On the Irrationality of Certain Constants Related

to the Smarandache Function

J. Sándor

Babeş-Bolyai University, 3400 Cluj-Napoca, Romania

1. Let $S(n)$ be the Smarandache function. Recently I. Cojocaru and S. Cojocaru [2] have proved the irrationality of $\sum_{n=1}^{n} \frac{S(n)}{n!}$.

The author of this note [5] showed that this is a consequence of an old irrationality criteria (which will be used here once again), and proved a result implying the irrationality of $\sum_{n=1}^{\infty}(-1)^{n-1} \frac{S(n)}{n!}$.
E. Burton [1] has studied series of type $\sum_{k=2}^{\infty} \frac{S(k)}{(k+1)!}$, which has a value $\in\left(e-\frac{5}{2}, \frac{1}{2}\right)$. He showed that the series $\sum_{k=2}^{\infty} \frac{S(k)}{(k+r)!}$ is convergent for all $r \in \mathrm{~N}$. I. Cojocaru and S. Cojocaru [3] have introduced the "third constant of Smarandache" namely $\sum_{n=2}^{\infty} \frac{1}{S(2) S(3) \ldots S(n)}$, which has a value between $\frac{71}{100}$ and $\frac{97}{100}$. Our aim in the following is to prove that the constants introduced by Burton and Cojocaru-Cojocaru are all irrational.
2. The first result is in fact a refinement of an old irraionality criteria (see [4] p.5):

Theorem 1. Let (x_{n}) be a sequence of nonnegative integers having the properties:
(1) there exists $n_{0} \in \mathrm{~N}^{*}$ such that $x_{n} \leq n$ for all $n \geq n_{0}$;
(2) $x_{n}<n-1$ for infinitely many n;
(3) $x_{m}>0$ for an infinity of m.

Then the series $\sum_{n=1}^{\infty} \frac{x_{n}}{n!}$ is irrational.
Let now $x_{n}=S(n-1)$. Then

$$
\sum_{k=2}^{\infty} \frac{S(k)}{(k+1)!}=\sum_{n=3}^{\infty} \frac{x_{n}}{n!} .
$$

Here $S(n-1) \leq n-1<n$ for all $n \geq 2 ; S(m-1)<m-2$ for $m>3$ composite, since by $S(m-1)<\frac{2}{3}(m-1)<m-2$ for $m>4$ this holds true. (For the inequality $S(k)<\frac{2}{3} k$ for $k>3$ composite, see [6]). Finally, $S(m-1)>0$ for all $m \geq 1$. This proves the irrationality of $\sum_{k=2}^{\infty} \frac{S(k)}{(k+1)!}$.

Analogously, write

$$
\sum_{k=2}^{\infty} \frac{S(k)}{(k+r)!}=\sum_{m=r+2}^{\infty} \frac{S(m-r)}{m!} .
$$

Put $x_{m}=S(m-r)$. Here $S(m-r) \leq m-r<m, S(m-r) \leq m-r<m-1$ for $r \geq 2$, and $S(m-r)>0$ for $m \geq r+2$. Thus, the above series is irrational for $r \geq 2$, too.
3. The third constant of Smarandache will be studied with the following irrationality criterion (see [4], p.8):

Theorem 2. Let $\left(a_{n}\right),\left(b_{n}\right)$ be two sequences of nonnegative integers satisfying the following conditions:
(1) $a_{n}>0$ for an infinity of n;
(2) $b_{n} \geq 2,0 \leq a_{n} \leq b_{n}-1$ for all $n \geq 1$;
(3) there exists an increasing sequence (i_{n}) of positive integers such that

$$
\lim _{n \rightarrow \infty} b_{i_{n}}=+\infty, \quad \lim _{n \rightarrow \infty} a_{i_{n}} / b_{i_{n}}=0 .
$$

Then the series $\sum_{n=1}^{\infty} \frac{a_{n}}{b_{1} b_{2} \ldots b_{n}}$ is irrational.
Corollary. For $b_{n} \geq 2,\left(b_{n}\right.$ positive integers), $\left(b_{n}\right)$ unbounded the series $\sum_{n=1}^{\infty} \frac{1}{b_{1} b_{2} \ldots b_{n}}$ is irrational.

Proof. Let $a_{n} \equiv 1$. Since $\underset{n \rightarrow \infty}{\limsup } b_{n}=+\infty$, there exists a sequence $\left(i_{n}\right)$ such that $b_{i_{n}} \rightarrow \infty$. Then $\frac{1}{b_{i_{n}}} \rightarrow 0$, and the three conditions of Theorem 2 are verified.

By selecting $b_{n} \equiv S(n)$, we have $b_{p}=S(p)=p \rightarrow \infty$ for p a prime, so by the above Corollary, the series $\sum_{n=1}^{\infty} \frac{1}{S(1) S(2) \ldots S(n)}$ is irrational.

References

[1] E. Burton, On some series involving Smarandache function, Smarandache Function J. 6(1995), no.1, 13-15.
[2] I. Cojocaru and S. Cojocaru, The second constant of Smarandache, Smarandache Notions J. 7(1996), no.1-2-3, 119-120.
[3] I. Cojocaru and S. Cojocaru, The third and fourth constants of Smarandache, Smarandache Notions J. 7(1996), no.1-2-3, 121-126.
[4] J. Sándor, Irrational Numbers (Romanian), Univ. Timişoara, Caiete MetodicoStiinţifice No.44, 1987, pp. 1-18.
[5] J. Sándor, On the irrationality of certain alternative Smarandache series, Smarandache Notion J. 8(1997), no.1-2-3, 1997, 143-144.
[6] T. Yau, A problem of maximum, Smarandache Function J., vol. 4-5(1994), no.1, p.45.

