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Abstract For any positive integer n, the Smarandache dual function S∗∗(n) is defined as

S∗∗(n) =





max {2m : m ∈ N∗, (2m)!! | n} , 2 | n;

max {2m− 1 : m ∈ N∗, (2m− 1)!! | n} , 2 - n.

The main purpose of this paper is using the elementary methods to study the convergent

properties of an infinity series involving S∗∗(n), and give an interesting limit formula for it.
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§1. Introduction and Results

For any positive integer n, the Smarandache dual function S∗∗(n) is defined as the greatest
positive integer 2m − 1 such that (2m − 1)!! divide n, if n is an odd number; S∗∗(n) is the
greatest positive 2m such that (2m)!! divides n, if n is an even number. From the definition of
S∗∗(n) we know that the first few values of S∗∗(n) are: S∗∗(1) = 1, S∗∗(2) = 2, S∗∗(3) = 3,
S∗∗(4) = 2, S∗∗(5) = 1, S∗∗(6) = 2, S∗∗(7) = 1, S∗∗(8) = 4, · · · . About the elementary
properties of S∗∗(2), some authors had studied it, and obtained many interesting results. For

example, Su Gou [1] proved that for any real number s > 1, the series
∞∑

n=1

S∗∗(n)
ns is absolutely

convergent, and

∞∑
n=1

S∗∗(n)
ns

= ζ(s)
(

1− 1
2s

) (
1 +

∞∑
m=1

2
((2m + 1)!!)s

)
+ ζ(s)

( ∞∑
m=1

2
((2m)!!)s

)
,

where ζ(s) is the Riemann zeta-function.

Yanting Yang [2] studied the mean value estimate of S∗∗(n), and gave an interesting asymp-
totic formula: ∑

n≤x

S∗∗(n) = x

(
2e

1
2 − 3 + 2e

1
2

∫ 1

0

e−
y2

2 dy

)
+ O(ln2 x),

where e = 2.7182818284 · · · is a constant.
1This work is supported by the Shaanxi Provincial Education Department Foundation 08JK433.



88 Qiuhong Zhao and Yang Wang No. 3

Yang Wang [3] also studied the mean value properties of S∗∗(n)2, and prove that

∑

n≤x

S∗∗(n)2 =
13x

2
+ O

((
lnx

ln lnx

)3
)

.

In this paper, we using the elementary method to study the convergent properties of the series

∞∑
n=1

S∗∗(n)2

ns
,

and give an interesting identity and limit theorem. That is, we shall prove the following:
Theorem. For any real number s > 1, we have the identity

∞∑
n=1

S∗∗(n)2

ns
= ζ(s)

[
1− 1

2s
+

(
1− 1

2s

) ∞∑
m=1

8m

((2m + 1)!!)s
+

∞∑
m=1

8m− 4
((2m)!!)s

]
,

where ζ(s) is the Riemann zeta-function.

From this Theorem we may immediately deduce the following limit formula:

Corollary. We have the limit

lim
s→1

(s− 1)

( ∞∑
n=1

S∗∗(n)2

ns

)
=

13
2

.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. It is clear that S∗∗(n) ¿
lnn, so if s > 1, then the series

∞∑
n=1

S∗∗(n)2

ns is convergent absolutely, so we have

∞∑
n=1

S∗∗(n)2

ns
=

∞∑
n=1
2-n

S∗∗(n)2

ns
+

∞∑
n=1
2|n

S∗∗(n)2

ns
≡ S1 + S2,

where

S1 =
∞∑

n=1
2-n

S∗∗(n)2

ns
, S2 =

∞∑
n=1
2|n

S∗∗(n)2

ns
.

From the definition of S∗∗(n) we know that if 2 - n, we can assume that S∗∗(n) = 2m− 1, then
(2m− 1)!! | n. Let n = (2m− 1)!!u, 2m + 1 - u. Note that the identity

∞∑
n=1

1
(2n− 1)s

=
∞∑

n=1

1
ns
−

∞∑
n=1

1
(2n)s

=
(

1− 1
2s

) ∞∑
n=1

1
ns

=
(

1− 1
2s

)
ζ(s),
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so from the definition of S∗∗(n) we can deduce that ( s > 1 ),

S1 =
∞∑

m=1

∞∑

u=1, 2-u
2m+1-u

(2m− 1)2

((2m− 1)!!)s
us

=
∞∑

m=1

(2m− 1)2

((2m− 1)!!)s

∞∑

u=1, 2-u
2m+1-u

1
us

=
∞∑

m=1

(2m− 1)2

((2m− 1)!!)s

( ∞∑
n=1

1
(2n− 1)s

− 1
(2m + 1)s

∞∑
n=1

1
(2n− 1)s

)

= ζ(s)
(

1− 1
2s

) ( ∞∑
m=1

(2m− 1)2

((2m− 1)!!)s
−

∞∑
m=1

(2m− 1)2

((2m + 1)!!)s

)

= ζ(s)
(

1− 1
2s

) (
1 +

∞∑
m=1

(2m + 1)2 − (2m− 1)2

((2m + 1)!!)s

)

= ζ(s)
(

1− 1
2s

) (
1 +

∞∑
m=1

8m

((2m + 1)!!)s

)
.

For even number n, we assume that S∗∗(n) = 2m, then (2m)!! | n. Let n = (2m)!!v, 2m+2 - v.
If s > 1, then we can deduce that

S2 =
∞∑

m=1

∞∑
v=1

2m+2-v

(2m)2

((2m)!!)svs

=
∞∑

m=1

(2m)2

((2m)!!)s

∞∑
v=1

(2m+2)-v

1
vs

=
∞∑

m=1

(2m)2

((2m)!!)s

( ∞∑
n=1

1
ns
− 1

(2m + 2)s

∞∑
n=1

1
ns

)

= ζ(s)

( ∞∑
m=1

(2m)2

((2m)!!)s
−

∞∑
m=1

(2m)2

((2m + 2)!!)s

)

= ζ(s)

(
1

2s−2
+

∞∑
m=1

(2m + 2)2 − (2m)2

((2m + 2)!!)s

)

= ζ(s)

(
1

2s−2
+

∞∑
m=1

8m + 4
((2m + 2)!!)s

)

= 4ζ(s)
∞∑

m=1

2m− 1
((2m)!!)s

.
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Hence,
∞∑

n=1

S∗∗(n)2

ns
= S1 + S2

= ζ(s)
(

1− 1
2s

) (
1 +

∞∑
m=1

8m

((2m + 1)!!)s

)
+ 4ζ(s)

∞∑
m=1

2m− 1
((2m)!!)s

= ζ(s)

[
1− 1

2s
+

(
1− 1

2s

) ∞∑
m=1

8m

((2m + 1)!!)s
+

∞∑
m=1

8m− 4
((2m)!!)s

]
.

This completes the proof of our Theorem.
Now we prove Corollary, note that

1
2

+
∞∑

m=1

4m

(2m + 1)!!
+

∞∑
m=1

8m− 4
(2m)!!

=
1
2

+
∞∑

m=1

(
2

(2m− 1)!!
− 2

(2m + 1)!!

)
+

∞∑
m=1

(
4

(2m− 2)!!
− 4

(2m + 2)!!

)

=
1
2

+ 2 + 4 =
13
2

and

lim
s→1

(s− 1)ζ(s) = 1,

from Theorem we may immediately deduce that

lim
s→1

(s− 1)

( ∞∑
n=1

S∗∗(n)
ns

)

= lim
s→1

(s− 1)ζ(s)

[
1− 1

2s
+

(
1− 1

2s

) ∞∑
m=1

8m

((2m + 1)!!)s
+

∞∑
m=1

8m− 4
((2m)!!)s

]

=
1
2

+
∞∑

m=1

4m

(2m + 1)!!
+

∞∑
m=1

8m− 4
(2m)!!

=
13
2

.

This completes the proof of Corollary.
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