Scientia Magna Vol. 5 (2009), No. 3, 87-90

A limit problem of the Smarandache dual function $S^{**}(n)^1$

Qiuhong Zhao^{\dagger} and Yang Wang^{\ddagger}

[†]Department of Mathematics, Northwest University, Xi'an, Shaanxi, P.R.China [‡]College of Mathematics and Statistics, Nanyang Normal University, Nanyang, Henan, P.R.China

Abstract For any positive integer n, the Smarandache dual function $S^{**}(n)$ is defined as

 $S^{**}(n) = \begin{cases} \max \left\{ 2m : m \in N^*, (2m)!! \mid n \right\}, & 2 \mid n; \\ \max \left\{ 2m - 1 : m \in N^*, (2m - 1)!! \mid n \right\}, & 2 \nmid n. \end{cases}$

The main purpose of this paper is using the elementary methods to study the convergent properties of an infinity series involving $S^{**}(n)$, and give an interesting limit formula for it. **Keywords** The Smarandache dual function, limit problem, elementary method.

§1. Introduction and Results

For any positive integer n, the Smarandache dual function $S^{**}(n)$ is defined as the greatest positive integer 2m - 1 such that (2m - 1)!! divide n, if n is an odd number; $S^{**}(n)$ is the greatest positive 2m such that (2m)!! divides n, if n is an even number. From the definition of $S^{**}(n)$ we know that the first few values of $S^{**}(n)$ are: $S^{**}(1) = 1$, $S^{**}(2) = 2$, $S^{**}(3) = 3$, $S^{**}(4) = 2$, $S^{**}(5) = 1$, $S^{**}(6) = 2$, $S^{**}(7) = 1$, $S^{**}(8) = 4$, \cdots . About the elementary properties of $S^{**}(2)$, some authors had studied it, and obtained many interesting results. For example, Su Gou [1] proved that for any real number s > 1, the series $\sum_{n=1}^{\infty} \frac{S^{**}(n)}{n^s}$ is absolutely convergent, and

$$\sum_{n=1}^{\infty} \frac{S^{**}(n)}{n^s} = \zeta(s) \left(1 - \frac{1}{2^s}\right) \left(1 + \sum_{m=1}^{\infty} \frac{2}{((2m+1)!!)^s}\right) + \zeta(s) \left(\sum_{m=1}^{\infty} \frac{2}{((2m)!!)^s}\right),$$

where $\zeta(s)$ is the Riemann zeta-function.

Yanting Yang [2] studied the mean value estimate of $S^{**}(n)$, and gave an interesting asymptotic formula:

$$\sum_{n \le x} S^{**}(n) = x \left(2e^{\frac{1}{2}} - 3 + 2e^{\frac{1}{2}} \int_0^1 e^{-\frac{y^2}{2}} dy \right) + O(\ln^2 x),$$

where $e = 2.7182818284 \cdots$ is a constant.

¹This work is supported by the Shaanxi Provincial Education Department Foundation 08JK433.

Yang Wang [3] also studied the mean value properties of $S^{**}(n)^2$, and prove that

$$\sum_{n \le x} S^{**}(n)^2 = \frac{13x}{2} + O\left(\left(\frac{\ln x}{\ln \ln x}\right)^3\right).$$

In this paper, we using the elementary method to study the convergent properties of the series

$$\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s},$$

and give an interesting identity and limit theorem. That is, we shall prove the following: **Theorem.** For any real number s > 1, we have the identity

$$\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s} = \zeta(s) \left[1 - \frac{1}{2^s} + \left(1 - \frac{1}{2^s} \right) \sum_{m=1}^{\infty} \frac{8m}{((2m+1)!!)^s} + \sum_{m=1}^{\infty} \frac{8m-4}{((2m)!!)^s} \right],$$

where $\zeta(s)$ is the Riemann zeta-function.

From this Theorem we may immediately deduce the following limit formula:

Corollary. We have the limit

$$\lim_{s \to 1} (s-1) \left(\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s} \right) = \frac{13}{2}.$$

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. It is clear that $S^{**}(n) \ll \ln n$, so if s > 1, then the series $\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s}$ is convergent absolutely, so we have

$$\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s} = \sum_{\substack{n=1\\2\nmid n}}^{\infty} \frac{S^{**}(n)^2}{n^s} + \sum_{\substack{n=1\\2\mid n}}^{\infty} \frac{S^{**}(n)^2}{n^s} \equiv S_1 + S_2,$$

where

$$S_1 = \sum_{\substack{n=1\\2\nmid n}}^{\infty} \frac{S^{**}(n)^2}{n^s}, \quad S_2 = \sum_{\substack{n=1\\2\mid n}}^{\infty} \frac{S^{**}(n)^2}{n^s}.$$

From the definition of $S^{**}(n)$ we know that if $2 \nmid n$, we can assume that $S^{**}(n) = 2m - 1$, then $(2m - 1)!! \mid n$. Let n = (2m - 1)!!u, $2m + 1 \nmid u$. Note that the identity

$$\sum_{n=1}^{\infty} \frac{1}{(2n-1)^s} = \sum_{n=1}^{\infty} \frac{1}{n^s} - \sum_{n=1}^{\infty} \frac{1}{(2n)^s} = \left(1 - \frac{1}{2^s}\right) \sum_{n=1}^{\infty} \frac{1}{n^s} = \left(1 - \frac{1}{2^s}\right) \zeta(s),$$

so from the definition of $S^{\ast\ast}(n)$ we can deduce that (s>1),

$$\begin{split} S_1 &= \sum_{m=1}^{\infty} \sum_{\substack{u=1, \ 2\nmid u \\ 2m+1\nmid u}}^{\infty} \frac{(2m-1)^2}{((2m-1)!!)^s u^s} \\ &= \sum_{m=1}^{\infty} \frac{(2m-1)^2}{((2m-1)!!)^s} \sum_{\substack{u=1, \ 2\nmid u \\ 2m+1\nmid u}}^{\infty} \frac{1}{u^s} \\ &= \sum_{m=1}^{\infty} \frac{(2m-1)^2}{((2m-1)!!)^s} \left(\sum_{n=1}^{\infty} \frac{1}{(2n-1)^s} - \frac{1}{(2m+1)^s} \sum_{n=1}^{\infty} \frac{1}{(2n-1)^s} \right) \\ &= \zeta(s) \left(1 - \frac{1}{2^s} \right) \left(\sum_{m=1}^{\infty} \frac{(2m-1)^2}{((2m-1)!!)^s} - \sum_{m=1}^{\infty} \frac{(2m-1)^2}{((2m+1)!!)^s} \right) \\ &= \zeta(s) \left(1 - \frac{1}{2^s} \right) \left(1 + \sum_{m=1}^{\infty} \frac{(2m+1)^2 - (2m-1)^2}{((2m+1)!!)^s} \right) \\ &= \zeta(s) \left(1 - \frac{1}{2^s} \right) \left(1 + \sum_{m=1}^{\infty} \frac{8m}{((2m+1)!!)^s} \right). \end{split}$$

For even number n, we assume that $S^{**}(n) = 2m$, then $(2m)!! \mid n$. Let n = (2m)!!v, $2m + 2 \nmid v$. If s > 1, then we can deduce that

$$S_{2} = \sum_{m=1}^{\infty} \sum_{\substack{v=1\\2m+2\nmid v}}^{\infty} \frac{(2m)^{2}}{((2m)!!)^{s} v^{s}}$$

$$= \sum_{m=1}^{\infty} \frac{(2m)^{2}}{((2m)!!)^{s}} \sum_{\substack{v=1\\(2m+2)\nmid v}}^{\infty} \frac{1}{v^{s}}$$

$$= \sum_{m=1}^{\infty} \frac{(2m)^{2}}{((2m)!!)^{s}} \left(\sum_{n=1}^{\infty} \frac{1}{n^{s}} - \frac{1}{(2m+2)^{s}} \sum_{n=1}^{\infty} \frac{1}{n^{s}} \right)$$

$$= \zeta(s) \left(\sum_{m=1}^{\infty} \frac{(2m)^{2}}{((2m)!!)^{s}} - \sum_{m=1}^{\infty} \frac{(2m)^{2}}{((2m+2)!!)^{s}} \right)$$

$$= \zeta(s) \left(\frac{1}{2^{s-2}} + \sum_{m=1}^{\infty} \frac{(2m+2)^{2} - (2m)^{2}}{((2m+2)!!)^{s}} \right)$$

$$= \zeta(s) \left(\frac{1}{2^{s-2}} + \sum_{m=1}^{\infty} \frac{8m+4}{((2m+2)!!)^{s}} \right)$$

$$= 4\zeta(s) \sum_{m=1}^{\infty} \frac{2m-1}{((2m)!!)^{s}}.$$

Hence,

$$\sum_{n=1}^{\infty} \frac{S^{**}(n)^2}{n^s} = S_1 + S_2$$

= $\zeta(s) \left(1 - \frac{1}{2^s}\right) \left(1 + \sum_{m=1}^{\infty} \frac{8m}{((2m+1)!!)^s}\right) + 4\zeta(s) \sum_{m=1}^{\infty} \frac{2m-1}{((2m)!!)^s}$
= $\zeta(s) \left[1 - \frac{1}{2^s} + \left(1 - \frac{1}{2^s}\right) \sum_{m=1}^{\infty} \frac{8m}{((2m+1)!!)^s} + \sum_{m=1}^{\infty} \frac{8m-4}{((2m)!!)^s}\right].$

This completes the proof of our Theorem.

Now we prove Corollary, note that

$$\frac{1}{2} + \sum_{m=1}^{\infty} \frac{4m}{(2m+1)!!} + \sum_{m=1}^{\infty} \frac{8m-4}{(2m)!!}$$

$$= \frac{1}{2} + \sum_{m=1}^{\infty} \left(\frac{2}{(2m-1)!!} - \frac{2}{(2m+1)!!}\right) + \sum_{m=1}^{\infty} \left(\frac{4}{(2m-2)!!} - \frac{4}{(2m+2)!!}\right)$$

$$= \frac{1}{2} + 2 + 4 = \frac{13}{2}$$

and

$$\lim_{s \to 1} (s-1)\zeta(s) = 1,$$

from Theorem we may immediately deduce that

$$\lim_{s \to 1} (s-1) \left(\sum_{n=1}^{\infty} \frac{S^{**}(n)}{n^s} \right)$$

=
$$\lim_{s \to 1} (s-1)\zeta(s) \left[1 - \frac{1}{2^s} + \left(1 - \frac{1}{2^s} \right) \sum_{m=1}^{\infty} \frac{8m}{((2m+1)!!)^s} + \sum_{m=1}^{\infty} \frac{8m-4}{((2m)!!)^s} \right]$$

=
$$\frac{1}{2} + \sum_{m=1}^{\infty} \frac{4m}{(2m+1)!!} + \sum_{m=1}^{\infty} \frac{8m-4}{(2m)!!} = \frac{13}{2}.$$

This completes the proof of Corollary.

References

[1] Gou Su, On the Smarandache dual function, Pure and Applied Mathematics, 24(2008), No. 1, 17-20.

[2] Yang Yanting, On the mean value of a number theoretic function, Journal of Natural Science of Heilongjiang University, **25**(2008), No. 3, 340-342.

[3] Wang Yang, On the quadratic mean value of the Smarandache dual function $S^{**}(n)$, Research on Number Theory and Smarandache Notions, Hexis, 2009, 109-115.

[4] Zhang Wenpeng, The elementary number theory (in Chinese), Shaanxi Normal University Press, Xi'an, 2007.

[5] Li Jianghua and Guo Yanchun, Research on Smarandache Unsolved Problems (in Chinese), High American Press, 2009.