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§1. Introduction

As we known, a Smarandache geometry is defined following.

Definition 1.1 A rule R ∈ R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

Definition 1.2 A Smarandache geometry is such a geometry in which there are at least one

Smarandachely denied ruler and a Smarandache manifold (M ;A) is an n-dimensional manifold

M that support a Smarandache geometry by Smarandachely denied axioms in A. A line in a

Smarandache geometry is called an s-line.

Applying the structure of a Euclidean space R
n, we are easily construct a special Smaran-

dache geometry, called pseudo-Euclidean space([5]-[6]) following. Let Rn = {(x1, x2, · · · , xn)}
be a Euclidean space of dimensional n with a normal basis ǫ1 = (1, 0, · · · , 0), ǫ2 = (0, 1, · · · , 0),

· · · , ǫn = (0, 0, · · · , 1), x ∈ Rn and
−→
V x, x

−→
V two vectors with end or initial point at x, re-

spectively. A pseudo-Euclidean space (Rn, µ) is such a Euclidean space Rn associated with a

mapping µ :
−→
V x → x

−→
V for x ∈ Rn, such as those shown in Fig.1,
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Fig.1

where
−→
V x and x

−→
V are in the same orientation in case (a), but not in case (b). Such points

in case (a) are called Euclidean and in case (b) non-Euclidean. A pseudo-Euclidean (Rn, µ) is

finite if it only has finite non-Euclidean points, otherwise, infinite.

By definition, a Smarandachely denied axiom A ∈ A can be considered as an action of A

on subsets S ⊂M , denoted by SA. If (M1;A1) and (M2;A2) are two Smarandache manifolds,

where A1, A2 are the Smarandachely denied axioms on manifolds M1 and M2, respectively.

They are said to be isomorphic if there is 1 − 1 mappings τ : M1 →M2 and σ : A1 → A2 such

that τ(SA) = τ(S)σ(A) for ∀S ⊂ M1 and A ∈ A1. Such a pair (τ, σ) is called an isomorphism

between (M1;A1) and (M2;A2). Particularly, if M1 = M2 = M and A1 = A2 = A, such

an isomorphism (τ, σ) is called a Smarandachely automorphism of (M,A). Clearly, all such

automorphisms of (M,A) form an group under the composition operation on τ for a given σ.

Denoted by Aut(M,A). A special Smarandachely automorphism, i.e., linear isomorphism on a

pseudo-Euclidean space (Rn, µ) is defined following.

Definition 1.3 Let (Rn, µ) be a pseudo-Euclidean space with normal basis {ǫ1, ǫ2, · · · , ǫn}. A

linear isometry T : (Rn, µ) → (Rn, µ) is such a transformation that

T (c1e1 + c2e2) = c1T (e1) + c2T (e2), 〈T (e1), T (e2)〉 = 〈e1, e2〉 and Tµ = µT

for e1, e2 ∈ E and c1, c2 ∈ F .

Denoted by Isom(Rn, µ) the set of all linear isometries of (Rn, µ). Clearly, Isom(Rn, µ) is

a subgroup of Aut(M,A).

By definition, determining automorphisms of a Smarandache geometry is dependent on

the structure of manifold M and axioms A. So it is hard in general even for a manifold. The

main purpose of this paper is to determine linear isometries and characterize the behavior of

s-lines, particularly, Smarandachely embedded graphs in pseudo-Euclidean spaces (Rn, µ). For

terminologies and notations not defined in this paper, we follow references [1] for permutation

group, [2]-[4] and [7]-[8] for graph, map and Smarandache geometry.

§2. Smarandachely Embedded Graphs in (Rn, µ)

2.1 Smarandachely Planar Maps

Let L be an s-line in a Smarandache plane (R2, µ) with non-Euclisedn points A1, A2, · · · , Am

for an integer m ≥ 0. Its curvature R(L) is defined by
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R(L) =

m
∑

i=1

(π − µ(Ai)).

An s-line L is called Euclidean or non-Euclidean if R(L) = ±2π or 6= ±2π. The following result

characterizes s-lines on (R2, µ).

Theorem 2.1 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let (R2, µ) be a Smarandache plane and let L be a closed s-line without self-

intersections on (R2, µ) with vertices A1, A2, · · · , Am. From the Euclid geometry on plane, we

know that the angle sum of an m-polygon is (m− 2)π. Whence, the curvature R(L) of s-line L

is ±2π by definition, i.e., L is Euclidean.

Now if an s-line L is Euclidean, then R(L) = ±2π by definition. Thus there exist non-

Euclidean points B1, B2, · · · , Bm such that

m
∑

i=1

(π − µ(Bi)) = ±2π.

Whence, L is nothing but an n-polygon with vertices B1, B2, · · · , Bm on R2. Therefore, L is

closed without self-intersection. �

A planar map is a 2-cell embedding of a graph G on Euclidean plane R2. It is called

Smarandachely on (R2, µ) if all of its vertices are elliptic (hyperbolic). Notice that these pendent

vertices is not important because it can be always Euclidean or non-Euclidean. We concentrate

our attention to non-separated maps. Such maps always exist circuit-decompositions. The

following result characterizes Smarandachely planar maps.

Theorem 2.2 A non-separated planar map M is Smarandachely if and only if there exist a

directed circuit-decomposition

E 1
2
(M) =

s
⊕

i=1

E(
−→
C i)

of M such that one of the linear systems of equations
∑

v∈V (
−→
C i)

(π − xv) = 2π, or
∑

v∈V (
−→
C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, where E 1
2
(M) denotes the set of semi-arcs of M .

Proof If M is Smarandachely, then each vertex v ∈ V (M) is non-Euclidean, i.e., µ(v) 6= π.

Whence, there exists a directed circuit-decomposition

E 1
2
(M) =

s
⊕

i=1

E(
−→
C i)

of semi-arcs in M such that each of them is an s-line in (R2, µ). Applying Theorem 9.3.5, we

know that
∑

v∈V (
−→
C i)

(π − µ(v)) = 2π or
∑

v∈V (
−→
C i)

(π − µ(v)) = −2π
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for each circuit Ci, 1 ≤ i ≤ s. Thus one of the linear systems of equations

∑

v∈V (
−→
C i)

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V (
−→
C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable.

Conversely, if one of the linear systems of equations

∑

v∈V (
−→
C i)

(π − xv) = 2π, 1 ≤ i ≤ s or
∑

v∈V (
−→
C i)

(π − xv) = −2π, 1 ≤ i ≤ s

is solvable, define a mapping µ : R2 → [0, 4π) by

µ(x) =







xv if x = v ∈ V (M),

π if x 6∈ v(M).

Then M is a Smarandachely map on (R2, µ). This completes the proof. �

In Fig.2, we present an example of a Smarandachely planar maps with µ defined by numbers

on vertices.

π

2

π

2

π

2

π

2

π

2

π

2

π

2

π

2

π

2

Fig.2

Let ω0 ∈ (0, π). An s-line L is called non-Euclidean of type ω0 if R(L) = ±2π±ω0. Similar

to Theorem 2.2, we can get the following result.

Theorem 2.3 A non-separated map M is Smarandachely if and only if there exist a directed

circuit-decomposition

E 1
2
(M) =

s
⊕

i=1

E(
−→
C i)

of M into s-lines of type ω0, ω0 ∈ (0, π) for integers 1 ≤ i ≤ s such that one of the linear
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systems of equations

∑

v∈V (
−→
C i)

(π − xv) = 2π − ω0, 1 ≤ i ≤ s,

∑

v∈V (
−→
C i)

(π − xv) = −2π − ω0, 1 ≤ i ≤ s,

∑

v∈V (
−→
C i)

(π − xv) = 2π + ω0, 1 ≤ i ≤ s,

∑

v∈V (
−→
C i)

(π − xv) = −2π + ω0, 1 ≤ i ≤ s

is solvable.

2.2 Smarandachely Embedded Graphs in (Rn, µ)

Generally, we define the curvature R(L) of an s-line L passing through non-Euclidean points

x1, x2, · · · , xm ∈ Rn for m ≥ 0 in (Rn, µ) to be a matrix determined by

R(L) =

m
∏

i=1

µ(xi)

and Euclidean if R(L) = In×n, otherwise, non-Euclidean. It is obvious that a point in a

Euclidean space Rn is indeed Euclidean by this definition. Furthermore, we immediately get

the following result for Euclidean s-lines in (Rn, µ).

Theorem 2.4 Let (Rn, µ) be a pseudo-Euclidean space and L an s-line in (Rn, µ) passing

through non-Euclidean points x1, x2, · · · , xm ∈ Rn. Then L is closed if and only if L is Eu-

clidean.

Proof If L is a closed s-line, then L is consisted of vectors
−−→
x1x2,

−−→
x2x3, · · · , −−−→

xnx1. By

definition, −−−−→
xi+1xi
∣

∣

∣

−−−−→
xi+1xi

∣

∣

∣

=

−−−−→
xi−1xi
∣

∣

∣

−−−−→
xi−1xi

∣

∣

∣

µ(xi)

for integers 1 ≤ i ≤ m, where i+ 1 ≡ (modm). Consequently,

−−→
x1x2 =

−−→
x1x2

m
∏

i=1

µ(xi).

Thus
m
∏

i=1

µ(xi) = In×n, i.e., L is Euclidean.

Conversely, let L be Euclidean, i.e.,

m
∏

i=1

µ(xi) = In×n. By definition, we know that

−−−−→
xi+1xi
∣

∣

∣

−−−−→
xi+1xi

∣

∣

∣

=

−−−−→
xi−1xi
∣

∣

∣

−−−−→
xi−1xi

∣

∣

∣

µ(xi), i.e.,
−−−−→
xi+1xi =

∣

∣

∣

−−−−→
xi+1xi

∣

∣

∣

∣

∣

∣

−−−−→
xi−1xi

∣

∣

∣

−−−−→
xi−1xi µ(xi)
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for integers 1 ≤ i ≤ m, where i+ 1 ≡ (modm). Whence, if
m
∏

i=1

µ(xi) = In×n, then there must

be

−−→
x1x2 =

−−→
x1x2

m
∏

i=1

µ(xi).

Thus L consisted of vectors
−−→
x1x2,

−−→
x2x3, · · · ,

−−−→
xnx1 is a closed s-line in (Rn, µ). �

Now we consider the pseudo-Euclidean space (R2, µ) and find the rotation matrix µ(x) for

points x ∈ R2. Let θx be the angle form ǫ1 to µǫ1. Then it is easily to know that

µ(x) =





cos θ x sin θ x

sin θ x − cos θ x



 .

Now if an s-line L passing through non-Euclidean points x1, x2, · · · , xm ∈ R2, then Theorem

2.4 implies that





cos θ x1
sin θ x1

sin θ x1
− cos θ x1









cos θ x2
sin θ x2

sin θ x2
− cos θ x2



 · · ·





cos θ xm
sin θ xm

sin θ xm
− cos θ xm



 = I2×2.

Thus

µ(x) =





cos(θ x1
+ θ x2

+ · · · + θ xm
) sin(θ x1

+ θ x2
+ · · · + θ xm

)

sin(θ x1 + θ x2 + · · · + θ xm
) cos(θ x1 + θ x2 + · · · + θ xm

)



 = I2×2.

Whence, θ x1
+ θ x2

+ · · ·+ θ xm
= 2kπ for an integer k. This fact is in agreement with that of

Theorem 2.1, only with different disguises.

An embedded graph G on Rn is a 1 − 1 mapping τ : G → Rn such that for ∀e, e′ ∈ E(G),

τ(e) has no self-intersection and τ(e), τ(e′) maybe only intersect at their end points. Such an

embedded graph G in Rn is denoted by GRn . For example, the n-cube Cn is such an embedded

graph with vertex set V (Cn) = { (x1, x2, · · · , xn) | xi = 0 or 1 for 1 ≤ i ≤ n } and two

vertices (x1, x2, · · · , xn)) and (x′1, x
′
2, · · · , x′n) are adjacent if and only if they are differ exactly

in one entry. We present two n-cubes in Fig.3 for n = 2 and n = 3.

(0,0) (0,1)

(1,1)(1,0)

n = 2

(0,0,0) (0,0,1)

(0,1,0)

(1,0,0)

(0,1,1)

(1,0,1)

(1,1,1)(1,1,0)

n = 3

Fig.3
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Similarly, an embedded graph GRn is called Smarandachely if there exists a pseudo-

Euclidean space (Rn, µ) with a mapping µ : x ∈ Rn → [x] such that all of its vertices are

non-Euclidean points in (Rn, µ). Certainly, these vertices of valency 1 is not important for

Smarandachely embedded graphs. We concentrate our attention on embedded 2-connected

graphs.

Theorem 2.5 An embedded 2-connected graph GRn is Smarandachely if and only if there is a

mapping µ : x ∈ Rn → [x] and a directed circuit-decomposition

E 1
2

=

s
⊕

i=1

E(
−→
C i)

such that these matrix equations

∏

x∈V (
−→
C i)

Xx = In×n 1 ≤ i ≤ s

are solvable.

Proof By definition, ifGRn is Smarandachely, then there exists a mapping µ : x ∈ Rn → [x]

on Rn such that all vertices of GRn are non-Euclidean in (Rn, µ). Notice there are only two

orientations on an edge in E(GRn). Traveling on GRn beginning from any edge with one

orientation, we get a closed s-line
−→
C , i.e., a directed circuit. After we traveled all edges in GRn

with the possible orientations, we get a directed circuit-decomposition

E 1
2

=

s
⊕

i=1

E(
−→
C i)

with an s-line
−→
C i for integers 1 ≤ i ≤ s. Applying Theorem 2.4, we get

∏

x∈V (
−→
C i)

µ(x) = In×n 1 ≤ i ≤ s.

Thus these equations
∏

x∈V (
−→
C i)

Xx = In×n 1 ≤ i ≤ s

have solutions Xx = µ(x) for x ∈ V (
−→
C i).

Conversely, if these is a directed circuit-decomposition

E 1
2

=

s
⊕

i=1

E(
−→
C i)

such that these matrix equations

∏

x∈V (
−→
C i)

Xx = In×n 1 ≤ i ≤ s

are solvable, let Xx = Ax be such a solution for x ∈ V (
−→
C i), 1 ≤ i ≤ s. Define a mapping

µ : x ∈ Rn → [x] on Rn by
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µ(x) =







Ax if x ∈ V (GRn),

In×n if x 6∈ V (GRn).

Then we get a Smarandachely embedded graph GRn in the pseudo-Euclidean space (Rn, µ) by

Theorem 2.4. �

§3. Linear Isometries on Pseudo-Euclidean Space

If all points in a pseudo-Euclidean space (Rn, µ) are Euclidean, i.e., the case (a) in Fig.1, then

(Rn, µ) is nothing but just the Euclidean space Rn. The following results on linear isometries

of Euclidean spaces are well-known.

Theorem 3.1 Let E be an n-dimensional Euclidean space with normal basis {ǫ1, ǫ2, · · · , ǫn}
and T a linear transformation on E determined by Y

t
= [aij ]n×n

X
t
, where X = (ǫ1, ǫ2, · · · , ǫn)

and Y = (T (ǫ1), T (ǫ2), · · · , T (ǫn)). Then T is a linear isometry on E if and only if [aij ]n×n
is

an orthogonal matrix, i.e., [aij ]n×n
[aij ]

t

n×n
= In×n.

Theorem 3.2 An isometry on a Euclidean space E is a composition of three elementary

isometries on E following:

Translation Te. A mapping that moves every point (x1, x2, · · · , xn) of E by

Te : (x1, x2, · · · , xn) → (x1 + e1, x2 + e2, · · · , xn + en),

where e = (e1, e2, · · · , en).

Rotation Rθ. A mapping that moves every point of E through a fixed angle about a fixed

point. Similarly, taking the center O to be the origin of polar coordinates (r, φ1, φ2, · · · , φn−1),

a rotation Rθ1,θ2,··· ,θn−1 : E → E is

Rθ1,θ2,··· ,θn−1 : (r, φ1, φ2, · · · , φn1) → (r, φ1 + θ1, φ2 + θ2, · · · , φn1 + θn−1),

where θi is a constant angle, θi ∈ R (mod2π) for integers 1 ≤ i ≤ n− 1.

Reflection F. A reflection F is a mapping that moves every point of E to its mirror-

image in a fixed Euclidean subspace E′ of dimensional n− 1, denoted by F = F (E′). Thus for

a point P in E, F (P ) = P if P ∈ E′, and if P 6∈ E′, then F (P ) is the unique point in E such

that E′ is the perpendicular bisector of P and F (P ).

Theorem 3.3 An isometry I on a Euclidean space E is affine, i.e., determined by

Y
t
= λ [aij ]n×n

X
t
+ e,

where λ is a constant number, [aij ]n×n
a orthogonal matrix and e a constant vector in E.

Notice that a vector
−→
V can be uniquely determined by the basis of Rn. For x ∈ Rn,

there are infinite orthogonal frames at point x. Denoted by Ox the set of all normal bases at



Linear Isometries on Pseudo-Euclidean Space (Rn, µ) 9

point x. Then a pseudo-Euclidean space (R, µ) is nothing but a Euclidean space Rn associated

with a linear mapping µ : {ǫ1, ǫ2, · · · , ǫn} → {ǫ′1, ǫ′2, · · · , ǫ′n} ∈ Ox such that µ(ǫ1) = ǫ′1,

µ(ǫ2) = ǫ′2, · · · , µ(ǫn) = ǫ′n at point x ∈ Rn. Thus if
−→
V x = c1ǫ1 + c2ǫ2 + · · · + cnǫn, then

µ(x

−→
V ) = c1µ(ǫ1) + c2µ(ǫ2) + · · · + cnµ(ǫn) = c1ǫ

′
1 + c2ǫ

′
2 + · · · + cnǫ

′
n.

Without loss of generality, assume that

µ(ǫ1) = x11ǫ1 + x12ǫ2 + · · · + x1nǫn,

µ(ǫ2) = x21ǫ1 + x22ǫ2 + · · · + x2nǫn,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,
µ(ǫn) = xn1ǫ1 + xn2ǫ2 + · · · + xnnǫn.

Then we find that

µ(x

−→
V ) = (c1, c2, · · · , cn)(µ(ǫ1), µ(ǫ2), · · · , µ(ǫn))t

= (c1, c2, · · · , cn)















x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn















(ǫ1, ǫ2, · · · , ǫn)t.

Denoted by

[x] =















x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xn1 xn2 · · · xnn















=















〈µ(ǫ1), ǫ1〉 〈µ(ǫ1), ǫ2〉 · · · 〈µ(ǫ1), ǫn〉
〈µ(ǫ2), ǫ1〉 〈µ(ǫ2), ǫ2〉 · · · 〈µ(ǫ2), ǫn〉

· · · · · · · · · · · ·
〈µ(ǫn), ǫ1〉 〈µ(ǫn), ǫ2〉 · · · 〈µ(ǫn), ǫn〉















,

called the rotation matrix of x in (Rn, µ). Then µ :
−→
V x → x

−→
V is determined by µ(x) = [x] for

x ∈ Rn. Furthermore, such an rotation matrix [x] is orthogonal for points x ∈ Rn by definition,

i.e., [x] [x]
t
= In×n. Particularly, if x is Euclidean, then such an orientation matrix is nothing

but µ(x) = In×n. Summing up all these discussions, we know the following result.

Theorem 3.4 If (Rn, µ) is a pseudo-Euclidean space, then µ(x) = [x] is an n× n orthogonal

matrix for ∀ x ∈ Rn.

By definition, we know that Isom(Rn) =
〈

Te,Rθ,F
〉

. An isometry τ of a pseudo-Euclidean

space (Rn, µ) is an isometry on Rn such that µ(τ(x)) = µ(x) for ∀x ∈ Rn. Clearly, all

such isometries form a group Isom(Rn, µ) under composition operation with Isom(Rn, µ) ≤
Isom(Rn). We determine isometries of pseudo-Euclidean spaces in this subsection.

Certainly, if µ(x) is a constant matrix [c] for ∀x ∈ Rn, then all isometries on Rn is

also isometries on (Rn, µ). Whence, we only discuss those cases with at least two values for

µ : x ∈ Rn → [x] similar to that of (R2, µ).

Translation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of translation

Te, where e = (e1, e2, · · · , en) and P, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean point,
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respectively. Then µ(T k
e (P )) = µ(P ), µ(T k

e (Q)) = µ(Q) for any integer k ≥ 0 by definition.

Consequently,

P, Te(P ), T 2
e (P ), · · · , T k

e (P ), · · · ,
Q, Te(Q), T 2

e (Q), · · · , T k
e (Q), · · ·

are respectively infinite non-Euclidean and Euclidean points. Thus there are no isometries of

translations if (Rn, µ) is finite.

In this case, if there are rotations Rθ1,θ2,··· ,θn−1 , then there must be θ1, θ2, · · · , θn−1 ∈
{0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1, then e1 = e2 = · · · = el+1.

Rotation. Let (Rn, µ) be a pseudo-Euclidean space with an isometry of rotationRθ1,··· ,θn−1

and P, Q ∈ (Rn, µ) a non-Euclidean point, a Euclidean point, respectively. Then

µ(Rθ1,θ2,··· ,θn−1(P )) = µ(P ), µ(Rθ1,θ2,··· ,θn−1(Q)) = µ(Q)

for any integer k ≥ 0 by definition. Whence,

P, Rθ1,θ2,··· ,θn−1(P ), R2
θ1,θ2,··· ,θn−1

(P ), · · · , Rk
θ1,θ2,··· ,θn−1

(P ), · · · ,
Q, Rθ1,θ2,··· ,θn−1(Q), R2

θ1,θ2,··· ,θn−1
(Q), · · · , Rk

θ1,θ2,··· ,θn−1
(Q), · · ·

are respectively non-Euclidean and Euclidean points.

In this case, if there exists an integer k such that θi|2kπ for all integers 1 ≤ i ≤ n− 1, then

the previous sequences is finite. Thus there are both finite and infinite pseudo-Euclidean space

(Rn, µ) in this case. But if there is an integer i0, 1 ≤ i0 ≤ n − 1 such that θi0 6 | 2kπ for any

integer k, then there must be either infinite non-Euclidean points or infinite Euclidean points.

Thus there are isometries of rotations in a finite non-Euclidean space only if there exists an

integer k such that θi|2kπ for all integers 1 ≤ i ≤ n− 1. Similarly, an isometry of translation

exists in this case only if θ1, θ2, · · · , θn−1 ∈ {0, π/2}.

Reflection. By definition, a reflection F in a subspace E′ of dimensional n − 1 is an

involution, i.e., F 2 = 1Rn . Thus if (Rn, µ) is a pseudo-Euclidean space with an isometry of

reflection F in E′ and P, Q ∈ (Rn, µ) are respectively a non-Euclidean point and a Euclidean

point. Then it is only need that P, F (P ) are non-Euclidean points and Q, F (Q) are Euclidean

points. Therefore, a reflection F can be exists both in finite and infinite pseudo-Euclidean

spaces (Rn, µ).

Summing up all these discussions, we get results following for finite or infinite pseudo-

Euclidean spaces.

Theorem 3.5 Let (Rn, µ) be a finite pseudo-Euclidean space. Then there maybe isometries of

translations Te, rotations Rθ and reflections on (Rn, µ). Furthermore,

(1) If there are both isometries Te and Rθ, where e = (e1, · · · , en) and θ = (θ1, · · · , θn−1),

then θ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1, then

e1 = e2 = · · · = el+1.

(2) If there is an isometry Rθ1,θ2,··· ,θn−1, then there must be an integer k such that θi | 2kπ

for all integers 1 ≤ i ≤ n− 1.
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(3) There always exist isometries by putting Euclidean and non-Euclidean points x ∈ Rn

with µ(x) constant on symmetric positions to E′ in (Rn, µ).

Theorem 3.6 Let (Rn, µ) be a infinite pseudo-Euclidean space. Then there maybe isometries

of translations Te, rotations Rθ and reflections on (Rn, µ). Furthermore,

(1) There are both isometries Te and Rθ with e = (e1, e2, · · · , en) and θ = (θ1, θ2,

· · · , θn−1), only if θ1, θ2, · · · , θn−1 ∈ {0, π/2} and if θi = π/2 for 1 ≤ i ≤ l, θi = 0 if i ≥ l + 1,

then e1 = e2 = · · · = el+1.

(2) There exist isometries of rotations and reflections by putting Euclidean and non-

Euclidean points in the orbits x〈Rθ〉 and y〈F 〉 with a constant µ(x) in (Rn, µ).

We determine isometries on (R3, µ) with a 3-cube C3 shown in Fig.9.4.2. Let [a] be an

3× 3 orthogonal matrix, [a] 6= I3×3 and let µ(x1, x2, x3) = [a] for x1, x2, x3 ∈ {0, 1}, otherwise,

µ(x1, x2, x3) = I3×3. Then its isometries consist of two types following:

Rotations:

R1, R2, R3: these rotations through π/2 about 3 axes joining centres of opposite faces;

R4, R5, R6, R7, R8, R9: these rotations through π about 6 axes joining midpoints of

opposite edges;

R10, R11, R12, R13: these rotations through about 4 axes joining opposite vertices.

Reflection F : the reflection in the centre fixes each of the grand diagonal, reversing the

orientations.

Then Isom(R3, µ) = 〈Ri, F, 1 ≤ i ≤ 13〉 ≃ S4 × Z2. But if let
[

b
]

be another 3 × 3

orthogonal matrix,
[

b
]

6= [a] and define µ(x1, x2, x3) = [a] for x1 = 0, x2, x3 ∈ {0, 1},
µ(x1, x2, x3) =

[

b
]

for x1 = 1, x2, x3 ∈ {0, 1} and µ(x1, x2, x3) = I3×3 otherwise. Then

only the rotations R,R2, R3, R4 through π/2, π, 3π/2 and 2π about the axis joining centres of

opposite face

{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} and {(1, 0, 0), (1, 0, 1), (1, 1, 0), (1, 1, 1)},
and reflection F through to the plane passing midpoints of edges

(0, 0, 0) − (0, 0, 1), (0, 1, 0)− (0, 1, 1), (1, 0, 0)− (1, 0, 1), (1, 1, 0)− (1, 1, 1)

or (0, 0, 0) − (0, 1, 0), (0, 0, 1) − (0, 1, 1), (1, 0, 0)− (1, 1, 0), (1, 0, 1)− (1, 1, 1)

are isometries on (R3, µ). Thus Isom(R3, µ) = 〈R1, R2, R3, R4, F 〉 ≃ D8.

Furthermore, let [ai] , 1 ≤ i ≤ 8 be orthogonal matrixes distinct two by two and define

µ(0, 0, 0) = [a1], µ(0, 0, 1) = [a2], µ(0, 1, 0) = [a3], µ(0, 1, 1) = [a4], µ(1, 0, 0) = [a5], µ(1, 0, 1) =

[a6], µ(1, 1, 0) = [a7], µ(1, 1, 1) = [a8] and µ(x1, x2, x3) = I3×3 if x1, x2, x3 6= 0 or 1. Then

Isom(R3, µ) is nothing but a trivial group.
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