LENGTH / EXTENT OF SMARANDACHE FACTOR PARTITIONS

(Amarnath Murthy , S.E. (E \& T), Well Logging Services, Oil And Natural Gas Corporation Ltd. ,Sabarmati, Ahmedbad, India- 380005.)

ABSTRACT: In [1] we define SMARANDACHE FACTOR PARTITION FUNCTION (SFP), as follows:

Let $\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}$ be a set of r natural numbers and $p_{1}, p_{2}, p_{3}, \ldots, p_{r}$ be arbitrarily chosen distinct primes then $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ called the Smarandache Factor Partition of $\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots \alpha_{r}\right)$ is defined as the number of ways in which the number
$N=\quad p_{1}^{\alpha 1} p_{2}^{\alpha 2} p_{3}^{\alpha 3} \ldots p_{r}^{\alpha r} \quad$ could be expressed as the product of its' divisors. For simplicity, we denote $F\left(\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots\right.$

$$
\left.\cdot \alpha_{r}\right)=F^{\prime}(N) \text {, where }
$$

and p_{r} is the $r^{\text {th }}$ prime. $p_{1}=2, p_{2}=3$ etc.
Also for the case

$$
\alpha_{1}=\alpha_{2}=\alpha_{3}=\ldots=\alpha_{r}=\ldots=\alpha_{n}=1
$$

we denote

$$
\begin{aligned}
& F(1,1,1,1,1 \ldots)=F(1 \# n) \\
& \leftarrow n \text {-ones } \rightarrow
\end{aligned}
$$

In the present note we define two interesting parameters the
length and extent of an SFP and study the interesting properties they exhibit for square free numbers.

DISCUSSION:

DEFINITION: Let $F^{\prime}(N)=R$

LENGTH: If we denote each SFP of N, say like F_{1}, F_{2}
,... F_{R} arbtrarily and let F_{k} be the SFP representation
of N as the product of its divisors as follows:
$F_{k} \cdots--N=\left(h_{1}\right)\left(h_{2}\right)\left(h_{3}\right)\left(h_{4}\right) \ldots\left(h_{t}\right)$, where each $h_{i}(1<i<t)$ is an entity in the SFP ' F_{k} ' of N. Then $T\left(F_{k}\right)=t$ is defined as the 'Iength' of the factor partition F_{k}.
e.g. say $60=15 \times 2 \times 2$ is a factor partition F_{k} of 60. Then

$$
T\left(F_{k}\right)=3
$$

$T\left(F_{k}\right)$ can also be defined as one more than the number of product signs in the factor partition.

EXTENT : The extent of a number is defined as the sum of the lengths of all the SFPs.

Consider F(1\#3)
$N=p_{1} p_{2} p_{3}=2 \times 3 \times 5=30$.

$S N$	Factor Partition	length
1	30	1
2	15×2	2
3	10×3	2
4	6×5	2
5	$5 \times 3 \times 2$	3

Extent (30) $=\Sigma$ length $=10$
$F(1 \# 4)-F(1 \# 3)=10 .=$ Extent $\{F(1 \# 4)\}$

Consider F(1\#4)

$$
N=2 \times 3 \times 5 \times 7=210
$$

SN	Factor Partition	Length
1	210	1
2	105×2	2
3	70×3	2
4	42×5	2
5	35×6	2
6	$35 \times 3 \times 2$	3
7	30×7	2
8	21×10	2
9	$21 \times 5 \times 2$	3
10	15×14	2
11	$15 \times 7 \times 2$	3
12	$14 \times 5 \times 2$	3
13	$10 \times 7 \times 3$	3
14	$7 \times 6 \times 5$	3
15	$7 \times 5 \times 3 \times 2$	4

Extent(210) $=\sum$ length $=37$
We observe that
$F(1 \# 5)-F(1 \# 4)=37$. = Extent $\{F(1 \# 4)\}$
Similarly it has been verified that
$F(1 \# 6)-F(1 \# 5)=$ Extent $\{F(1 \# 5)\}$

CONJECTURE (6.1)
$F(1 \#(n+1))-F(1 \# n)=$ Extent $\{F(1 \# n)\}$
CONJECTURE (6.2)

$$
F(1 \#(n+1))=\sum_{r=0}^{n} \text { Extent }\{F(1 \# r)
$$

Motivation for this conjecture:

If conjecture (1) is true then we would have
$F(1 \# 2)-F(1 \# 1)=E x t e n t\{F(1 \# 1)\}$
$F(1 \# 3)-F(1 \# 2)=$ Extent $\{F(1 \# 2)\}$
$F(1 \# 4)-F(1 \# 3)=$ Extent $\{F(1 \# 3)\}$
$F(1 \#(n+1))-F(1 \# n)=$ Extent $\{F(1 \# n)\}$
Summing up we would get

$$
F(1 \#(n+1))-F(1 \# 1)=\sum_{r=1}^{n} \text { Extent }\{F(1 \# r)
$$

$F(1 \# 1)=1$ = Extent $\{F(1 \# 0)$ can be taken, hence we get

$$
F(1 \#(n+1))=\sum_{r=0}^{n} \text { Extent }\{F(1 \# r)
$$

Another Interesting Observation:

Given below is the chart of r versus w where w is the number of

SFPs having same length r .
$F(1 \# 0)=1, \Sigma r . w=1$

r	1
w	1

$F(1 \# 1)=1, \Sigma r . w=1$

r	f
w	1

$F(1 \# 2)=2, \Sigma r . w=3$

r	1	2
w	1	1

$$
F(1 \# 3)=5, \sum r \cdot w=10
$$

r	1	2	3
w	1	3	1

$F(1 \# 4)=15, \sum r . w=37$

r	1	2	3	4
w	1	7	5	1

$$
F(1 \# 5)=52, \quad \sum r . w=151
$$

i	1	2	3	4	5
w	1	15	25	10	1

The interesting observation is the row of w is the same as the $n^{\text {th }}$ row of the SMARANDACHE STAR TRIANGLE. (ref.: [4])

CONJECTURE (6.3)

$$
w_{r}=a_{(n, r)}=(1 / r!) \sum_{k=0}^{r}(-1)^{r-k} \cdot{ }^{r} C_{k} \cdot k^{n}
$$

where w_{r} is the number of SFPs of $F(1 \# n)$ having length r.
Further Scope: One can study the length and contents of other cases (other than the square-free numbers.) explore for patterns if any.

REFERENCES:

[1] "Amarnath Murthy", 'Generalization Of Partition Function, Introducing 'Smarandache Factor Partition', SNJ, Vol. 11, No. 1-2-3, 2000.
[2] "Amarnath Murthy", 'A General Result On The "Smarandache Star Function", SNJ, Vol. 11, No. 1-2-3, 2000.
[3] "Amarnath Murthy", 'More Results And Applications Of The Generalized Smarandache Star Function' SNJ,. 1999.
[4] "The Florentine Smarandache" Special Collection, Archives of American Mathematics, Centre for American History, University of Texax at Austin, USA.

