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Abstract For any positive integer n, we call an arithmetical function f(n) as the

F.Smarandache multiplicative function if f(1) = 1, and if n > 1, n = pα1
1 pα2

2 · · · pαk
k be

the fractorization of n into prime powers, then f(n) = max
1≤i≤k

{f(pαi
i )}. The main purpose of

this paper is using the elementary methods to study the solutions of an equation involving

the F.Smarandache multiplicative function, and give its all positive integer solutions.
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§1. Introduction and result

For any positive integer n, we call an arithmetical function f(n) as the F.Smarandache
multiplicative function if f(1) = 1, and if n > 1, n = pα1

1 pα2
2 · · · pαk

k be the fractorization of
n into prime powers, then f(n) = max

1≤i≤k
{f(pαi

i )}. For example, the function S(n) = min{m :

m ∈ N, n|m!} is a F.Smarandache multiplicative function. From the definition of S(n), it is
easy to see that if n = pα1

1 pα2
2 · · · pαk

k be the fractorization of n into prime powers, we have

S(n) = max
1≤i≤k

{S(pαi
i )} .

So we can say that S(n) is a F.Smarandache multiplicative function. In fact, this function be
the famous F.Smarandache function, the first few values of it are S(1) = 1, S(2) = 2, S(3) = 3,
S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, · · · · · · . About
the arithmetical properties of S(n), some authors had studied it, and obtained some valuable
results. For example, Farris Mark and Mitchell Patrick [2] studied the upper and lower bound
of S(pα), and proved that

(p− 1)α + 1 ≤ S(pα) ≤ (p− 1)[α + 1 + logp α] + 1.

Professor Wang Yongxing [3] studied the mean value properties of S(n), and obtained a sharper
asymptotic formula, that is

∑

n≤x

S(n) =
π2

12
x2

lnx
+ O

(
x2

ln2 x

)
.

1This work is supported by the N.S.F.C.(10671155)



Vol. 3 An equation involving the F.Smarandache multiplicative function 61

Lu Yaming [4] studied the solutions of an equation involving the F.Smarandache function S(n),
and proved that for any positive integer k ≥ 2, the equation

S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite groups positive integer solutions (m1,m2, · · · ,mk).
Jozsef Sandor [5] proved for any positive integer k ≥ 2, there exist infinite groups of positive

integer solutions (m1,m2, · · · ,mk) satisfied the following inequality:

S(m1 + m2 + · · ·+ mk) > S(m1) + S(m2) + · · ·+ S(mk).

Also, there exist infinite groups of positive integer solutions (m1,m2, · · · ,mk) such that

S(m1 + m2 + · · ·+ mk) < S(m1) + S(m2) + · · ·+ S(mk).

In [6], Fu Jing proved more general conclusion. That is, if the positive integer k and m satisfied
the one of the following conditions:

(a) k > 2 and m ≥ 1 are all odd numbers.
(b) k ≥ 5 is odd, m ≥ 2 is even.
(c) Any even numbers k ≥ 4 and any positive integer m;
then the equation

m · S(m1 + m2 + · · ·+ mk) = S(m1) + S(m2) + · · ·+ S(mk)

has infinite groups of positive integer solutions (m1,m2, · · · ,mk).
In [7], Xu Zhefeng studied the value distribution of S(n), and obtained a deeply result.

That is, he proved the following Theorem:
Let P (n) be the largest prime factor of n, then for any real numbers x > 1, we have the

asymptotic formula:

∑

n≤x

(S(n)− P (n))2 =
2ζ

(
3
2

)
x

3
2

3 ln x
+ O

(
x

3
2

ln2 x

)
, (1)

where ζ(s) is the Riemann zeta-function.
On the other hand, if n = pα1

1 pα2
2 · · · pαk

k be the fractorization of n into prime powers, we
define

SL(n) = max{pα1
1 , pα2

2 , · · · , pαk

k }.
Obviously, this function is also a Smarandache multiplicativa function, which is called

F.Smarandache LCM function. About the properties of this function, there are many scholars
have studied it, see references [8] and [9].

Now, we define another arithmetical function S(n) as follows: S(1) = 1, when n > 1 and
if n = pα1

1 pα2
2 · · · pαk

k be the fractorization of n into prime powers, then we define

S(n) = max{α1p1, α2p2, α3p3, · · · , αkpk}.

It is easy to prove that this function is also a F.Smarandache multiplicative function. About
its elementary properties, we know very little, there are only some simple properties mentioned
in [7]. That is, if we replace S(n) with S(n) in (1), it is also true.
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The main purpose of this paper is using the elementary methods to study the solutions of
an equation involving S(n). That is, we shall study all positive integer solutions of the equation

∑

d|n
S(d) = n, (2)

where
∑

d|n
denotes the summation over all positive factors of n.

Obviously, there exist infinite positive integer n, such that
∑

d|n
S(d) > n. For example, let

n = p be a prime, then
∑

d|n
S(d) = 1 + p > p. At the same time, there are also infinite positive

integer n, such that
∑

d|n
S(d) < n.

In fact, let n = pq, p and q are two different odd primes with p < q, then we have∑

d|n
S(d) = 1 + p + 2q < pq. So a natural problem is whether there exist infinite positive

integer n satisfying (2)? We have solved this problem completely in this paper, and proved the
following conclusion:

Theorem. For any positive integer n, the equation (2) holds if and only if n = 1, 28.

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem. Firstly, we prove some special
cases:

(i) If n = 1,
∑
d|n

S(d) = S(1) = 1, then n = 1 is a solution of equation (2).

(ii) If n = pα is the prime powers, then (2) doesn’t hold.
In fact, if (2) holds, then from the definition of S(n), we have

∑

d|n
S(d) =

∑

d|pα

S(d) = 1 + p + 2p + · · ·+ αp = pα. (3)

Obviously, the right side of (3) is a multiple of p, but the left side is not divided by p, a
contradiction. So if n is a prime powers, (2) doesn’t hold.

(iii) If n > 1 and the least prime factor powers of n is 1, then the equation (2) also doesn’t
hold. Now, if n = p1p

α2
2 · · · pαk

k = p1n1 satisfied (2), then from the conclusion (ii), we know
that k ≥ 2, so from the definition of S(n), we have

∑

d|n
S(d) =

∑

d|n1

S(d) +
∑

d|n1

S(p1d) = 2
∑

d|n1

S(d) + p1 − 1 = p1n1. (4)

Obviously, two sides of (4) has the different parity, it is impossible.
We get immediately from the conclusion (iii), if n is a square-free number, then n can’t

satisfy (2).
Now we prove the general case. Provided integer n > 1 satisfied equation (2), from (ii) and

(iii), we know that n has two different prime powers at least, and the least prime factor power
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of n is larger than 1. So we let n = pα1
1 pα2

2 · · · pαk

k , α1 > 1, k ≥ 2. Let S(n) = αp, we discuss it
in the following cases:

(A) α = 1. Then p must be the largest prime factors of n, let n = n1p, note that, if d|n1,
we haveS(d) ≤ p− 1, so from

∑

d|n
S(d) = n we get

n1p = n =
∑

d|n1p

S(d) =
∑

d|n1

S(d) +
∑

d|n1

S(dp)

=
∑

d|n1

S(d) +
∑

d|n1

p ≤ 1 +
∑

d|n1

d>1

(p− 1) + pd(n1)

= 2 + (2p− 1)d(n1)− p (5)

or

n1 + 1 < 2d(n1), (6)

where d(n1) is the Direchlet divisor function. Obviously, if n1 ≥ 7, then 2 ≤ n1 ≤ 6. It is also
because the least prime factors power of n1 is bigger than 1, we have n1 = 4, and n = n1p = 4p,
p > 3. Now, from

4p =
∑

d|4p

S(d) = S(1) + S(2) + S(4) + S(p) + S(2p) + S(4p) = 1 + 2 + 4 + 3p,

we immediately obtain p = 7 and n = 28.
(B) S(n) = αp and α > 1, now let n = n1p

α, (n1, p) = 1, if n satisfied (2), we have

n = pαn1 =
α∑

i=0

∑

d|n1

S(pid).

If 1 < n1 < 8, we consider equation (2) as follows:
(a) If n1 = 2. That is, n = 2pα(p > 2), from the discussion of (iii), we know that n = 2pα

isn’t the solution of (2).
(b) If n1 = 3. That is, n = 3pα, since (n1, p) = 1, we have p 6= 3.
If p = 2, n = 3 · 2α satisfied (2). That is

∑

d|3·2α

S(d) =
∑

d|2α

S(d) +
∑

d|2α

S(3d) = 2
∑

d|2α

S(d) + 3 = 3 · 2α.

In the above equation, 2
∑

d|2α

S(d) + 3 is an odd number, but 3 · 2α is an even number, so

n = 3 · 2α is not the solution of (2).
If p > 3. That is, n = 3 · pα satisfied (2), then the least prime factor powers of n is 1, from

(iii), we know that n = 3 · pα is not the solution of (2).
(c) If n1 = 4, n = 4 · pα(p ≥ 3), we have

∑

d|4·pα

S(d) =
∑

d|pα

S(d) +
∑

d|pα

S(2d) +
∑

d|pα

S(4d).
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If p = 3. That is, n = 4 · 3α satisfied equation (2), then
∑

d|4·3α

S(d) =
∑

d|3α

S(d) +
∑

d|3α

S(2d) +
∑

d|3α

S(4d) = 3
∑

d|3α

d>1

S(d) + 12 = 4 · 3α.

Since 32 | 3 ∑
d|3α

d>1

S(d), and 32 | 4 · 3α, then 32 | 12, this is impossible.

If p > 3. That is, n = 4 · pα, then
∑

d|4·pα

S(d) =
∑

d|pα

S(d) +
∑

d|pα

S(2d) +
∑

d|pα

S(4d) = 3
∑

d|pα

S(d) + 8 =
3
2
α(α + 1)p + 11 = 4 · pα,

or 4 · 3α− 3
2α(α+1)p+11 = 0. Now we fix α, and let f(x) = 4 ·xα− 1

2α(α+1)x+11, if x ≥ 3,
f(x) is a increased function. That is,

f(x) ≥ f(3) = 4 · 3α − 3
2
α(α + 1) + 11 = g(α).

So when x ≥ 3, f(x) = 0 has no solutions, from which we get if p > 3, then equation (2) has
no solutions.

(d) If n1 = 5, we have n = 5 · pα(p 6= 5).
If p > 5, then from (iii), we know that n = 5 · pα is not a solution of equation (2).
If p = 2, since

∑

d|5·2α

S(d) =
∑

d|2α

S(d) +
∑

d|2α

S(5d) = 2
∑

d|2α

d>1

S(d) + 10 = 5 · 2α,

where 22 | 2
∑

d|2α

d>1

S(d), and 22 | 5 · 2α, so we have 22 | 10, this is impossible. Hence n = 5 · 2α

unsatisfied the equation (2).
If p = 3, since

∑

d|5·3α

S(d) =
∑

d|3α

S(d) +
∑

d|3α

S(5d) = 2
∑

d|3α

S(d) + 6,

where 2
∑

d|3α

S(d) + 6 is even, and 5 · 3α is odd, so n = 5 · 3α unsatisfied the equation (2).

(e) When n1 = 6, n = 2 · 3 · pα, from the discussion of (3), n unsatisfied (2).
(f) When n1 = 7, we have n = 7 · pα(p 6= 7).
If p > 7, then from (iii), n = 7 · pα isn’t the solution of (2).
If p = 2, we must have α ≥ 4. Since

∑

d|7·2α

S(d) =
∑

d|2α

S(d) +
∑

d|2α

S(7d) = 2
∑

d|2α

S(d) + 15,

where 2
∑

d|2α

S(d) + 15 is odd, but n = 7 · 2α is even. So n = 7 · 2α unsatisfied (2).

If p = 3, since
∑

d|7·3α

S(d) =
∑

d|3α

S(d) +
∑

d|3α

S(7d) = 2
∑

d|3α

d>1

S(d) + 13,
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in above equation, 3 | 2
∑

d|3α

d>1

S(d), and 3 | 7 · 3α. If it satisfied (2), we must obtain 3 † 13, a

contradiction! So n = 7 · 3α is not a solution of (2) either.
If p = 5, since

∑

d|7·5α

S(d) =
∑

d|5α

S(d) +
∑

d|5α

S(7d) = 2
∑

d|5α

S(d) + 8,

in the above equation, 2
∑

d|5α

S(d) + 8 is even, 7 · 5α is odd. So n = 7 · 5α is not a solution of (2)

either.
(g) When n1 ≥ 8, we have n = n1 · pα and pα > α(α+1)

2 p, then

∑

d|n1·pα

S(d) < S(pα)d(n1p
α) = α(α + 1)pd(n1) ≤ α(α + 1)

2
pn1 < pαn1 = n,

then if n1 ≥ 8, n = n1p
α is not a solution of (2) either.

In a word, equation (2) only has two solutions n = 1 and n = 28.
This completes the proof of the theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House,
1993.

[2] Farris Mark and Mitchell Patrick, Bounding the Smarandache function. Smarandache
Notions Journal, 13(2002), 37-42.

[3] Wang Yongxing, On the Smarandache function, Research on Smarandache Problem
In Number Theory (Edited by Zhang Wenpeng, Li Junzhuang and Liu Duansen), Hexis,
Vol.II(2005), 103-106.

[4] Liu Yaming, On the solutions of an equation involving the Smarandache function,
Scientia Magna, 2(2006), No. 1, 76-79.

[5] Jozsef Sandor, On certain inequalities involving the Smarandache function, Scientia
Magna, 2(2006), No.3, 78-80.

[6] Fu Jing, An equation involving the Smarandache function, Scientia Magna, 2(2006),
No. 4, 83-86.

[7] Xu Zhefeng，The value distribution property of the Smarandache function，Acta Math-
ematica Sinica (Chinese Series)，49(2006), No.5, 1009-1012.

[8] Pan Chengdong and Pan Chengbiao, The elementary number theory, Beijing University,
Beijing, 1988.

[9] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag,
1976.




