Linear Isometries on Pseudo-Euclidean Space (\mathbb{R}^n, μ)

Linfan Mao

Chinese Academy of Mathematics and System Science, Beijing, 100190, P.R.China Beijing Institute of Civil Engineering and Architecture, Beijing, 100044, P.R.China

E-mail: maolinfan@163.com

Abstract: A pseudo-Euclidean space (\mathbb{R}^n, μ) is such a Euclidean space \mathbb{R}^n associated with a mapping $\mu : \overrightarrow{V}_{\overline{x}} \to \overline{x}\overrightarrow{V}$ for $\overline{x} \in \mathbb{R}^n$, and a linear isometry $T : (\mathbb{R}^n, \mu) \to (\mathbb{R}^n, \mu)$ is such a linear isometry $T : \mathbb{R}^n \to \mathbb{R}^n$ that $T\mu = \mu T$. In this paper, we characterize curvature of s-line, particularly, Smarandachely embedded graphs and determine linear isometries on (\mathbb{R}^n, μ) .

Key Words: Smarandachely denied axiom, Smarandache geometry, s-line, pseudo-Euclidean space, isometry, Smarandachely map, Smarandachely embedded graph.

AMS(2010): 05C25, 05E15, 08A02, 15A03, 20E07, 51M15.

§1. Introduction

As we known, a Smarandache geometry is defined following.

Definition 1.1 A rule $R \in \mathcal{R}$ in a mathematical system $(\Sigma; \mathcal{R})$ is said to be Smarandachely denied if it behaves in at least two different ways within the same set Σ , i.e., validated and invalided, or only invalided but in multiple distinct ways.

Definition 1.2 A Smarandache geometry is such a geometry in which there are at least one Smarandachely denied ruler and a Smarandache manifold $(M; \mathcal{A})$ is an n-dimensional manifold M that support a Smarandache geometry by Smarandachely denied axioms in \mathcal{A} . A line in a Smarandache geometry is called an s-line.

Applying the structure of a Euclidean space \mathbb{R}^n , we are easily construct a special Smarandache geometry, called pseudo-Euclidean space([5]-[6]) following. Let $\mathbb{R}^n = \{(x_1, x_2, \dots, x_n)\}$ be a Euclidean space of dimensional n with a normal basis $\overline{\epsilon}_1 = (1, 0, \dots, 0), \overline{\epsilon}_2 = (0, 1, \dots, 0),$ $\dots, \overline{\epsilon}_n = (0, 0, \dots, 1), \overline{x} \in \mathbb{R}^n$ and $\overrightarrow{V}_{\overline{x}}, \overline{x}\overrightarrow{V}$ two vectors with end or initial point at \overline{x} , respectively. A pseudo-Euclidean space (\mathbb{R}^n, μ) is such a Euclidean space \mathbb{R}^n associated with a mapping $\mu: \overrightarrow{V}_{\overline{x}} \to \overline{x}\overrightarrow{V}$ for $\overline{x} \in \mathbb{R}^n$, such as those shown in Fig.1,

¹Received October 8, 2011. Accepted February 4, 2012.

Fig.1

where $\overrightarrow{V}_{\overline{x}}$ and $\overline{x}\overrightarrow{V}$ are in the same orientation in case (a), but not in case (b). Such points in case (a) are called *Euclidean* and in case (b) *non-Euclidean*. A pseudo-Euclidean (\mathbb{R}^n, μ) is *finite* if it only has finite non-Euclidean points, otherwise, *infinite*.

By definition, a Smarandachely denied axiom $A \in \mathcal{A}$ can be considered as an action of Aon subsets $S \subset M$, denoted by S^A . If $(M_1; \mathcal{A}_1)$ and $(M_2; \mathcal{A}_2)$ are two Smarandache manifolds, where \mathcal{A}_1 , \mathcal{A}_2 are the Smarandachely denied axioms on manifolds M_1 and M_2 , respectively. They are said to be *isomorphic* if there is 1 - 1 mappings $\tau : M_1 \to M_2$ and $\sigma : \mathcal{A}_1 \to \mathcal{A}_2$ such that $\tau(S^A) = \tau(S)^{\sigma(\mathcal{A})}$ for $\forall S \subset M_1$ and $A \in \mathcal{A}_1$. Such a pair (τ, σ) is called an isomorphism between $(M_1; \mathcal{A}_1)$ and $(M_2; \mathcal{A}_2)$. Particularly, if $M_1 = M_2 = M$ and $\mathcal{A}_1 = \mathcal{A}_2 = \mathcal{A}$, such an isomorphism (τ, σ) is called a *Smarandachely automorphism* of (M, \mathcal{A}) . Clearly, all such automorphisms of (M, \mathcal{A}) form an group under the composition operation on τ for a given σ . Denoted by $\operatorname{Aut}(M, \mathcal{A})$. A special Smarandachely automorphism, i.e., linear isomorphism on a pseudo-Euclidean space (\mathbb{R}^n, μ) is defined following.

Definition 1.3 Let (\mathbb{R}^n, μ) be a pseudo-Euclidean space with normal basis $\{\overline{\epsilon}_1, \overline{\epsilon}_2, \dots, \overline{\epsilon}_n\}$. A linear isometry $T : (\mathbb{R}^n, \mu) \to (\mathbb{R}^n, \mu)$ is such a transformation that

$$T(c_1\overline{e}_1 + c_2\overline{e}_2) = c_1T(\overline{e}_1) + c_2T(\overline{e}_2), \quad \langle T(\overline{e}_1), T(\overline{e}_2) \rangle = \langle \overline{e}_1, \overline{e}_2 \rangle \quad and \quad T\mu = \mu T$$

for \overline{e}_1 , $\overline{e}_2 \in \mathbf{E}$ and c_1 , $c_2 \in \mathscr{F}$.

Denoted by $\operatorname{Isom}(\mathbb{R}^n, \mu)$ the set of all linear isometries of (\mathbb{R}^n, μ) . Clearly, $\operatorname{Isom}(\mathbb{R}^n, \mu)$ is a subgroup of $\operatorname{Aut}(M, \mathcal{A})$.

By definition, determining automorphisms of a Smarandache geometry is dependent on the structure of manifold M and axioms \mathcal{A} . So it is hard in general even for a manifold. The main purpose of this paper is to determine linear isometries and characterize the behavior of s-lines, particularly, Smarandachely embedded graphs in pseudo-Euclidean spaces (\mathbb{R}^n, μ). For terminologies and notations not defined in this paper, we follow references [1] for permutation group, [2]-[4] and [7]-[8] for graph, map and Smarandache geometry.

§2. Smarandachely Embedded Graphs in (\mathbb{R}^n, μ)

2.1 Smarandachely Planar Maps

Let L be an s-line in a Smarandache plane (\mathbf{R}^2, μ) with non-Euclised points A_1, A_2, \dots, A_m for an integer $m \ge 0$. Its *curvature* R(L) is defined by

$$R(L) = \sum_{i=1}^{m} (\pi - \mu(A_i)).$$

An s-line L is called *Euclidean* or *non-Euclidean* if $R(L) = \pm 2\pi$ or $\neq \pm 2\pi$. The following result characterizes s-lines on (\mathbf{R}^2, μ).

Theorem 2.1 An s-line without self-intersections is closed if and only if it is Euclidean.

Proof Let (\mathbf{R}^2, μ) be a Smarandache plane and let L be a closed s-line without selfintersections on (\mathbf{R}^2, μ) with vertices A_1, A_2, \dots, A_m . From the Euclid geometry on plane, we know that the angle sum of an m-polygon is $(m-2)\pi$. Whence, the curvature R(L) of s-line Lis $\pm 2\pi$ by definition, i.e., L is Euclidean.

Now if an s-line L is Euclidean, then $R(L) = \pm 2\pi$ by definition. Thus there exist non-Euclidean points B_1, B_2, \dots, B_m such that

$$\sum_{i=1}^{m} (\pi - \mu(B_i)) = \pm 2\pi.$$

Whence, L is nothing but an n-polygon with vertices B_1, B_2, \dots, B_m on \mathbb{R}^2 . Therefore, L is closed without self-intersection.

A planar map is a 2-cell embedding of a graph G on Euclidean plane \mathbb{R}^2 . It is called *Smarandachely* on (\mathbb{R}^2, μ) if all of its vertices are elliptic (hyperbolic). Notice that these pendent vertices is not important because it can be always Euclidean or non-Euclidean. We concentrate our attention to non-separated maps. Such maps always exist circuit-decompositions. The following result characterizes Smarandachely planar maps.

Theorem 2.2 A non-separated planar map M is Smarandachely if and only if there exist a directed circuit-decomposition

$$E_{\frac{1}{2}}(M) = \bigoplus_{i=1}^{s} E(\overrightarrow{C}_{i})$$

of M such that one of the linear systems of equations

$$\sum_{v \in V(\vec{C}_i)} (\pi - x_v) = 2\pi, \quad or \quad \sum_{v \in V(\vec{C}_i)} (\pi - x_v) = -2\pi, \quad 1 \le i \le s$$

is solvable, where $E_{\frac{1}{2}}(M)$ denotes the set of semi-arcs of M.

Proof If M is Smarandachely, then each vertex $v \in V(M)$ is non-Euclidean, i.e., $\mu(v) \neq \pi$. Whence, there exists a directed circuit-decomposition

$$E_{\frac{1}{2}}(M) = \bigoplus_{i=1}^{3} E(\overrightarrow{C}_{i})$$

of semi-arcs in M such that each of them is an s-line in (\mathbf{R}^2, μ) . Applying Theorem 9.3.5, we know that

$$\sum_{v \in V(\overrightarrow{C}_i)} (\pi - \mu(v)) = 2\pi \text{ or } \sum_{v \in V(\overrightarrow{C}_i)} (\pi - \mu(v)) = -2\pi$$

for each circuit C_i , $1 \le i \le s$. Thus one of the linear systems of equations

$$\sum_{v \in V(\vec{C}_i)} (\pi - x_v) = 2\pi, \quad 1 \le i \le s \quad \text{or} \quad \sum_{v \in V(\vec{C}_i)} (\pi - x_v) = -2\pi, \quad 1 \le i \le s$$

is solvable.

Conversely, if one of the linear systems of equations

$$\sum_{v \in V(\vec{C}_i)} (\pi - x_v) = 2\pi, \quad 1 \le i \le s \quad \text{or} \quad \sum_{v \in V(\vec{C}_i)} (\pi - x_v) = -2\pi, \quad 1 \le i \le s$$

is solvable, define a mapping $\mu : \mathbf{R}^2 \to [0, 4\pi)$ by

$$\mu(x) = \begin{cases} x_v & \text{if } x = v \in V(M), \\ \pi & \text{if } x \notin v(M). \end{cases}$$

Then M is a Smarandachely map on (\mathbf{R}^2, μ) . This completes the proof.

In Fig.2, we present an example of a Smarandachely planar maps with μ defined by numbers on vertices.

Let $\omega_0 \in (0, \pi)$. An s-line *L* is called *non-Euclidean of type* ω_0 if $R(L) = \pm 2\pi \pm \omega_0$. Similar to Theorem 2.2, we can get the following result.

Theorem 2.3 A non-separated map M is Smarandachely if and only if there exist a directed circuit-decomposition

$$E_{\frac{1}{2}}(M) = \bigoplus_{i=1}^{s} E(\overrightarrow{C}_{i})$$

of M into s-lines of type $\omega_0, \omega_0 \in (0,\pi)$ for integers $1 \leq i \leq s$ such that one of the linear

systems of equations

$$\sum_{v \in V(\overrightarrow{C}_i)} (\pi - x_v) = 2\pi - \omega_0, \qquad 1 \le i \le s,$$
$$\sum_{v \in V(\overrightarrow{C}_i)} (\pi - x_v) = -2\pi - \omega_0, \qquad 1 \le i \le s,$$
$$\sum_{v \in V(\overrightarrow{C}_i)} (\pi - x_v) = 2\pi + \omega_0, \qquad 1 \le i \le s,$$
$$\sum_{v \in V(\overrightarrow{C}_i)} (\pi - x_v) = -2\pi + \omega_0, \qquad 1 \le i \le s$$

is solvable.

2.2 Smarandachely Embedded Graphs in (\mathbb{R}^n, μ)

Generally, we define the *curvature* R(L) of an s-line L passing through non-Euclidean points $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_m \in \mathbf{R}^n$ for $m \ge 0$ in (\mathbf{R}^n, μ) to be a matrix determined by

$$R(L) = \prod_{i=1}^{m} \mu(\overline{x}_i)$$

and Euclidean if $R(L) = I_{n \times n}$, otherwise, non-Euclidean. It is obvious that a point in a Euclidean space \mathbf{R}^n is indeed Euclidean by this definition. Furthermore, we immediately get the following result for Euclidean s-lines in (\mathbf{R}^n, μ) .

Theorem 2.4 Let (\mathbf{R}^n, μ) be a pseudo-Euclidean space and L an s-line in (\mathbf{R}^n, μ) passing through non-Euclidean points $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_m \in \mathbf{R}^n$. Then L is closed if and only if L is Euclidean.

Proof If L is a closed s-line, then L is consisted of vectors $\overline{\overline{x_1x_2}}$, $\overline{\overline{x_2x_3}}$, \cdots , $\overline{\overline{x_nx_1}}$. By definition,

$$\frac{\overline{\overline{x}_{i+1}\overline{x}_i}}{\left|\overline{\overline{x}_{i+1}\overline{x}_i}\right|} = \frac{\overline{\overline{x}_{i-1}\overline{x}_i}}{\left|\overline{\overline{x}_{i-1}\overline{x}_i}\right|} \ \mu(\overline{x}_i)$$

for integers $1 \leq i \leq m$, where $i + 1 \equiv (\text{mod}m)$. Consequently,

$$\overrightarrow{\overline{x}_1 \overline{x}_2} = \overrightarrow{\overline{x}_1 \overline{x}_2} \prod_{i=1}^m \mu(\overline{x}_i).$$

Thus $\prod_{i=1}^{m} \mu(\overline{x}_i) = I_{n \times n}$, i.e., L is Euclidean.

Conversely, let L be Euclidean, i.e., $\prod_{i=1}^{m} \mu(\overline{x}_i) = I_{n \times n}$. By definition, we know that

$$\frac{\overrightarrow{\overline{x_{i+1}}}\overrightarrow{\overline{x_i}}}{\left|\overrightarrow{\overline{x_{i+1}}}\overrightarrow{\overline{x_i}}\right|} = \frac{\overrightarrow{\overline{x_{i-1}}}\overrightarrow{\overline{x_i}}}{\left|\overrightarrow{\overline{x_{i-1}}}\overrightarrow{\overline{x_i}}\right|} \ \mu(\overline{x_i}), \quad \text{i.e.,} \quad \overline{\overline{x_{i+1}}}\overrightarrow{\overline{x_i}} = \frac{\left|\overrightarrow{\overline{x_{i+1}}}\overrightarrow{\overline{x_i}}\right|}{\left|\overrightarrow{\overline{x_{i-1}}}\overrightarrow{\overline{x_i}}\right|} \overrightarrow{\overline{x_{i-1}}}\overrightarrow{\overline{x_i}} \ \mu(\overline{x_i})$$

Linfan Mao

for integers $1 \le i \le m$, where $i + 1 \equiv (\text{mod}m)$. Whence, if $\prod_{i=1}^{m} \mu(\overline{x}_i) = I_{n \times n}$, then there must be

$$\overrightarrow{\overline{x}_1}\overrightarrow{\overline{x}_2} = \overrightarrow{\overline{x}_1}\overrightarrow{\overline{x}_2}\prod_{i=1}^m \mu(\overline{x}_i).$$

Thus *L* consisted of vectors $\overline{\overline{x_1x_2}}$, $\overline{\overline{x_2x_3}}$, \cdots , $\overline{\overline{x_nx_1}}$ is a closed s-line in (\mathbf{R}^n, μ) .

Now we consider the pseudo-Euclidean space (\mathbf{R}^2, μ) and find the rotation matrix $\mu(\overline{x})$ for points $\overline{x} \in \mathbf{R}^2$. Let $\theta_{\overline{x}}$ be the angle form $\overline{\epsilon}_1$ to $\mu\overline{\epsilon}_1$. Then it is easily to know that

$$\mu(\overline{x}) = \begin{pmatrix} \cos\theta \ \overline{x} & \sin\theta \ \overline{x} \\ \sin\theta \ \overline{x} & -\cos\theta \ \overline{x} \end{pmatrix}.$$

Now if an s-line L passing through non-Euclidean points $\overline{x}_1, \overline{x}_2, \dots, \overline{x}_m \in \mathbf{R}^2$, then Theorem 2.4 implies that

$$\begin{pmatrix} \cos\theta \,\overline{x}_1 & \sin\theta \,\overline{x}_1 \\ \sin\theta \,\overline{x}_1 & -\cos\theta \,\overline{x}_1 \end{pmatrix} \begin{pmatrix} \cos\theta \,\overline{x}_2 & \sin\theta \,\overline{x}_2 \\ \sin\theta \,\overline{x}_2 & -\cos\theta \,\overline{x}_2 \end{pmatrix} \cdots \begin{pmatrix} \cos\theta \,\overline{x}_m & \sin\theta \,\overline{x}_m \\ \sin\theta \,\overline{x}_m & -\cos\theta \,\overline{x}_m \end{pmatrix} = I_{2\times 2}.$$

Thus

$$\mu(\overline{x}) = \begin{pmatrix} \cos(\theta \ \overline{x}_1 + \theta \ \overline{x}_2 + \dots + \theta \ \overline{x}_m) & \sin(\theta \ \overline{x}_1 + \theta \ \overline{x}_2 + \dots + \theta \ \overline{x}_m) \\ \sin(\theta \ \overline{x}_1 + \theta \ \overline{x}_2 + \dots + \theta \ \overline{x}_m) & \cos(\theta \ \overline{x}_1 + \theta \ \overline{x}_2 + \dots + \theta \ \overline{x}_m) \end{pmatrix} = I_{2 \times 2}.$$

Whence, $\theta_{\overline{x}_1} + \theta_{\overline{x}_2} + \cdots + \theta_{\overline{x}_m} = 2k\pi$ for an integer k. This fact is in agreement with that of Theorem 2.1, only with different disguises.

An embedded graph G on \mathbb{R}^n is a 1-1 mapping $\tau: G \to \mathbb{R}^n$ such that for $\forall e, e' \in E(G)$, $\tau(e)$ has no self-intersection and $\tau(e)$, $\tau(e')$ maybe only intersect at their end points. Such an embedded graph G in \mathbb{R}^n is denoted by $G_{\mathbb{R}^n}$. For example, the *n*-cube \mathcal{C}_n is such an embedded graph with vertex set $V(\mathcal{C}_n) = \{ (x_1, x_2, \cdots, x_n) \mid x_i = 0 \text{ or } 1 \text{ for } 1 \leq i \leq n \}$ and two vertices (x_1, x_2, \cdots, x_n) and $(x'_1, x'_2, \cdots, x'_n)$ are adjacent if and only if they are differ exactly in one entry. We present two *n*-cubes in Fig.3 for n = 2 and n = 3.

Similarly, an embedded graph $G_{\mathbf{R}^n}$ is called *Smarandachely* if there exists a pseudo-Euclidean space (\mathbf{R}^n, μ) with a mapping $\mu : \overline{x} \in \mathbf{R}^n \to [\overline{x}]$ such that all of its vertices are non-Euclidean points in (\mathbf{R}^n, μ) . Certainly, these vertices of valency 1 is not important for Smarandachely embedded graphs. We concentrate our attention on embedded 2-connected graphs.

Theorem 2.5 An embedded 2-connected graph $G_{\mathbf{R}^n}$ is Smarandachely if and only if there is a mapping $\mu : \overline{x} \in \mathbf{R}^n \to [\overline{x}]$ and a directed circuit-decomposition

$$E_{\frac{1}{2}} = \bigoplus_{i=1}^{s} E(\overrightarrow{C}_{i})$$

such that these matrix equations

$$\prod_{\overline{x} \in V(\overrightarrow{C}_i)} X_{\overline{x}} = I_{n \times n} \quad 1 \le i \le s$$

are solvable.

Proof By definition, if $G_{\mathbf{R}^n}$ is Smarandachely, then there exists a mapping $\mu : \overline{x} \in \mathbf{R}^n \to [\overline{x}]$ on \mathbf{R}^n such that all vertices of $G_{\mathbf{R}^n}$ are non-Euclidean in (\mathbf{R}^n, μ) . Notice there are only two orientations on an edge in $E(G_{\mathbf{R}^n})$. Traveling on $G_{\mathbf{R}^n}$ beginning from any edge with one orientation, we get a closed s-line \overrightarrow{C} , i.e., a directed circuit. After we traveled all edges in $G_{\mathbf{R}^n}$ with the possible orientations, we get a directed circuit-decomposition

$$E_{\frac{1}{2}} = \bigoplus_{i=1}^{s} E(\overrightarrow{C}_{i})$$

with an s-line \overrightarrow{C}_i for integers $1 \leq i \leq s$. Applying Theorem 2.4, we get

$$\prod_{\overline{x}\in V(\overrightarrow{C}_i)}\mu(\overline{x}) = I_{n\times n} \quad 1 \le i \le s.$$

Thus these equations

$$\prod_{\overline{x}\in V(\overrightarrow{C}_i)} X_{\overline{x}} = I_{n\times n} \quad 1 \le i \le s$$

have solutions $X_{\overline{x}} = \mu(\overline{x})$ for $\overline{x} \in V(\overrightarrow{C}_i)$.

Conversely, if these is a directed circuit-decomposition

$$E_{\frac{1}{2}} = \bigoplus_{i=1}^{s} E(\overrightarrow{C}_{i})$$

such that these matrix equations

$$\prod_{\overline{x}\in V(\overrightarrow{C}_i)} X_{\overline{x}} = I_{n\times n} \quad 1 \le i \le s$$

are solvable, let $X_{\overline{x}} = A_{\overline{x}}$ be such a solution for $\overline{x} \in V(\overrightarrow{C}_i)$, $1 \leq i \leq s$. Define a mapping $\mu : \overline{x} \in \mathbf{R}^n \to [\overline{x}]$ on \mathbf{R}^n by

$$\mu(\overline{x}) = \begin{cases} A_{\overline{x}} & \text{if } \overline{x} \in V(G_{\mathbf{R}^n}), \\ I_{n \times n} & \text{if } \overline{x} \notin V(G_{\mathbf{R}^n}). \end{cases}$$

Then we get a Smarandachely embedded graph $G_{\mathbf{R}^n}$ in the pseudo-Euclidean space (\mathbf{R}^n, μ) by Theorem 2.4.

§3. Linear Isometries on Pseudo-Euclidean Space

If all points in a pseudo-Euclidean space (\mathbb{R}^n, μ) are Euclidean, i.e., the case (a) in Fig.1, then (\mathbb{R}^n, μ) is nothing but just the Euclidean space \mathbb{R}^n . The following results on linear isometries of Euclidean spaces are well-known.

Theorem 3.1 Let \mathbf{E} be an n-dimensional Euclidean space with normal basis $\{\overline{\epsilon}_1, \overline{\epsilon}_2, \dots, \overline{\epsilon}_n\}$ and T a linear transformation on \mathbf{E} determined by $\overline{Y}^t = [a_{ij}]_{n \times n} \overline{X}^t$, where $\overline{X} = (\overline{\epsilon}_1, \overline{\epsilon}_2, \dots, \overline{\epsilon}_n)$ and $\overline{Y} = (T(\overline{\epsilon}_1), T(\overline{\epsilon}_2), \dots, T(\overline{\epsilon}_n))$. Then T is a linear isometry on \mathbf{E} if and only if $[a_{ij}]_{n \times n}$ is an orthogonal matrix, i.e., $[a_{ij}]_{n \times n}^t [a_{ij}]_{n \times n}^t = I_{n \times n}$.

Theorem 3.2 An isometry on a Euclidean space \mathbf{E} is a composition of three elementary isometries on \mathbf{E} following:

Translation $\mathbb{T}_{\overline{e}}$. A mapping that moves every point (x_1, x_2, \cdots, x_n) of **E** by

$$T_{\overline{e}}: (x_1, x_2, \cdots, x_n) \to (x_1 + e_1, x_2 + e_2, \cdots, x_n + e_n)$$

where $\overline{e} = (e_1, e_2, \cdots, e_n).$

Rotation $\mathbb{R}_{\overline{\theta}}$. A mapping that moves every point of **E** through a fixed angle about a fixed point. Similarly, taking the center O to be the origin of polar coordinates $(r, \phi_1, \phi_2, \dots, \phi_{n-1})$, a rotation $R_{\theta_1,\theta_2,\dots,\theta_{n-1}} : \mathbf{E} \to \mathbf{E}$ is

$$R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}: (r,\phi_1,\phi_2,\cdots,\phi_{n_1}) \to (r,\phi_1+\theta_1,\phi_2+\theta_2,\cdots,\phi_{n_1}+\theta_{n-1}),$$

where θ_i is a constant angle, $\theta_i \in \mathbf{R} \pmod{2\pi}$ for integers $1 \leq i \leq n-1$.

Reflection \mathbb{F} . A reflection F is a mapping that moves every point of \mathbf{E} to its mirrorimage in a fixed Euclidean subspace E' of dimensional n-1, denoted by F = F(E'). Thus for a point P in \mathbf{E} , F(P) = P if $P \in E'$, and if $P \notin E'$, then F(P) is the unique point in \mathbf{E} such that E' is the perpendicular bisector of P and F(P).

Theorem 3.3 An isometry \mathcal{I} on a Euclidean space **E** is affine, i.e., determined by

$$\overline{Y}^t = \lambda \left[a_{ij} \right]_{n \times n} \overline{X}^t + \overline{e},$$

where λ is a constant number, $[a_{ij}]_{n \times n}$ a orthogonal matrix and \overline{e} a constant vector in **E**.

Notice that a vector \overrightarrow{V} can be uniquely determined by the basis of \mathbf{R}^n . For $\overline{x} \in \mathbf{R}^n$, there are infinite orthogonal frames at point \overline{x} . Denoted by $\mathcal{O}_{\overline{x}}$ the set of all normal bases at

point \overline{x} . Then a pseudo-Euclidean space (\mathbf{R}, μ) is nothing but a Euclidean space \mathbf{R}^n associated with a linear mapping μ : $\{\overline{\epsilon}_1, \overline{\epsilon}_2, \cdots, \overline{\epsilon}_n\} \rightarrow \{\overline{\epsilon}'_1, \overline{\epsilon}'_2, \cdots, \overline{\epsilon}'_n\} \in \mathcal{O}_{\overline{x}}$ such that $\mu(\overline{\epsilon}_1) = \overline{\epsilon}'_1$, $\mu(\overline{\epsilon}_2) = \overline{\epsilon}'_2, \cdots, \mu(\overline{\epsilon}_n) = \overline{\epsilon}'_n$ at point $\overline{x} \in \mathbf{R}^n$. Thus if $\overline{V}_{\overline{x}} = c_1\overline{\epsilon}_1 + c_2\overline{\epsilon}_2 + \cdots + c_n\overline{\epsilon}_n$, then $\mu(\overline{x}\overline{V}) = c_1\mu(\overline{\epsilon}_1) + c_2\mu(\overline{\epsilon}_2) + \cdots + c_n\mu(\overline{\epsilon}_n) = c_1\overline{\epsilon}'_1 + c_2\overline{\epsilon}'_2 + \cdots + c_n\overline{\epsilon}'_n$.

Without loss of generality, assume that

Then we find that

$$\mu(\overline{x}V) = (c_1, c_2, \cdots, c_n)(\mu(\overline{\epsilon}_1), \mu(\overline{\epsilon}_2), \cdots, \mu(\overline{\epsilon}_n))^t$$
$$= (c_1, c_2, \cdots, c_n) \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} (\overline{\epsilon}_1, \overline{\epsilon}_2, \cdots, \overline{\epsilon}_n)^t.$$

Denoted by

$$[\overline{x}] = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1n} \\ x_{21} & x_{22} & \cdots & x_{2n} \\ \cdots & \cdots & \cdots \\ x_{n1} & x_{n2} & \cdots & x_{nn} \end{pmatrix} = \begin{pmatrix} \langle \mu(\overline{\epsilon}_1), \overline{\epsilon}_1 \rangle & \langle \mu(\overline{\epsilon}_1), \overline{\epsilon}_2 \rangle & \cdots & \langle \mu(\overline{\epsilon}_1), \overline{\epsilon}_n \rangle \\ \langle \mu(\overline{\epsilon}_2), \overline{\epsilon}_1 \rangle & \langle \mu(\overline{\epsilon}_2), \overline{\epsilon}_2 \rangle & \cdots & \langle \mu(\overline{\epsilon}_2), \overline{\epsilon}_n \rangle \\ \cdots & \cdots & \cdots \\ \langle \mu(\overline{\epsilon}_n), \overline{\epsilon}_1 \rangle & \langle \mu(\overline{\epsilon}_n), \overline{\epsilon}_2 \rangle & \cdots & \langle \mu(\overline{\epsilon}_n), \overline{\epsilon}_n \rangle \end{pmatrix},$$

called the *rotation matrix* of \overline{x} in (\mathbf{R}^n, μ) . Then $\mu : \overrightarrow{V}_{\overline{x}} \to \overline{x} \overrightarrow{V}$ is determined by $\mu(\overline{x}) = [\overline{x}]$ for $\overline{x} \in \mathbf{R}^n$. Furthermore, such an rotation matrix $[\overline{x}]$ is orthogonal for points $\overline{x} \in \mathbf{R}^n$ by definition, i.e., $[\overline{x}] [\overline{x}]^t = I_{n \times n}$. Particularly, if \overline{x} is Euclidean, then such an orientation matrix is nothing but $\mu(\overline{x}) = I_{n \times n}$. Summing up all these discussions, we know the following result.

Theorem 3.4 If (\mathbf{R}^n, μ) is a pseudo-Euclidean space, then $\mu(\overline{x}) = [\overline{x}]$ is an $n \times n$ orthogonal matrix for $\forall \ \overline{x} \in \mathbf{R}^n$.

By definition, we know that $\operatorname{Isom}(\mathbf{R}^n) = \langle \mathbb{T}_{\overline{e}}, \mathbb{R}_{\overline{\theta}}, \mathbb{F} \rangle$. An isometry τ of a pseudo-Euclidean space (\mathbf{R}^n, μ) is an isometry on \mathbf{R}^n such that $\mu(\tau(\overline{x})) = \mu(\overline{x})$ for $\forall \overline{x} \in \mathbf{R}^n$. Clearly, all such isometries form a group $\operatorname{Isom}(\mathbf{R}^n, \mu)$ under composition operation with $\operatorname{Isom}(\mathbf{R}^n, \mu) \leq \operatorname{Isom}(\mathbf{R}^n)$. We determine isometries of pseudo-Euclidean spaces in this subsection.

Certainly, if $\mu(\overline{x})$ is a constant matrix [c] for $\forall \overline{x} \in \mathbf{R}^n$, then all isometries on \mathbf{R}^n is also isometries on (\mathbf{R}^n, μ) . Whence, we only discuss those cases with at least two values for $\mu: \overline{x} \in \mathbf{R}^n \to [\overline{x}]$ similar to that of (\mathbf{R}^2, μ) .

Translation. Let (\mathbf{R}^n, μ) be a pseudo-Euclidean space with an isometry of translation $T_{\overline{e}}$, where $\overline{e} = (e_1, e_2, \dots, e_n)$ and $P, Q \in (\mathbf{R}^n, \mu)$ a non-Euclidean point, a Euclidean point,

respectively. Then $\mu(T_{\overline{e}}^k(P)) = \mu(P)$, $\mu(T_{\overline{e}}^k(Q)) = \mu(Q)$ for any integer $k \ge 0$ by definition. Consequently,

$$P, T_{\overline{e}}(P), T_{\overline{e}}^2(P), \cdots, T_{\overline{e}}^k(P), \cdots, Q, T_{\overline{e}}(Q), T_{\overline{e}}^2(Q), \cdots, T_{\overline{e}}^k(Q), \cdots$$

are respectively infinite non-Euclidean and Euclidean points. Thus there are no isometries of translations if (\mathbf{R}^n, μ) is finite.

In this case, if there are rotations $R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}$, then there must be $\theta_1,\theta_2,\cdots,\theta_{n-1} \in \{0,\pi/2\}$ and if $\theta_i = \pi/2$ for $1 \le i \le l, \theta_i = 0$ if $i \ge l+1$, then $e_1 = e_2 = \cdots = e_{l+1}$.

Rotation. Let (\mathbb{R}^n, μ) be a pseudo-Euclidean space with an isometry of rotation $\mathbb{R}_{\theta_1, \dots, \theta_{n-1}}$ and $P, Q \in (\mathbb{R}^n, \mu)$ a non-Euclidean point, a Euclidean point, respectively. Then

 $\mu(R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(P)) = \mu(P), \quad \mu(R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(Q)) = \mu(Q)$

for any integer $k \ge 0$ by definition. Whence,

$$P, R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(P), R^2_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(P), \cdots, R^k_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(P), \cdots, Q, R_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(Q), R^2_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(Q), \cdots, R^k_{\theta_1,\theta_2,\cdots,\theta_{n-1}}(Q), \cdots$$

are respectively non-Euclidean and Euclidean points.

In this case, if there exists an integer k such that $\theta_i | 2k\pi$ for all integers $1 \le i \le n-1$, then the previous sequences is finite. Thus there are both finite and infinite pseudo-Euclidean space (\mathbf{R}^n, μ) in this case. But if there is an integer $i_0, 1 \le i_0 \le n-1$ such that $\theta_{i_0} \not/ 2k\pi$ for any integer k, then there must be either infinite non-Euclidean points or infinite Euclidean points. Thus there are isometries of rotations in a finite non-Euclidean space only if there exists an integer k such that $\theta_i | 2k\pi$ for all integers $1 \le i \le n-1$. Similarly, an isometry of translation exists in this case only if $\theta_1, \theta_2, \dots, \theta_{n-1} \in \{0, \pi/2\}$.

Reflection. By definition, a reflection F in a subspace E' of dimensional n-1 is an involution, i.e., $F^2 = 1_{\mathbf{R}^n}$. Thus if (\mathbf{R}^n, μ) is a pseudo-Euclidean space with an isometry of reflection F in E' and P, $Q \in (\mathbf{R}^n, \mu)$ are respectively a non-Euclidean point and a Euclidean point. Then it is only need that P, F(P) are non-Euclidean points and Q, F(Q) are Euclidean points. Therefore, a reflection F can be exists both in finite and infinite pseudo-Euclidean spaces (\mathbf{R}^n, μ) .

Summing up all these discussions, we get results following for finite or infinite pseudo-Euclidean spaces.

Theorem 3.5 Let (\mathbf{R}^n, μ) be a finite pseudo-Euclidean space. Then there maybe isometries of translations $T_{\overline{e}}$, rotations $R_{\overline{\mu}}$ and reflections on (\mathbf{R}^n, μ) . Furthermore,

(1) If there are both isometries $T_{\overline{e}}$ and $R_{\overline{\theta}}$, where $\overline{e} = (e_1, \dots, e_n)$ and $\overline{\theta} = (\theta_1, \dots, \theta_{n-1})$, then $\theta_1, \theta_2, \dots, \theta_{n-1} \in \{0, \pi/2\}$ and if $\theta_i = \pi/2$ for $1 \le i \le l$, $\theta_i = 0$ if $i \ge l+1$, then $e_1 = e_2 = \dots = e_{l+1}$.

(2) If there is an isometry $R_{\theta_1,\theta_2,\dots,\theta_{n-1}}$, then there must be an integer k such that $\theta_i \mid 2k\pi$ for all integers $1 \leq i \leq n-1$.

(3) There always exist isometries by putting Euclidean and non-Euclidean points $\overline{x} \in \mathbf{R}^n$ with $\mu(\overline{x})$ constant on symmetric positions to E' in (\mathbf{R}^n, μ) .

Theorem 3.6 Let (\mathbf{R}^n, μ) be a infinite pseudo-Euclidean space. Then there maybe isometries of translations $T_{\overline{e}}$, rotations $R_{\overline{\mu}}$ and reflections on (\mathbf{R}^n, μ) . Furthermore,

(1) There are both isometries $T_{\overline{e}}$ and $R_{\overline{\theta}}$ with $\overline{e} = (e_1, e_2, \cdots, e_n)$ and $\overline{\theta} = (\theta_1, \theta_2, \cdots, \theta_{n-1})$, only if $\theta_1, \theta_2, \cdots, \theta_{n-1} \in \{0, \pi/2\}$ and if $\theta_i = \pi/2$ for $1 \le i \le l$, $\theta_i = 0$ if $i \ge l+1$, then $e_1 = e_2 = \cdots = e_{l+1}$.

(2) There exist isometries of rotations and reflections by putting Euclidean and non-Euclidean points in the orbits $\overline{x}^{\langle R_{\overline{\theta}} \rangle}$ and $\overline{y}^{\langle F \rangle}$ with a constant $\mu(\overline{x})$ in (\mathbf{R}^n, μ) .

We determine isometries on (\mathbf{R}^3, μ) with a 3-cube \mathcal{C}^3 shown in Fig.9.4.2. Let $[\overline{a}]$ be an 3×3 orthogonal matrix, $[\overline{a}] \neq I_{3\times 3}$ and let $\mu(x_1, x_2, x_3) = [\overline{a}]$ for $x_1, x_2, x_3 \in \{0, 1\}$, otherwise, $\mu(x_1, x_2, x_3) = I_{3\times 3}$. Then its isometries consist of two types following:

Rotations:

 R_1, R_2, R_3 : these rotations through $\pi/2$ about 3 axes joining centres of opposite faces;

 R_4 , R_5 , R_6 , R_7 , R_8 , R_9 : these rotations through π about 6 axes joining midpoints of opposite edges;

 $R_{10}, R_{11}, R_{12}, R_{13}$: these rotations through about 4 axes joining opposite vertices.

Reflection F: the reflection in the centre fixes each of the grand diagonal, reversing the orientations.

Then Isom $(\mathbf{R}^3, \mu) = \langle R_i, F, 1 \leq i \leq 13 \rangle \simeq S_4 \times Z_2$. But if let $[\overline{b}]$ be another 3×3 orthogonal matrix, $[\overline{b}] \neq [\overline{a}]$ and define $\mu(x_1, x_2, x_3) = [\overline{a}]$ for $x_1 = 0, x_2, x_3 \in \{0, 1\}$, $\mu(x_1, x_2, x_3) = [\overline{b}]$ for $x_1 = 1, x_2, x_3 \in \{0, 1\}$ and $\mu(x_1, x_2, x_3) = I_{3\times 3}$ otherwise. Then only the rotations R, R^2, R^3, R^4 through $\pi/2, \pi, 3\pi/2$ and 2π about the axis joining centres of opposite face

 $\{(0,0,0), (0,0,1), (0,1,0), (0,1,1)\}$ and $\{(1,0,0), (1,0,1), (1,1,0), (1,1,1)\}$,

and reflection F through to the plane passing midpoints of edges

$$(0,0,0) - (0,0,1), (0,1,0) - (0,1,1), (1,0,0) - (1,0,1), (1,1,0) - (1,1,1)$$

or (0,0,0) - (0,1,0), (0,0,1) - (0,1,1), (1,0,0) - (1,1,0), (1,0,1) - (1,1,1)

are isometries on (\mathbf{R}^3, μ) . Thus $\operatorname{Isom}(\mathbf{R}^3, \mu) = \langle R_1, R_2, R_3, R_4, F \rangle \simeq D_8$.

Furthermore, let $[\overline{a}_i]$, $1 \leq i \leq 8$ be orthogonal matrixes distinct two by two and define $\mu(0,0,0) = [\overline{a}_1]$, $\mu(0,0,1) = [\overline{a}_2]$, $\mu(0,1,0) = [\overline{a}_3]$, $\mu(0,1,1) = [\overline{a}_4]$, $\mu(1,0,0) = [\overline{a}_5]$, $\mu(1,0,1) = [\overline{a}_6]$, $\mu(1,1,0) = [\overline{a}_7]$, $\mu(1,1,1) = [\overline{a}_8]$ and $\mu(x_1,x_2,x_3) = I_{3\times 3}$ if $x_1, x_2, x_3 \neq 0$ or 1. Then Isom(\mathbf{R}^3, μ) is nothing but a trivial group.

References

 N.L.Biggs and A.T.White, *Permutation Groups and Combinatoric Structure*, Cambridge University Press, 1979.

- [2] Linfan Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
- [3] Linfan Mao, Smarandache Multi-Space Theory, Hexis, Phoenix, USA, 2006.
- [4] Linfan Mao, Combinatorial Geometry with Applications to Field Theory, InfoQuest, USA, 2009.
- [5] Linfan Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology, Vol.7, No.1(2007),65-114.
- [6] Linfan Mao, Euclidean pseudo-geometry on \mathbb{R}^n , International J.Math. Combin. Vol.1 (2009), 90-95.
- [7] F.Smarandache, Paradoxist mathematics, *Collected Papers*, Vol.II, 5-28, University of Kishinev Press, 1997.
- [8] F.Smarandache, Mixed noneuclidean geometries, arXiv: math/0010119, 10/2000.