Scientia Magna

Vol. 3 (2007), No. 1, 22-25

On the F.Smarandache LCM function and its mean value

Zhongtian Lv
Basic Courses Department, Xi'an Medical College, Xi'an, Shaanxi, P.R.China
Received Jan. 9, 2007

Abstract

For any positive integer n, the F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. The main purpose of this paper is to use the elementary methods to study the mean value of the F.Smarandache LCM function $S L(n)$, and give a sharper asymptotic formula for it.

Keywords F.Smarandache LCM function, mean value, asymptotic formula.

§1. Introduction and results

For any positive integer n, the famous F.Smarandache LCM function $S L(n)$ defined as the smallest positive integer k such that $n \mid[1,2, \cdots, k]$, where $[1,2, \cdots, k]$ denotes the least common multiple of $1,2, \cdots, k$. For example, the first few values of $S L(n)$ are $S L(1)=1$, $S L(2)=2, S L(3)=3, S L(4)=4, S L(5)=5, S L(6)=3, S L(7)=7, S L(8)=8, S L(9)=9$, $S L(10)=5, S L(11)=11, S L(12)=4, S L(13)=13, S L(14)=7, S L(15)=5, \cdots$. About the elementary properties of $S L(n)$, some authors had studied it, and obtained some interesting results, see reference [3] and [4]. For example, Murthy [3] showed that if n is a prime, then $S L(n)=S(n)$, where $S(n)$ denotes the Smarandache function, i.e., $S(n)=\min \{m: n \mid m!, m \in$ $N\}$. Simultaneously, Murthy [3] also proposed the following problem:

$$
\begin{equation*}
S L(n)=S(n), \quad S(n) \neq n ? \tag{1}
\end{equation*}
$$

Le Maohua [4] completely solved this problem, and proved the following conclusion:
Every positive integer n satisfying (1) can be expressed as

$$
n=12 \text { or } n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}} p,
$$

where $p_{1}, p_{2}, \cdots, p_{r}, p$ are distinct primes, and $\alpha_{1}, \alpha_{2}, \cdots, \alpha_{r}$ are positive integers satisfying $p>p_{i}^{\alpha_{i}}, i=1,2, \cdots, r$.

The main purpose of this paper is to use the elementary methods to study the mean value properties of $S L(n)$, and obtain a sharper asymptotic formula for it. That is, we shall prove the following conclusion:

Theorem. Let $k \geq 2$ be a fixed integer. Then for any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
From our Theorem we may immediately deduce the following:
Corollary. For any real number $x>1$, we have the asymptotic formula

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+O\left(\frac{x^{2}}{\ln ^{2} x}\right) .
$$

§2. Proof of the theorems

In this section, we shall prove our theorem directly. In fact for any positive integer $n>1$, let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{s}^{\alpha_{s}}$ be the factorization of n, then from [3] we know that

$$
\begin{equation*}
S L(n)=\max \left\{p_{1}^{\alpha_{1}}, p_{2}^{\alpha_{2}}, \cdots, p_{s}^{\alpha_{s}}\right\} . \tag{2}
\end{equation*}
$$

Now we consider the summation

$$
\begin{equation*}
\sum_{n \leq x} S L(n)=\sum_{n \in A} S L(n)+\sum_{n \in B} S L(n), \tag{3}
\end{equation*}
$$

where we have divided the interval $[1, x]$ into two sets A and B. A denotes the set involving all integers $n \in[1, x]$ such that there exists a prime p with $p \mid n$ and $p>\sqrt{n}$. And B denotes the set involving all integers $n \in[1, x]$ with $n \notin A$. From (2) and the definition of A we have

$$
\begin{equation*}
\sum_{n \in A} S L(n)=\sum_{\substack{n \leq x \\ p \mid n, \sqrt{n}<p}} S L(n)=\sum_{\substack{p n \leq x \\ n<p}} S L(p n)=\sum_{\substack{p n \leq x \\ n<p}} p=\sum_{n \leq \sqrt{x}} \sum_{n<p \leq \frac{x}{n}} p \tag{4}
\end{equation*}
$$

By Abel's summation formula (See Theorem 4.2 of [5]) and the Prime Theorem (See Theorem 3.2 of [6]):

$$
\pi(x)=\sum_{i=1}^{k} \frac{a_{i} \cdot x}{\ln ^{i} x}+O\left(\frac{x}{\ln ^{k+1} x}\right)
$$

where $a_{i}(i=1,2, \cdots, k)$ are constants and $a_{1}=1$.
We have

$$
\begin{align*}
\sum_{n<p \leq \frac{x}{n}} p & =\frac{x}{n} \cdot \pi\left(\frac{x}{n}\right)-n \cdot \pi(n)-\int_{n}^{\frac{x}{n}} \pi(y) d y \\
& =\frac{x^{2}}{2 n^{2} \ln x}+\sum_{i=2}^{k} \frac{b_{i} \cdot x^{2} \cdot \ln ^{i} n}{n^{2} \cdot \ln ^{i} x}+O\left(\frac{x^{2}}{n^{2} \cdot \ln ^{k+1} x}\right), \tag{5}
\end{align*}
$$

where we have used the estimate $n \leq \sqrt{x}$, and all b_{i} are computable constants.

Note that $\sum_{n=1}^{\infty} \frac{1}{n^{2}}=\frac{\pi^{2}}{6}$, and $\sum_{n=1}^{\infty} \frac{\ln ^{i} n}{n^{2}}$ is convergent for all $i=2,3, \cdots, k$. From (4) and (5) we have

$$
\begin{align*}
\sum_{n \in A} S L(n) & =\sum_{n \leq \sqrt{x}}\left(\frac{x^{2}}{2 n^{2} \ln x}+\sum_{i=2}^{k} \frac{b_{i} \cdot x^{2} \cdot \ln ^{i} n}{n^{2} \cdot \ln ^{i} x}+O\left(\frac{x^{2}}{n^{2} \cdot \ln ^{k+1} x}\right)\right) \\
& =\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right) \tag{6}
\end{align*}
$$

where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
Now we estimate the summation in set B. Note that for any positive integer α, the series $\sum_{n=1}^{\infty} \frac{1}{n^{\frac{\alpha+1}{\alpha}}}$ is convergent, so from (2) and the definition of B we have

$$
\begin{align*}
\sum_{n \in B} S L(n) & =\sum_{\substack{n \leq x \\
S L(n)=p, p \leq \sqrt{n}}} p+\sum_{\substack{n \leq x \\
S L(n)=p^{\alpha}, \alpha>1}} p^{\alpha} \\
& \ll \sum_{\substack{n \leq x \\
p \mid n, p \leq \sqrt{n}}} p+\sum_{2 \leq \alpha \leq \ln x} \sum_{p \leq x} \sum_{n p^{\alpha} \leq x} p^{\alpha} \\
& \ll \sum_{n \leq x} \sum_{p \leq \min \left\{n, \frac{x}{n}\right\}} p+\sum_{2 \leq \alpha \leq \ln x} \sum_{n \leq x} \sum_{p \leq\left(\frac{x}{n}\right)^{\frac{1}{\alpha}}} p^{\alpha} \\
& \ll \frac{x^{\frac{3}{2}}}{\ln x}+\frac{x^{\frac{3}{2}}}{\ln x} \cdot \ln x \ll x^{\frac{3}{2}} . \tag{7}
\end{align*}
$$

Combining (3), (6) and (7) we may immediately deduce that

$$
\sum_{n \leq x} S L(n)=\frac{\pi^{2}}{12} \cdot \frac{x^{2}}{\ln x}+\sum_{i=2}^{k} \frac{c_{i} \cdot x^{2}}{\ln ^{i} x}+O\left(\frac{x^{2}}{\ln ^{k+1} x}\right)
$$

where $c_{i}(i=2,3, \cdots, k)$ are computable constants.
This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.
[2] I.Balacenoiu and V.Seleacu, History of the Smarandache function, Smarandache Notions Journal,10(1999), 192-201.
[3] A.Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.
[4] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, 14(2004), 186-188.
[5] Tom M. Apostol, Introduction to Analytic Number Theory, New York, Springer-Verlag, 1976.
[6] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.

