k-Difference cordial labeling of graphs

R.Ponraj ${ }^{1}$, M.Maria Adaickalam ${ }^{2}$ and R.Kala ${ }^{3}$
1.Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India
2.Department of Economics and Statistics, Government of Tamilnadu, Chennai-600 006, India
3.Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India
E-mail: ponrajmaths@gmail.com, mariaadaickalam@gmail.com, karthipyi91@yahoo.co.in

Abstract

In this paper we introduce new graph labeling called k-difference cordial labeling. Let G be a (p, q) graph and k be an integer, $2 \leq k \leq|V(G)|$. Let $f: V(G) \rightarrow$ $\{1,2, \cdots, k\}$ be a map. For each edge $u v$, assign the label $|f(u)-f(v)| . f$ is called a k difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $v_{f}(x)$ denote the number of vertices labelled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1 . A graph with a k-difference cordial labeling is called a k-difference cordial graph. In this paper we investigate k-difference cordial labeling behavior of star, m copies of star and we prove that every graph is a subgraph of a connected k-difference cordial graph. Also we investigate 3 -difference cordial labeling behavior of some graphs.

Key Words: Path, complete graph, complete bipartite graph, star, k-difference cordial labeling, Smarandachely k-difference cordial labeling.

AMS(2010): 05C78.

§1. Introduction

All graphs in this paper are finite and simple. The graph labeling is applied in several areas of sciences and few of them are coding theory, astronomy, circuit design etc. For more details refer Gallian [2]. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with $G_{2}, G_{1} \odot G_{2}$ is the graph obtained by taking one copy of G_{1} and p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} with an edge to every vertex in the $i^{t h}$ copy of G_{2}. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge $u v$ by a path $u w v$. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. In [1], Cahit introduced the concept of cordial labeling of graphs. Recently Ponraj et al. [4], introduced difference cordial labeling of graphs. In this way we introduce k-difference cordial labeling of graphs. Also in this paper we investigate the k-difference cordial labeling behavior of star, m copies of star etc. $\lfloor x\rfloor$ denote the smallest integer less than or equal to x. Terms and results not here follows from Harary [3].

[^0]
§2. k-Difference Cordial Labeling

Definition 2.1 Let G be a (p, q) graph and k be an integer $2 \leq k \leq|V(G)|$. Let $f: V(G) \rightarrow$ $\{1,2, \cdots, k\}$ be a function. For each edge uv, assign the label $|f(u)-f(v)| . f$ is called a k-difference cordial labeling of G if $\left|v_{f}(i)-v_{f}(j)\right| \leq 1$ and $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$, and Smarandachely k-difference cordial labeling if $\left|v_{f}(i)-v_{f}(j)\right|>1$ or $\left|e_{f}(0)-e_{f}(1)\right|>1$, where $v_{f}(x)$ denote the number of vertices labelled with $x, e_{f}(1)$ and $e_{f}(0)$ respectively denote the number of edges labelled with 1 and not labelled with 1 . A graph with a k-difference cordial labeling or Smarandachely k-difference cordial labeling is called a k-difference cordial graph or Smarandachely k-difference cordial graph, respectively.

Remark 2.2 (1) p-difference cordial labeling is simply a difference cordial labeling;
(2) 2-difference cordial labeling is a cordial labeling.

Theorem 2.3 Every graph is a subgraph of a connected k-difference cordial graph.
Proof Let G be (p, q) graph. Take k copies of graph K_{p}. Let G_{i} be the $i^{\text {th }}$ copy of K_{p}. Take k copies of the $\bar{K}_{\binom{p}{2}}$ and the $i^{\text {th }}$ copies of the $\bar{K}_{\binom{p}{2}}$ is denoted by G_{i}^{\prime}. Let $V\left(G_{i}\right)=\left\{u_{i}^{j}\right.$: $1 \leq j \leq k, 1 \leq i \leq p\}$. Let $V\left(G_{i}^{\prime}\right)=\left\{v_{i}^{j}: 1 \leq j \leq k, 1 \leq i \leq p\right\}$. The vertex and edge set of super graph G^{*} of G is as follows:

$$
\begin{aligned}
& \text { Let } V\left(G^{*}\right)=\bigcup_{i=1}^{k} V\left(G_{i}\right) \cup \bigcup_{i=1}^{k} V\left(G_{i}^{\prime}\right) \cup\left\{w_{i}: 1 \leq i \leq k\right\} \cup\{w\} . \\
& E\left(G^{*}\right)=\bigcup_{i=1}^{k} E\left(G_{i}\right) \cup\left\{u_{1}^{j} v_{i}^{j}: 1 \leq i \leq\binom{ p}{2}, 1 \leq j \leq k-1\right\} \cup\left\{u_{1}^{k} w, w v_{i}^{k}: 1 \leq i \leq\binom{ p}{2}\right\} \cup\left\{u_{p}^{j} w_{j}:\right. \\
& 1 \leq j \leq k\} \cup\left\{u_{2}^{j} u_{2}^{j+1}: 1 \leq j \leq k-1\right\} \cup\left\{w_{1} w_{2}\right\} .
\end{aligned}
$$

Assign the label i to the vertices of $G_{i}, 1 \leq i \leq k$. Then assign the label $i+1$ to the vertices of $G_{i}^{\prime}, 1 \leq i \leq k-1$. Assign the label 1 to the vertices of G_{k}^{\prime}. Then assign 2 to the vertex w. Finally assign the label i to the vertex $w_{i}, 1 \leq i \leq k$. Clearly $v_{f}(i)=p+\binom{p}{2}+1$, $i=1,3, \ldots, k, v_{f}(2)=p+\binom{p}{2}+2$ and $e_{f}(1)=k\binom{p}{2}+k, e_{f}(0)=k\binom{p}{2}+k+1$. Therefore G^{*} is a k-difference cordial graph.

Theorem 2.4 If k is even, then k-copies of star $K_{1, p}$ is k-difference cordial.
Proof Let G_{i} be the $i^{\text {th }}$ copy of the star $K_{1, p}$. Let $V\left(G_{i}\right)=\left\{u_{j}, v_{i}^{j}: 1 \leq j \leq k, 1 \leq i \leq p\right\}$ and $E\left(G_{i}\right)=\left\{u_{j} v_{i}^{j}: 1 \leq j \leq k, 1 \leq i \leq p\right\}$. Assign the label i to the vertex $u_{j}, 1 \leq j \leq k$. Assign the label $i+1$ to the pendent vertices of $G_{i}, 1 \leq i \leq \frac{k}{2}$. Assign the label $k-i+1$ to the pendent vertices of $G_{\frac{k}{2}+i}, 1 \leq i \leq \frac{k}{2}-1$. Finally assign the label 1 to all the pendent vertices of the star G_{k}. Clearly, $v_{f}(i)=p+1,1 \leq i \leq k, e_{f}(0)=e_{f}(1)=\frac{k p}{2}$. Therefore f is a k-difference cordial labeling of k-copies of the star $K_{1, p}$.

Theorem 2.5 If $n \equiv 0(\bmod k)$ and $k \geq 6$, then the star $K_{1, n}$ is not k-difference cordial.
Proof Let $n=k t$. Suppose f is a k-difference cordial labeling of $K_{1, n}$. Without loss of generality, we assume that the label of central vertex is $r, 1 \leq r \leq k$. Clearly $v_{f}(i)=t$,
$1 \leq i \leq n$ and $i \neq r, v_{f}(r)=t+1$. Then $e_{f}(1) \leq 2 t$ and $e_{f}(0) \geq(k-2) t$. Now $e_{f}(0) \geq$ $(k-2) t-2 t \geq(k-4) t \geq 2$, which is a contradiction. Thus f is not a k-difference cordial.

Next we investigate 3-difference cordial behavior of some graph.

§3. 3-Difference Cordial Graphs

First we investigate the path.
Theorem 3.1 Any path is 3-difference cordial.
Proof Let $u_{1} u_{2} \ldots u_{n}$ be the path P_{n}. The proof is divided into cases following.
Case 1. $n \equiv 0(\bmod 6)$.
Let $n=6 t$. Assign the label $1,3,2,1,3,2$ to the first consecutive 6 vertices of the path P_{n}. Then assign the label $2,3,1,2,3,1$ to the next 6 consecutive vertices. Then assign the label $1,3,2,1,3,2$ to the next six vertices and assign the label $2,3,1,2,3,1$ to the next six vertices. Then continue this process until we reach the vertex u_{n}.

Case 2. $n \equiv 1(\bmod 6)$.
This implies $n-1 \equiv 0(\bmod 6)$. Assign the label to the vertices of $u_{i}, 1 \leq i \leq n-1$ as in case 1 . If u_{n-1} receive the label 2 , then assign the label 2 to the vertex u_{n}; if u_{n-1} receive the label 1 , then assign the label 1 to the vertex u_{n}.

Case 3. $n \equiv 2(\bmod 6)$.
Therefore $n-1 \equiv 1(\bmod 6)$. As in case 2 , assign the label to the vertices $u_{i}, 1 \leq i \leq n-1$. Next assign the label 3 to u_{n}.

Case 4. $n \equiv 3(\bmod 6)$.
This forces $n-1 \equiv 2(\bmod 6)$. Assign the label to the vertices $u_{1}, u_{2}, \ldots u_{n-1}$ as in case 3. Assign the label 1 or 2 to u_{n} according as the vertex u_{n-2} receive the label 2 or 1 .

Case 5. $n \equiv 4(\bmod 6)$.
This implies $n-1 \equiv 3(\bmod 6)$. As in case 4 , assign the label to the vertices u_{1}, u_{2}, \cdots, u_{n-1}. Assign the label 2 or 1 to the vertex u_{n} according as the vertex u_{n-1} receive the label 1 to 2 .

Case 6. $n \equiv 5(\bmod 6)$.
This implies $n-1 \equiv 4(\bmod 6)$. Assign the label to the vertices $u_{1}, u_{2}, \cdots, u_{n-1}$ as in Case 5. Next assign the label 3 to u_{n}.

Example 3.2 A 3-difference cordial labeling of the path P_{9} is given in Figure 1.

Figure 1

Corollary 3.3 If $n \equiv 0,3(\bmod 4)$, then the cycle C_{n} is 3 -difference cordial.
Proof The vertex labeling of the path given in Theorem 3.1 is also a 3-difference cordial labeling of the cycle C_{n}.

Theorem 3.4 The star $K_{1, n}$ is 3 -difference cordial iff $n \in\{1,2,3,4,5,6,7,9\}$.
Proof Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Our proof is divided into cases following.

Case 1. $n \in\{1,2,3,4,5,6,7,9\}$.
Assign the label 1 to u. The label of u_{i} is given in Table 1.

$n \backslash u_{i}$	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}
1	2								
2	2	3							
3	2	3	1						
4	2	3	1	2					
5	2	3	1	2	3				
6	2	3	1	2	3	2			
7	2	3	1	2	3	2	3		
9	2	3	1	2	3	2	3	1	2

Table 1
Case 2. $n \notin\{1,2,3,4,5,6,7,9\}$.
Let $f(u)=x$ where $x \in\{1,2,3\}$. To get the edge label 1 , the pendent vertices receive the label either $x-1$ or $x+1$.

Subcase 1. $n=3 t$.
Subcase 1a. $\quad x=1$ or $x=3$.
When $x=1, e_{f}(1)=t$ or $t+1$ according as the pendent vertices receives t's 2 or $(\mathrm{t}+1)$'s 2. Therefore $e_{f}(0)=2 t$ or $2 t-1$. Thus $e_{f}(0)-e_{f}(1)=t-2>1, t>4$ a contradiction. When $x=3, e_{f}(1)=t$ or $t+1$ according as the pendent vertices receives t's 2 or (t+1)'s 2 . Therefore $e_{f}(0)=2 t$ or $2 t-1$. Thus $e_{f}(0)-e_{f}(1)=t$ or $t-2$. Therefore, $e_{f}(0)-e_{f}(1)>1$, a contradiction.

Subcase 1b. $\quad x=2$.
In this case, $e_{f}(1)=2 t$ or $2 t+1$ according as pendent vertices receives t's 2 or (t-2)'s 2 . Therefore $e_{f}(0)=t$ or $t-1$. $e_{f}(1)-e_{f}(0)=t$ or $t+2$ as $t>3$. Therefore, $e_{f}(0)-e_{f}(1)>1$, a contradiction.

Subcase 2. $n=3 t+1$.

Subcase 2a. $\quad x=1$ or 3 .
Then $e_{f}(1)=t$ or $t+1$ according as pendent vertices receives t's 2 or (t+1)'s 2 . Therefore $e_{f}(0)=2 t+1$ or $2 t . e_{f}(0)-e_{f}(1)=t+1$ or $t-1$ as $t>3$. Therefore, $e_{f}(0)-e_{f}(1)>3$, a contradiction.

Subcase 2b. $\quad x=2$.
In this case $e_{f}(1)=2 t$ or $2 t+1$ according as pendent vertices receives t's 1 and t's 3 and t's 1 and (t+3)'s 3 . Therefore $e_{f}(0)=t+1$ or $t . e_{f}(1)-e_{f}(0)=t-1$ or t as $t>3$. Therefore, $e_{f}(0)-e_{f}(1)>1$, a contradiction.

Subcase 3. $n=3 t+2$.
Subcase 3a. $x=1$ or 3 .
This implies $e_{f}(1)=t+1$ and $e_{f}(0)=2 t+1 . e_{f}(0)-e_{f}(1)=t$ as $t>3$. Therefore, $e_{f}(0)-e_{f}(1)>1$, a contradiction.

Subcase 3b. $\quad x=2$.
This implies $e_{f}(1)=2 t+2$ and $e_{f}(0)=t . \quad e_{f}(1)-e_{f}(0)=t+2$ as $t>1$. Therefore, $e_{f}(1)-e_{f}(0)>1$, a contradiction. Thus $K_{1, n}$ is 3 -difference cordial iff $n \in\{1,2,3,4,5,6,7,9\}$. \square

Next, we research the complete graph.

Theorem 3.5 The complete graph K_{n} is 3 -difference cordial if and only if $n \in\{1,2,3,4,6,7,9,10\}$.
Proof Let $u_{i}, 1 \leq i \leq n$ be the vertices of K_{n}. The 3-difference cordial labeling of K_{n}, $n \in\{1,2,3,4,6,7,9,10\}$ is given in Table 2.

$n \backslash u_{i}$	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	u_{8}	u_{9}	u_{10}
1	1									
2	1	2								
3	1	2	3							
4	1	1	2	3						
6	1	1	2	2	3	3				
7	1	1	1	2	2	3	3			
9	1	1	1	2	2	2	3	3	3	
10	2	2	2	2	1	1	1	3	3	3

Table 2
Assume $n \notin\{1,2,3,4,6,7,9,10\}$. Suppose f is a 3 -difference cordial labeling of K_{n}.
Case 1. $n \equiv 0(\bmod 3)$.
Let $n=3 t, t>3$. Then $v_{f}(0)=v_{f}(1)=v_{f}(2)=t$. This implies $e_{f}(0)=\binom{t}{2}+\binom{t}{2}+\binom{t}{2}+$
$t^{2}=\frac{5 t^{2}-3 t}{2}$. Therefore $e_{f}(1)=t^{2}+t^{2}=2 t^{2} . e_{f}(0)-e_{f}(1)=\frac{5 t^{2}-3 t}{2}-2 t^{2}>1$ as $t>3, \mathrm{a}$ contradiction.

Case 2. $n \equiv 1(\bmod 3)$.

Let $n=3 t+1, t>3$.

Subcase 1. $\quad v_{f}(1)=t+1$.
Therefore $v_{f}(2)=v_{f}(3)=t$. This forces $e_{f}(0)=\binom{t+1}{2}+\binom{t}{2}+\binom{t}{2}+t(t+1)=\frac{1}{2}\left(5 t^{2}+t\right)$. $e_{f}(1)=t(t+1)+t^{2}=2 t^{2}+t$. Then $e_{f}(0)-e_{f}(1)=\frac{1}{2}\left(5 t^{2}+t\right)-\left(2 t^{2}+t\right)>1$ as $t>3$, a contradiction.

Subcase 2. $\quad v_{f}(3)=t+1$.

Similar to Subcase 1.

Subcase 3. $\quad v_{f}(2)=t+1$.
Therefore $v_{f}(1)=v_{f}(3)=t$. In this case $e_{f}(0)=\frac{5 t^{2}+t}{2}$ and $e_{f}(1)=t(t+1)+t(t+1)=$ $2 t^{2}+2 t$. This implies $e_{f}(0)-e_{f}(1)=\frac{5 t^{2}+t}{2}-\left(2 t^{2}+2 t\right)>1$ as $t>3$, a contradiction.

Case 3. $n \equiv 2(\bmod 3)$.
Let $n=3 t+2, t \geq 1$.

Subcase 1. $v_{f}(1)=t$.
Therefore $v_{f}(2)=v_{f}(3)=t+1$. This gives $e_{f}(0)=\binom{t}{2}+\binom{t+1}{2}+\binom{t+1}{2}+t(t+1)=\frac{5 t^{2}+3 t}{2}$ and $e_{f}(1)=t(t+1)+(t+1)^{2}=2 t^{2}+3 t+1$. This implies $e_{f}(0)-e_{f}(1)=\frac{5 t^{2}+3 t}{2}-\left(2 t^{2}+3 t+1\right)>1$ as $t \geq 1$, a contradiction.

Subcase 2. $\quad v_{f}(3)=t$.

Similar to Subcase 1.

Subcase 3. $\quad v_{f}(2)=t$.
Therefore $v_{f}(1)=v_{f}(3)=t+1$. In this case $e_{f}(0)=\binom{t+1}{2}+\binom{t+1}{2}+\binom{t}{2}+(t+1)(t+1)=$ $\frac{5 t^{2}+5 t+2}{2}$ and $e_{f}(1)=t(t+1)+t(t+1)=2 t^{2}+2 t$. This implies $e_{f}(0)-e_{f}(1)=\frac{5 t^{2}+5 t+2}{2}-$ $\left(2 t^{2}+2 t\right)>1$ as $t \geq 1$, a contradiction.

Theorem 3.6 If m is even, the complete bipartite graph $K_{m, n}(m \leq n)$ is 3-difference cordial.

Proof Let $V\left(K_{m, n}\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(K_{m, n}\right)=\left\{u_{i} v_{j}: 1 \leq i \leq\right.$
$m, 1 \leq j \leq n\}$. Define a map $f: V\left(K_{m, n}\right) \rightarrow\{1,2,3\}$ by

$$
\begin{aligned}
& f\left(u_{i}\right)=1, \quad 1 \leq i \leq \frac{m}{2} \\
& f\left(u_{\frac{m}{2}+i}\right)=2, \quad 1 \leq i \leq \frac{m}{2} \\
& f\left(v_{i}\right)=3, \quad 1 \leq i \leq\left\lceil\frac{m+n}{3}\right\rceil \\
& f\left(v_{\left\lceil\frac{m+n}{3}\right\rceil+i}\right)=1, \quad 1 \leq i \leq\left\lceil\frac{m+n}{3}\right\rceil-\frac{m}{2}-1 \quad \text { if } \quad m+n \equiv 1,2(\bmod 3) \\
& 1 \leq i \leq\left\lceil\frac{m+n}{3}\right\rceil-\frac{m}{2} \quad \text { if } \quad m+n \equiv 0(\bmod 3) \\
& f\left(v_{2\left\lceil\frac{m+n}{3}\right\rceil-\frac{m}{2}-1+i}\right)=2, \quad 1 \leq i \leq n-2\left\lceil\frac{m+n}{3}\right\rceil+\frac{m}{2}+1 \quad \text { if } \quad m+n \equiv 1,2(\bmod 3) \\
& f\left(v_{2}\left\lceil\frac{m+n}{3}\right\rceil-\frac{m}{2}+i\right) \quad=2, \quad 1 \leq i \leq n-2\left\lceil\frac{m+n}{3}\right\rceil+\frac{m}{2} \quad \text { if } \quad m+n \equiv 0(\bmod 3)
\end{aligned}
$$

Since $e_{f}(0)=e_{f}(1)=\frac{m n}{2}, f$ is a 3 -difference cordial labeling of $K_{m, n}$.
Example 3.7 A 3-difference cordial labeling of $K_{5,8}$ is given in Figure 2.

Figure 2
Next, we research some corona of graphs.

Theorem 3.8 The comb $P_{n} \odot K_{1}$ is 3-difference cordial.
Proof Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. Let $V\left(P_{n} \odot K_{1}\right)=V\left(P_{n}\right) \cup\left\{v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}: 1 \leq i \leq n\right\}$.

Case 1. $n \equiv 0(\bmod 6)$.
Define a map $f: V(G) \rightarrow\{1,2,3\}$ by

$$
\begin{aligned}
& f\left(u_{6 i-5}\right)=f\left(u_{6 i}\right)=1, \quad 1 \leq i \leq \frac{n}{6} \\
& f\left(u_{6 i-4}\right)=f\left(u_{6 i-1}\right)=3, \quad 1 \leq i \leq \frac{n}{6} \\
& f\left(u_{6 i-3}\right)=f\left(u_{6 i-2}\right)=2, \quad 1 \leq i \leq \frac{n}{6}
\end{aligned}
$$

In this case, $e_{f}(0)=n-1$ and $e_{f}(1)=n$.
Case 2. $n \equiv 1(\bmod 6)$.
Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 1. Then assign the labels 1,2 to the vertices u_{n}, v_{n} respectively. In this case, $e_{f}(0)=n-1, e_{f}(1)=n$.

Case 3. $n \equiv 2(\bmod 6)$.
As in Case 2, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the labels 3,3 to the vertices u_{n}, v_{n} respectively. In this case, $e_{f}(0)=n, e_{f}(1)=n-1$.

Case 4. $n \equiv 3(\bmod 6)$.
Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 3 . Then assign the labels 2,1 to the vertices u_{n}, v_{n} respectively. In this case, $e_{f}(0)=n-1, e_{f}(1)=n$.

Case 5. $n \equiv 4(\bmod 6)$.
As in Case 4, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the labels 2,3 to the vertices u_{n}, v_{n} respectively. In this case, $e_{f}(0)=n-1, e_{f}(1)=n$.

Case 6. $n \equiv 5(\bmod 6)$.
Assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq n-1)$ as in case 5 . Then assign the labels 3 , 1 to the vertices u_{n}, v_{n} respectively. In this case, $e_{f}(0)=n-1, e_{f}(1)=n$. Therefore $P_{n} \odot K_{1}$ is 3 -difference cordial.

Theorem 3.9 $P_{n} \odot 2 K_{1}$ is 3-difference cordial.

Proof Let P_{n} be the path $u_{1} u_{2} \cdots u_{n}$. Let $V\left(P_{n} \odot 2 K_{1}\right)=V\left(P_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot 2 K_{1}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, u_{i} w_{i}: 1 \leq i \leq n\right\}$.

Case 1. n is even.
Define a map $f: V\left(P_{n} \odot 2 K_{1}\right) \rightarrow\{1,2,3\}$ as follows:

$$
\begin{aligned}
f\left(u_{2 i-1}\right) & =1, \quad 1 \leq i \leq \frac{n}{2} \\
f\left(u_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i-1}\right) & =1, \quad 1 \leq i \leq \frac{n}{2} \\
f\left(v_{2 i}\right) & =2, \quad 1 \leq i \leq \frac{n}{2} \\
f\left(w_{i}\right) & =3, \quad 1 \leq i \leq \frac{n}{2} .
\end{aligned}
$$

In this case, $v_{f}(1)=v_{f}(2)=v_{f}(3)=n, e_{f}(0)=\frac{3 n}{2}$ and $e_{f}(1)=\frac{3 n}{2}-1$.
Case 2. n is odd.
Define a map $f: V\left(P_{n} \odot 2 K_{1}\right) \rightarrow\{1,2,3\}$ by $f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(u_{3}\right)=3, f\left(v_{1}\right)=$ $f\left(v_{3}\right)=1, f\left(w_{1}\right)=f\left(w_{2}\right)=3, f\left(v_{2}\right)=f\left(w_{3}\right)=2$,

$$
\begin{aligned}
& f\left(u_{2 i+2}\right)=2, \quad 1 \leq i \leq \frac{n-3}{2} \\
& f\left(u_{2 i+3}\right)=1, \quad 1 \leq i \leq \frac{n-3}{2} \\
& f\left(v_{2 i+2}\right)=2, \quad 1 \leq i \leq \frac{n-3}{2} \\
& f\left(v_{2 i+3}\right)=1, \quad 1 \leq i \leq \frac{n-3}{2} \\
& f\left(w_{i+3}\right)=3, \quad 1 \leq i \leq n-3 .
\end{aligned}
$$

Clearly, $v_{f}(1)=v_{f}(2)=v_{f}(3)=n, e_{f}(0)=e_{f}(1)=\frac{3 n-1}{2}$.
Next we research on quadrilateral snakes.
Theorem 3.10 The quadrilateral snakes Q_{n} is 3-difference cordial.
Proof Let P_{n} be the path $u_{1} u_{2} \cdots u_{n}$. Let $V\left(Q_{n}\right)=V\left(P_{n}\right) \cup\left\{v_{i}, w_{i}: 1 \leq i \leq n-1\right\}$ and $E\left(Q_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v_{i}, v_{i} w_{i}, w_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Note that $\left|V\left(Q_{n}\right)\right|=3 n-2$ and $\left|E\left(Q_{n}\right)\right|=4 n-4$. Assign the label 1 to the path vertices $u_{i}, 1 \leq i \leq n$. Then assign the labels 2,3 to the vertices $v_{i}, w_{i} 1 \leq i \leq n-1$ respectively. Since $v_{f}(1)=n, v_{f}(2)=v_{f}(3)=n-1$, $e_{f}(0)=e_{f}(1)=2 n-2, f$ is a 3-difference cordial labeling.

The next investigation is about graphs $B_{n, n}, S\left(K_{1, n}\right), S\left(B_{n, n}\right)$.
Theorem 3.11 The bistar $B_{n, n}$ is 3-difference cordial.
Proof Let $V\left(B_{n, n}\right)=\left\{u, v, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Clearly $B_{n, n}$ has $2 n+2$ vertices and $2 n+1$ edges.

Case 1. $n \equiv 0(\bmod 3)$.
Assign the label 1,2 to the vertices u and v respectively. Then assign the label 1 to the vertices $u_{i}, v_{i}\left(1 \leq i \leq \frac{n}{3}\right)$. Assign the label 2 to the vertices $u_{\frac{n}{3}+i}, v_{\frac{n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. Finally assign the label 3 to the vertices $u_{\frac{2 n}{3}+i}, v_{\frac{2 n}{3}+i}\left(1 \leq i \leq \frac{n}{3}\right)$. In this case $e_{f}(1)=n+1$ and $e_{f}(0)=n$.

Case 2. $n \equiv 1(\bmod 3)$.
Assign the labels to the vertices $u, v, u_{i}, v_{i}(1 \leq i \leq n-1)$ as in Case 1. Then assign the label 3,2 to the vertices u_{n}, v_{n} respectively. In this case $e_{f}(1)=n$ and $e_{f}(0)=n+1$.

Case 3. $n \equiv 2(\bmod 3)$.
As in Case 2, assign the label to the vertices $u, v, u_{i}, v_{i}(1 \leq i \leq n-1)$. Finally assign 1 , 3 to the vertices u_{n}, v_{n} respectively. In this case $e_{f}(1)=n$ and $e_{f}(0)=n+1$. Hence the star $B_{n, n}$ is 3-difference cordial.

Theorem 3.12 The graph $S\left(K_{1, n}\right)$ is 3-difference cordial.
Proof Let $V\left(S\left(K_{1, n}\right)\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(K_{1, n}\right)\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Clearly $S\left(K_{1, n}\right)$ has $2 n+1$ vertices and $2 n$ edges.

Case 1. $n \equiv 0(\bmod 3)$.
Define a map $f: V\left(S\left(K_{1, n}\right)\right) \rightarrow\{1,2,3\}$ as follows: $f(u)=2$,

$$
\begin{aligned}
f\left(u_{i}\right) & =1, \quad 1 \leq i \leq t \\
f\left(u_{t+i}\right) & =2, \quad 1 \leq i \leq 2 t \\
f\left(v_{i}\right) & =3, \quad 1 \leq i \leq 2 t \\
f\left(v_{2 t+i}\right) & =1, \quad 1 \leq i \leq t
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 3)$.

As in Case 1, assign the label to the vertices $u, u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the label 1,3 to the vertices u_{n}, v_{n} respectively.

Case 3. $n \equiv 2(\bmod 3)$.
As in Case 2, assign the label to the vertices $u, u_{i}, v_{i}(1 \leq i \leq n-1)$. Then assign the label 2,1 to the vertices u_{n}, v_{n} respectively. f is a 3 -difference cordial labeling follows from the following Table 3.

Values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$e_{f}(0)$	$e_{f}(1)$
$n=3 t$	$2 t$	$2 t+1$	$2 t$	$3 t$	$3 t$
$n=3 t+1$	$2 t+1$	$2 t+1$	$2 t+1$	$3 t+1$	$3 t+1$
$n=3 t+2$	$2 t+2$	$2 t+2$	$2 t+1$	$3 t+2$	$3 t+2$

Table 3

Theorem 3.13 $S\left(B_{n, n}\right)$ is 3-difference cordial.

Proof Let $V\left(S\left(B_{n, n}\right)\right)=\left\{u, w, v, u_{i}, w_{i}, v_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E\left(S\left(B_{n, n}\right)\right)=\left\{u w, w v, u u_{i}, u_{i} w_{i}, v v_{i}, v_{i} z_{i}\right.$: $1 \leq i \leq n\}$. Clearly $S\left(B_{n, n}\right)$ has $4 n+3$ vertices and $4 n+2$ edges.

Case 1. $n \equiv 0(\bmod 3)$.

Define a map $f: V\left(S\left(B_{n, n}\right)\right) \rightarrow\{1,2,3\}$ by $f(u)=1, f(w)=3, f(v)=2$,

$$
\begin{aligned}
f\left(w_{i}\right) & =2, \quad 1 \leq i \leq n \\
f\left(v_{i}\right) & =1, \quad 1 \leq i \leq n \\
f\left(z_{i}\right) & =3, \quad 1 \leq i \leq n \\
f\left(u_{i}\right) & =1, \quad 1 \leq i \leq \frac{n}{3} \\
f\left(u_{\frac{n}{3}+i}\right) & =2, \quad 1 \leq i \leq \frac{n}{3} \\
f\left(u_{\frac{2 n}{3}+i}\right) & =3, \quad 1 \leq i \leq \frac{n}{3} .
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 3)$.
As in Case 1, assign the label to the vertices $u, w, v, u_{i}, v_{i}, w_{i}, z_{i}(1 \leq i \leq n-1)$. Then assign the label $1,2,1,3$ to the vertices $u_{n}, w_{n}, v_{n}, z_{n}$ respectively.

Case 3. $n \equiv 2(\bmod 3)$.
As in Case 2, assign the label to the vertices $u, w, v, u_{i}, v_{i}, w_{i}, z_{i}(1 \leq i \leq n-1)$. Then assign the label $2,2,1,3$ to the vertices $u_{n}, w_{n}, v_{n}, z_{n}$ respectively. f is a 3 -difference cordial labeling follows from the following Table 4.

Values of n	$v_{f}(1)$	$v_{f}(2)$	$v_{f}(3)$	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0(\bmod 3)$	$\frac{4 n+3}{3}$	$\frac{4 n+3}{3}$	$\frac{4 n+3}{3}$	$\frac{4 n+2}{2}$	$\frac{4 n+2}{2}$
$n \equiv 1(\bmod 3)$	$\frac{4 n+5}{3}$	$\frac{4 n+2}{3}$	$\frac{4 n+2}{3}$	$\frac{4 n+2}{2}$	$\frac{4 n+2}{2}$
$n \equiv 2(\bmod 3)$	$\frac{4 n+4}{3}$	$\frac{4 n+4}{3}$	$\frac{4 n+1}{3}$	$\frac{4 n+2}{2}$	$\frac{4 n+2}{2}$

Table 4
Finally we investigate cycles $C_{4}^{(t)}$.
Theorem $3.14 C_{4}^{(t)}$ is 3-difference cordial.
Proof Let u be the vertices of $C_{4}^{(t)}$ and $i^{t h}$ cycle of $C_{4}^{(t)}$ be $u u_{1}^{i} u_{2}^{i} u_{3}^{i} u$. Define a map f from the vertex set of $C_{4}^{(t)}$ to the set $\{1,2,3\}$ by $f(u)=1, f\left(u_{2}^{i}\right)=3,1 \leq i \leq t, f\left(u_{1}^{i}\right)=1,1 \leq i \leq t$, $f\left(u_{3}^{i}\right)=2,1 \leq i \leq t$. Clearly $v_{f}(1)=t+1, v_{f}(2)=v_{f}(3)=t$ and $e_{f}(0)=e_{f}(1)=2 t$. Hence f is 3 -difference cordial.

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars Combin., 23 (1987), 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 17 (2014) \#Ds6.
[3] F.Harary, Graph Theory, Addision wesley, New Delhi (1969).
[4] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5(2013), 185-196.

[^0]: ${ }^{1}$ Received June 4, 2015, Accepted May 26, 2016.

