannot be odd, for otherwise,

$$
m_{0} \equiv 1(\bmod 2), \quad m_{0}+2 \equiv 1(\bmod 2) \Rightarrow l_{0}^{2}(\bmod 4)
$$

which is impossible. Thus, both m_{0} and $m_{0}+2$ must be even. It, therefore, follows that $\frac{m_{0}}{2}$, $\frac{m_{0}}{2}+1$ and $k_{0}=\frac{l_{0}}{2}$ is a solution of (14).

References

[1] Muneer, J. K., Smarandache inversion sequence, Scientia Magna, 4(2006), No. 2, 1-14.
[2] Charles Ashbacher, Pluckings from the tree of Smarandache sequences and functions, American Research Press, 1998.
[3] Hardy, G.H. and Wright, E.M., An introduction to the theory of numbers, Oxford Science Publications, Clarendon Press, Oxford, UK, 5th Edition 2002.

