LENGTH / EXTENT OF SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy ,S.E. (E &T), Well Logging Services,Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let α_1 , α_2 , α_3 , ..., α_r be a set of r natural numbers and p_1 , p_2 , p_3 ,..., p_r be arbitrarily chosen distinct primes then $F(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_r)$ called the Smarandache Factor Partition of $(\alpha_1, \alpha_2, \alpha_3, ..., \alpha_r)$ is defined as the number of ways in which the number

a2 a3 α1 αr N p_r could be expressed as the = p_1 p_2 p₃ . . . product of its' divisors. For simplicity, we denote $F(\alpha_1, \alpha_2, \alpha_3, \ldots)$ $(\alpha_r) = F'(N)$, where α_1 α_2 α_3 αr αn $p_1 p_2 p_3 \ldots p_r \ldots p_n$ N = and p_r is the rth prime. $p_1 = 2$, $p_2 = 3$ etc. Also for the case

 $\alpha_1 = \alpha_2 = \alpha_3 = \ldots = \alpha_r = \ldots = \alpha_n = 1$

we denote

$$F(1, 1, 1, 1, 1, ...) = F(1#n)$$

$$\leftarrow n - ones \rightarrow$$

In the present note we define two interesting parameters the

length and **extent** of an **SFP** and study the interesting properties they exhibit for square free numbers.

DISCUSSION:

DEFINITION: Let F'(N) = R

LENGTH : If we denote each SFP of N, say like F_1 , F_2

, ... F_R arbtrarily and let F_k be the SFP representation

of N as the product of its divisors as follows:

 $F_k ---- N = (h_1)(h_2) (h_3)(h_4)...(h_t)$, where each h_i (1<i<t) is

an entity in the SFP ' F_k ' of N. Then T(F_k) = t is

defined as the 'length' of the factor partition F_k .

e.g. say $60 = 15 \times 2 \times 2$, is a factor partition F_k of 60. Then

$$T(F_k) = 3.$$

 $T(F_k)$ can also be defined as one more than the number of product signs in the factor partition.

EXTENT : The extent of a number is defined as the sum of the lengths of all the SFPs.

Consider F(1#3)

 $N = p_1 p_2 p_3 = 2 X 3 X 5 = 30.$

SN	Factor Partition	length	
1	30	1	
2	15 X 2	2	
3	10 X 3	2	
4	6 X 5	2	
5	5 X 3 X 2	3	

Extent (30) = Σ length = 10

We observe that

 $F(1#4) - F(1#3) = 10. = Extent \{ F(1#4) \}$

Consider F(1#4)

$N = 2 \times 3 \times 5 \times 7 = 210$

SN	Factor Partition	Length
1	210	1
2	105 X 2	2
3	70 X 3	2
4	42 X 5	2
5	35 X 6	2
6	35 X 3 X 2	3
7	30 X 7	2
8	21 X 10	2
9	21 X 5 X 2	3
10	15 X 14	2
11	15 X 7 X 2	3
12	14 X 5 X 2	3
13	10 X 7 X 3	3.
14	7 X 6 X 5	3
15	7 X 5 X 3 X 2	4

Extent(210) = \sum length = 37

We observe that

 $F(1#5) - F(1#4) = 37. = Extent \{ F(1#4) \}$

Similarly it has been verified that

 $F(1#6) - F(1#5) = Extent \{ F(1#5) \}$

CONJECTURE (6.1)

 $F(1#(n+1)) - F(1#n) = Extent \{ F(1#n) \}$

CONJECTURE (6.2)

$$F(1#(n+1)) = \sum_{r=0}^{n} Extent \{F(1#r)\}$$

Motivation for this conjecture:

If conjecture (1) is true then we would have $F(1#2) - F(1#1) = Extent \{ F(1#1) \}$ $F(1#3) - F(1#2) = Extent \{ F(1#2) \}$ $F(1#4) - F(1#3) = Extent \{ F(1#3) \}$ $F(1#(n+1)) - F(1#n) = Extent \{ F(1#n) \}$ Summing up we would get

 $F(1#(n+1)) - F(1#1) = \sum_{r=1}^{r=1} Extent \{F(1#r)\}$

 $F(1#1) = 1 = Extent \{F(1#0) \text{ can be taken , hence we get }$

$$F(1#(n+1)) = \sum_{r=0}^{n} Extent \{F(1#r)\}$$

Another Interesting Observation:

Given below is the chart of r versus w where w is the number of

SFPs having same length r.

F(1#0) = 1, $\sum r. w = 1$ 1 1 w F(1#1) = 1, $\sum r. w = 1$ 1 1 w F(1#2) = 2, $\sum r. w = 3$ 1 2 1 w 1 F(1#3) = 5, $\sum r. w = 10$ 2 З 1 1 3 1 w

r

٢

r

F(1#4) = 15, $\sum r. w = 37$

r	1	2	3	4
w	1	7	6	1

F(1#5) = 52, $\sum r. w = 151$

٢	1	2	3	4	5
w	1	15	25	10	1

The interesting observation is the row of w is the same as the nth row of the SMARANDACHE STAR TRIANGLE. (ref.: [4])

CONJECTURE (6.3)

$$w_r = a_{(n,r)} = (1/r!) \sum_{k=0}^{r} (-1)^{r-k} \cdot C_k \cdot k^n$$

where w_r is the number of SFPs of F(1#n) having length r.

Further Scope: One can study the length and contents of other

cases (other than the square-free numbers.) explore for patterns if any.

REFERENCES:

- [1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
- [2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
- [3] "Amarnath Murthy", 'More Results And Applications Of The Generalized Smarandache Star Function' SNJ, 1999.
- [4] "The Florentine Smarandache "Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.