bi-Strong Smarandache $B L$-algebras

Mahdieh Abbasloo • Arsham Borumand Saeid

Received: 19 September 2011/ Revised: 29 December 2012/
Accepted: 20 January 2013/
© Springer-Verlag Berlin Heidelberg and Fuzzy Information and Engineering Branch of the Operations Research Society of China
2013

Abstract

In this paper, we introduce the notion of $b i$-Smarandache $B L$-algebra, $b i$-weak Smarandache $B L$-algebra, bi-Q-Smarandache ideal and bi-Q-Smarandache implicative filter, we obtain some related results and construct quotient of bi-Smarandache $B L$-algebras via $M V$-algebras (or briefly $b i$-Smarandache quotient $B L$-algebra) and prove some theorems. Finally, the notion of $b i$-strong Smarandache $B L$-algebra is presented and relationship between $b i$-strong Smarandache $B L$-algebra and $b i$ Smarandache $B L$-algebra are studied.

Keywords bi-Smarandache BL-algebra • bi-weak Smarandache $B L$-algebra $\cdot b i-Q$ Smarandache ideal $\cdot b i$-implicative filter $\cdot n$-Smarandache strong structure

1. Introduction

A Smarandache structure on a set A means a weak structure W on A such that there exists a proper subset B of A which is embedded with a strong structure S. In [9], W. B. Vasantha Kandasamy studied the concept of Smarandache groupoids, subgroupoids, ideal of groupoids and strong Bol groupoids and obtained many interesting results about them. Smarandache semigroups are very important for the study of congruences, and it was studied by R. Padilla [7]. It will be very interesting to study the Smarandache structure in this algebraic structures.

Processing of the certain information, especially inferences based on certain information is based on classical two-valued logic. Due to strict and complete logical foundation (classical logic), making inference levels. thus, it is natural and necessary in an attempt to establish some rational logic system as the logical foundation for uncertain information processing. It is evident that this kind of logic cannot be

[^0]two-valued logic itself but might form a certain extension of two-valued logic. Various kinds of non-classical logic systems have therefore been extensively researched in order to construct natural and efficient inference systems to deal with uncertainty. $B L$-algebra have been invented by P. Hajek [5] in order to provide an algebraic proof of the completeness theorem of "Basic Logic" ($B L$, for short) arising from the continuous triangular norms, familiar in the fuzzy logic framework. The language of propositional Hajek basic logic [5] contains the binary connectives \odot and \rightarrow and the constant $\overline{0}$. Axioms of $B L$ are:
$\left(A_{1}\right)(\phi \rightarrow \chi) \rightarrow((\chi \rightarrow \psi) \rightarrow(\phi \rightarrow \psi)) ;$
$\left(A_{2}\right)(\phi \odot \chi) \rightarrow \phi ;$
$\left(A_{3}\right)(\phi \odot \chi) \rightarrow(\chi \odot \phi)$;
$\left(A_{4}\right)(\phi \odot(\phi \rightarrow \chi)) \rightarrow(\chi \odot(\chi \rightarrow \phi)) ;$
$\left.\left(A_{5 a}\right)(\phi \rightarrow(\chi \rightarrow \psi)) \rightarrow((\phi \odot \chi) \rightarrow \psi)\right) ;$
$\left(A_{5 b}\right)((\phi \odot \chi) \rightarrow \psi) \rightarrow(\phi \rightarrow(\chi \rightarrow \psi)) ;$
$\left(A_{6}\right)((\phi \rightarrow \chi) \rightarrow \psi) \rightarrow(((\chi \rightarrow \phi) \rightarrow \psi) \rightarrow \psi) ;$
$\left(A_{7}\right) \overline{0} \rightarrow \omega$.
$M V$-algebras were originally introduced by Chang in order to give an algebraic counterpart of the Lukasiewicz many valued logic. This structure is directly obtained from Lukasiewicz logic, in the sense that the operations coincide with the basic logical connectives [4]. Lukasiewicz logic is an axiomatic extension of $B L$-logic and consequently, $M V$-algebras are particular class of $B L$-algebras.

It is clear that any $M V$-algebra is a $B L$-algebra. An $M V$-algebras is a weaker structure than $B L$-algebra, thus we can consider in any $B L$-algebra a weaker structure as $M V$-algebra.

The authors introduced the notion of $b i$ - $B L$-algebra, $b i$-filter, $b i$-deductive system and $b i$-Boolean center of a $b i-B L$-algebra. They have also presented classes of $b i-B L-$ algebras and we stated relation between $b i$-filters and quotient $b i$ - $B L$-algebra [1].
A. Borumand Saeid et al introduced the notion of Smarandache $B L$-algebra and dealt with Smarandache ideal structures in Smarandache BL-algebra. They constructed the quotient of Smarandache $B L$-algebra via $M V$-algebras (or briefly Smarandache quotient $B L$-algebras) and proved that this quotient is a $B L$-algebra [2].

In this paper, we introduce the notion of $b i$-Smarandache $B L$-algebra, $b i$-Strong Smarandache $B L$-algebra and investigate relationship between $b i$-Smarandache $B L$ algebra and $b i$-Strong Smarandache $B L$-algebra. We deal with $b i$-Smarandache ideal structures in $b i$-Smarandache $B L$-algebra. We introduce the notions of $b i$-weak Smarandache $B L$-algebra and $b i$-Smarandache (implicative) ideals in $b i$ - $B L$-algebra, we construct the quotient of $b i$-Smarandache $B L$-algebra via $M V$-algebras and we prove that this quotient is a bi-BL-algebra.

2. Preliminaries

Definition 1 [5] A BL-algebra is an algebra $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operations $\wedge, \vee, \odot, \rightarrow$ and two constants 0,1 such that:
(BL1) $(L, \wedge, \vee, \rightarrow, 0,1)$ is a bounded lattice,
(BL2) $(L, \odot, 1)$ is a commutative monoid,
© Springer
(BL3) \odot and \rightarrow form an adjoint pair i.e, $a \odot b \leq c$ if and only if $a \leq b \rightarrow c$,
(BL4) $a \wedge b=a \odot(a \rightarrow b)$,
$(B L 5)(a \rightarrow b) \vee(b \rightarrow a)=1$,
for all $a, b, c \in L$.
A $B L$-algebra L is called an $M V$-algebra if $x^{* *}=x$, for all $x \in L$, where $x^{*}=x \rightarrow$ 0 .

Lemma 1 [5] In each BL-algebra L, the following relations hold, for all $x, y, z \in L$:
(1) $x \odot(x \rightarrow y) \leq y$,
(2) $x \leq(y \rightarrow(x \odot y))$,
(3) $x \leq y$ if and only if $x \rightarrow y=1$,
(4) $x \rightarrow(y \rightarrow z)=y \rightarrow(x \rightarrow z)$,
(5) If $x \leq y$, then $y \rightarrow z \leq x \rightarrow z$ and $z \rightarrow x \leq z \rightarrow y$,
(6) $y \leq(y \rightarrow x) \rightarrow x$,
(7) $y \rightarrow x \leq(z \rightarrow y) \rightarrow(z \rightarrow x)$,
(8) $x \rightarrow y \leq(y \rightarrow z) \rightarrow(x \rightarrow z)$,
(9) $x \vee y=[(x \rightarrow y) \rightarrow y] \wedge[(y \rightarrow x) \rightarrow x]$.

Definition 2 [5] Let L be a BL-algebra. Then subset I of L is called an ideal of L if following conditions hold:
($\left.I_{1}\right) 0 \in I$,
($\left.I_{2}\right) x \in I$ and $\left(x^{*} \rightarrow y^{*}\right)^{*} \in I$ imply $y \in I$ for all $x, y \in L$.
Definition 3 [5] An MV-algebra is an algebra $Q=\left(Q, \oplus,{ }^{*}, 0\right)$ of type ($2,1,0$) satisfying the following equations:

```
\(\left(M V_{1}\right) x \oplus(y \oplus z)=(x \oplus y) \oplus z ;\)
\(\left(M V_{2}\right) x \oplus y=y \oplus x\);
\(\left(M V_{3}\right) x \oplus 0=x ;\)
\(\left(M V_{4}\right) x^{* *}=x\);
\(\left(M V_{5}\right) x \oplus 0^{*}=0^{*}\);
\(\left(M V_{6}\right)\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x\),
for all \(x, y, z \in Q\).
```

From now on, $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra and $Q=\left(Q, \oplus,{ }^{*}, 0\right)$ is an $M V$-algebra unless otherwise specified.

Definition 4 [1] A nonempty set $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ with four binary operations and two constants is said to be a bi-BL-algebra if $L=L_{1} \cup L_{2}$, where L_{1} and L_{2} are proper subsets of L and
i. $\left(L_{1}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a non-trivial BL-algebra,
ii. $\left(L_{2}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a non-trivial BL-algebra.

Definition 5 [1] If L is a bi-BL-algebra and also a BL-algebra, then we say that L is a super BL-algebra.

Definition 6 [1] Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. We say the subset $F=F_{1} \cup F_{2}$ of L is a bi-filter of L if F_{i} is a filter of L_{i}, where $i=1,2$ respectively.

Example 1 Let $L_{1}=\{0, a, b, c, d, 1\}$ and $L_{2}=\{0, d, e, 1\}$. Define \odot and \rightarrow as follow:

For L, whose tables are the following:

Consider $F_{1}=\{a, b, c, 1\}$ and $F_{2}=\{e, 1\}$. Then $F=F_{1} \cup F_{2}=\{a, b, c, e, 1\}$ is a $b i$-filter of L.

Theorem 1 [1] Let $F=F_{1} \cup F_{2}$ be a bi-filter of a bi-BL-algebra $L=L_{1} \cup L_{2}$ such that F_{i} is a filter of L_{i}, where $i=1,2$. Then $\frac{\mathcal{L}}{\mathcal{F}}:=\frac{L_{1}}{F_{1}} \cup \frac{L_{2}}{F_{2}}$ is a bi-BL-algebra, where $\frac{L_{i}}{F_{i}}=\left\{[x]_{F_{i}} \mid x \in L_{i}\right\}$ and $[x]_{F_{i}}=\left\{y \in L_{i} \mid x \rightarrow y \in F_{i}, y \rightarrow x \in F_{i}\right\}$, where $x \in L_{i}$ and $i=1,2$.

Definition 7 [2] A Smarandache BL-algebra is defined to be a BL-algebra L in which there exists a proper subset Q of A such that:
$\left(S_{1}\right) 0,1 \in Q$ and $|Q|>2$,
$\left(S_{2}\right) Q$ is an MV-algebra under the operations of L.

Remark 1 If $|Q|=2$, i.e., $Q=\{0,1\}$, then every BL-algebra is a Smarandache BL-algebra.

In the following, Q is a nontrivial $M V$-algebra under operations in L and also $|Q|>2$.

Definition 8 [2] A nonempty subset I of L is called Smarandache ideal of L related to Q (or briefly Q-Smarandache ideal of A) if it satisfies:
$\left(c_{1}\right)$ If $x \in I, y \in Q$ and $y \leq x$, then $y \in I$.
(c2) If $x, y \in I$, then $x \oplus y \in I$.
Theorem 2 [2] If I is an ideal of L, then I is a Q-Smarandache ideal of L.
Definition 9 [2] A nonempty subset F of L is called Smarandache implicative filter of L relative to Q (or briefly Q-Smarandache implicative filter of L) if it satisfies:
$\left(F_{1}\right) 1 \in F$.
$\left(F_{2}\right)$ If $x \in F, y \in Q$ and $x \rightarrow y \in F$, then $y \in F$.
In the following example, we show that every Q-Smarandache implicative filter of L is not a filter of L.

Example 2 Let $L=\{0, a, b, c, d, 1\}$. Define \odot and \rightarrow as follow:

\odot	$0 a b c d 1$	\rightarrow	$0 a b c d 1$
0	000000	0	111111
a	0 accda	a	$01 b b d 1$
b	$0 c b c d b$	b	0 a 1 ad 1
c	0 cccdc	c	$0111 d 1$
d	$0 d d d 0 d$	d	$d 11111$
1	0 abcd 1	1	$0 a b c d 1$

$(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra. $Q=\{0, d, 1\}$ is the only $M V$-algebra which is properly contained in L, which the following tables:

Therefore L is a Smarandache $B L$-algebra. Consider $F=\{d, 1\}$, then F is a Q Smarandache implicative filter of L, but not a filter of L since $d \leq c$ and $c \notin F$.

Remark 2 [2] Let F be a Q-Smarandache implicative filter of L. Then $F \neq \phi$.
Definition 10 [2] A Q-Smarandache ideal M of L is called maximal Q-Smarandache ideal if only if the following conditions hold:
$\left(M_{1}\right) M$ is a proper Q-Smarandache ideal.
$\left(M_{2}\right)$ For every Q-Smarandache ideal I such that $M \subseteq I$, we have either $M=I$ or $I=L$.

Theorem 3 [2] The relation \sim_{Q} on a Smarandache BL-algebra L which is defined by

$$
x \sim_{Q} y \Leftrightarrow(x \rightarrow y \in Q, y \rightarrow x \in Q)
$$

is a congruence relation.
Definition 11 [2] Let L be a BL-algebra and Q be an $M V$-algebra. Then $\frac{L}{Q}=$ $\{[x] \mid x \in L\}$ and $[x]=\left\{y \in L \mid x \sim_{Q} y\right\}$ are quotient algebra via the congruence relation \sim_{Q} (or briefly Smarandache quotient BL-algebra).

We defined on $\frac{L}{Q}$:

$$
\begin{aligned}
& {[x] \oplus[y]=[x \oplus y], \quad[x]^{*}=\left[x^{*}\right], \quad[x] \rightarrow[y]=[x \rightarrow y], \quad[x] \odot[y]=[x \odot y],} \\
& {[x] \wedge[y]=[x \wedge y], \quad[x] \vee[y]=[x \vee y], \quad[0]=\frac{0}{Q}, \quad[1]=\frac{1}{Q} .}
\end{aligned}
$$

For convenience, let $x * y=x \odot y^{*}$.
Definition 12 [2] A Q-Smarandache ideal I of L is called a Smarandache implicative ideal of L related to Q (or briefly Q-Smarandache implicative ideal of L), if it satisfies: if $(x * y) * z \in I$ and $y * z \in I$ imply $x * z \in I$ for all $x, y, z \in Q$.

3. $b i$-Smarandache $B L$-algebra

Definition 13 A bi-smarandache BL-algebra $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a nonempty set with four binary operations $\wedge, \vee, \odot, \rightarrow$ and two constants 0,1 such that $L=L_{1} \cup$ L_{2}, where L_{1} and L_{2} are proper subset of L and
i. $\left(L_{1}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a Smarandache BL-algebra,
ii. $\left(L_{2}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ is a Smarandache BL-algebra.

Example 3 Let $L_{1}=\{0, a, b, c, d, n\}$ and $L_{2}=\{n, e, f, 1\}$. With the following tables:

For L, whose tables are the following:

	$0 a b c d n e f 1$	\rightarrow	
0	00000000	0	11
a	$0 a 0 a 0 a$	a	$d 1 d 1 d 1111$
b	$0000 b b b b b$	b	cc c 1111111
L	$0 a 0 a b c$	c	$b c d 1 d 1111$
d	$00 b b d$	d	a acc11111
n	$0 a b c d n n n n$	n	$0 a b c d 1111$
e	$0 a b c d n n e e$	e	0 abcde 111
	0 abcdneff	f	$0 a b c d n e 11$
1	0 abcdne f 1	1	0 abcdne f 1

$(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a bi-BL-algebra. $Q_{1}=\{0, a, d, n\}$ and $Q_{2}=\{n, e, 1\}$ are $M V-$ algebras which are properly contained in L_{1} and L_{2}, respectively, with the following tables:

Then L_{1} and L_{2} are Smarandache $B L$-algebras. Therefore L is a $b i$-smarandache $B L$ algebra.

Example 4 Consider bi-BL-algebra $\mathcal{D}_{2 \times 2,2}$, with the support set $D_{2 \times 2,2}=L_{2 \times 2} \cup L_{2}=$
$\{0, a, b, c\} \cup\{c, 1\}=\{0, a, b, c, 1\}$ and the following tables:

$$
\begin{aligned}
& \mathcal{L}_{2} \begin{array}{l|l|l}
\odot & c & c 1 \\
\hline & c & c \\
\hline & c & 1
\end{array} \\
& \begin{array}{l|l}
\rightarrow & c 1 \\
\hline c & 1 \\
1 & 1 \\
1 & c
\end{array}
\end{aligned}
$$

$Q_{1}=\{0, c\}$ and $Q_{2}=\{c, 1\}$ are the only $M V$-algebras which are properly contained in $\mathcal{L}_{2 \times 2}$ and \mathcal{L}_{2}, respectively, with the following tables:

$$
Q_{1} \begin{array}{l|l|l}
\oplus & 0 c \\
\hline & 0 & 0 c \\
& c & c c
\end{array}
$$

$$
\begin{array}{c|c}
* & 0 c \\
\hline & c 0
\end{array}
$$

$$
Q_{2} \begin{array}{c|c|c}
\oplus & c & c \\
\hline & c & c \\
\hline & 1 & 1 \\
& 1 & 1
\end{array}
$$

Therefore $\mathcal{L}_{2 \times 2}$ and \mathcal{L}_{2} are not Smarandache $B L$-algebras. Thus $\mathcal{D}_{2 \times 2,2}$ is not a bismarandache $B L$-algebra.

In the following example, we show that every Smarandache $B L$-algebra is not a bi-Smarandache $B L$-algebra.
Example 5 Let $L_{1}=\{0, a, c, 1\}$ and $L_{2}=\{0, b, c, d, 1\}$. With the following tables:

\rightarrow	0	a	c	1
0	1	1	1	1
a	0	1	c	1
c	0	1	1	1
1	0	a	c	1

\odot	$0 b c d 1$	\rightarrow	$0 b c d 1$
0	00000	0	11111
$L_{2} b$	$0 b c d b$	b	$01 c d 1$
c	$0 c c d c$	c	$011 d 1$
d	0 dd 0 d	d	d 1111
1	$0 b c d 1$	1	$0 b c d 1$

For L, whose tables are the following:

\odot	$0 a b c d 1$	\rightarrow	$0 a b c d 1$
0	000000	0	111111
a	$0 a c c d a$	a	$01 b b d 1$
$L b$	$0 c b c d b$	b	0 a 1 ad 1
c	$0 c c c d c$	c	$0111 d 1$
d	$0 d d d 0 d$	d	$d 11111$
1	$0 a b c d 1$	1	$0 a b c d 1$

L is $B L$-algebra such that L is super $B L$-algebra. $Q_{1}=\{0,1\}$ and $Q_{2}=\{0, d, 1\}$ are the only $M V$-algebras which are properly contained in L_{1} and L_{2}, respectively. Therefore L is not a $b i$-Smarandache $B L$-algebra, but $Q=\{0, d, 1\}$ is the only $M V$-algebras which are properly contained in L, which the following tables:

Therefore L is a Smarandache $B L$-algebras.
Definition 14 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. If only one of L_{1} or L_{2} is a Smarandache BL-algebra, then we call L a bi-weak smarandache BL-algebra.

Example 6 In Example 5, L_{2} is a Smarandache $B L$-algebra and L_{1} is not a Smarandache $B L$-algebra. Thus $L=L_{1} \cup L_{2}$ is a $b i$-weak Smarandache $B L$-algebra.

Theorem 4 All bi-Smarandache BL-algebras are bi-weak Smarandache BL-algebras and not conversely.

Example $7 \mathcal{H}_{2,2 \times 2}=\mathcal{L}_{2} \cup \mathcal{L}_{2 \times 2}$ is a super BL-algebra. \mathcal{L}_{2} and $\mathcal{L}_{2 \times 2}$ are not Smarandache $B L$-algebras, thus $\mathcal{H}_{2,2 \times 2}$ is not a $b i$-weak Smarandache $B L$-algebra.

Example 8 In Example 3, L is a bi-weak Smarandache $B L$-algebra (by Theorem 4), but L is not a super $B L$-algebra.

Theorem 5 Let $L=L_{1} \cup L_{2}$ be a super BL-algebra and bi-Smarandache BL-algebra. Then L is a Smarandache BL-algebra.

Proof Let $L=\left(L_{1} \cup L_{2}, \wedge, \vee, \odot, \rightarrow, 0,1\right)$ be a super $B L$-algebra and bi-Smarandache $B L$-algebra. Then there exist $M V$-algebras Q_{1} and Q_{2} of L_{1} and L_{2}, respectively, and we have $0 \in Q_{1}$ or $0 \in Q_{2}$. Let $0 \in Q_{1}$. Now we consider the following cases:

1) If $1 \in Q_{1}$, then Q_{1} is an $M V$-algebra which is contained in L. Thus L is a Smarandache $B L$-algebra.
2) If $1 \notin Q_{1}$, since Q_{1} is an $M V$-algebra of L_{1}, thus we have the greatest element $g \in L_{1}$ such that $0^{*}=g$ and $g^{*}=0$. Consider $Q=\left(Q_{1}-\{g\}\right) \cup\{1\}$. Now we verify that $\left(Q, \oplus,{ }^{*}, 0\right)$ is an $M V$-algebra.
Let $x, y \in Q$. Then we have the following cases:
3) Let $x, y \in Q_{1}-\{g\}$ and $x, y \neq 1$. Then $x \oplus y \in Q_{1}$. If $x \oplus y \neq g$, then $x \oplus y \in Q$, now if $x \oplus y=g$, then we replace g with 1 . Thus $x \oplus y=1 \in Q$.
4) Let $x \in Q_{1}-\{g\}$ and $y=1$. Then $x \oplus y=x \oplus 1=1 \in Q$.
5) Let $x, y=1$. Then $x \oplus y=1 \oplus 1=1 \in Q$.

Thus Q is close respect to \oplus. And since Q_{1} is an $M V$-algebra, thus for any $x \in$ $Q_{1}-\{0\}$, we have $x^{* *}=x$ and consider $0^{*}=1$ and $1^{*}=0$. Therefore Q is close respect to *.

Now we verify that Q satisfy in definition of $M V$-algebra.
Let $x, y, z \in Q=\left(Q_{1}-\{g\}\right) \cup\{1\}$. Then we have the following cases:

1) Let $x, y, z \in Q=\left(Q_{1}-\{g\}\right)-\{1\}$. Since Q_{1} is an $M V$-algebra, thus x, y, z satisfy in definition of $M V$-algebra (i.e., conditions $\left(\left(M V_{1}\right)\right.$ to $\left.\left(M V_{6}\right)\right)$.
2) Let $x, y, z=1$. It is clear that x, y, z satisfy in definition of $M V$-algebra.
3) Let $x=1$ and $y, z \in\left(Q_{1}-\{g\}\right)-\{1\}$. In this case, we consider two cases:
(a) If $y \oplus z=g$, then we replace g with 1, i.e., $y \oplus z=1$ and
(b) If $y \oplus z \neq g$, thus $y \oplus z \in Q_{1}-\{g\} \subseteq Q$.

Now we verify conditions $\left(M V_{1}\right)$ to $\left(M V_{6}\right)$.
$\left(M V_{1}\right)$ In Case (a), $x \oplus(y \oplus z)=1 \oplus 1=1$ and $(x \oplus y) \oplus z=(1 \oplus y) \oplus z=1 \oplus z=1$. In Case (b), $1 \oplus(y \oplus z)=(1 \oplus y) \oplus z=1$. Thus $x \oplus(y \oplus z)=(x \oplus y) \oplus z$.
$\left(M V_{2}\right) x \oplus y=1 \oplus y=1=y \oplus 1=y \oplus x$.
$\left(M V_{3}\right) x \oplus 0=1 \oplus 0=1=x$.
$\left(M V_{4}\right) x^{* *}=1^{* *}=0^{*}=1=x$.
$\left(M V_{5}\right) x \oplus 0^{*}=1 \oplus 1=1=x$.
$\left(M V_{6}\right)\left(x^{*} \oplus y\right)^{*} \oplus y=\left(1^{*} \oplus y\right)^{*} \oplus y=y^{*} \oplus y=1$, since $y \in Q_{1}-\{g\}$ and Q_{1} is an $M V-$ algebra, and $\left(y^{*} \oplus x\right)^{*} \oplus x=y \oplus 1=1$. Thus $\left(x^{*} \oplus y\right)^{*} \oplus y=\left(y^{*} \oplus x\right)^{*} \oplus x$.
4) Let $y=1$ and $x, z \in\left(Q_{1}-\{g\}\right)-\{1\}$. In this case, we consider two cases:
(a) If $x \oplus z=g$, then we replace g with 1, i.e., $x \oplus z=1$ and
(b) If $x \oplus z \neq g$, thus $x \oplus z \in Q_{1}-\{g\} \subseteq Q$. This case is similar to Case 3).
5) Let $z=1$ and $x, y \in\left(Q_{1}-\{g\}\right)-\{1\}$. In this case, we consider two cases:
(a) If $x \oplus y=g$, then we replace g with 1, i.e., $x \oplus y=1$ and
(b) If $x \oplus y \neq g$, thus $x \oplus y \in Q_{1}-\{g\} \subseteq Q$. This case is similar to Case 3).
6) Let $x, y=1$ and $z \in\left(Q_{1}-\{g\}\right)-\{1\}$. It is clear that x, y, z satisfy in definition of $M V$-algebra.
7) Let $x, z=1$ and $y \in\left(Q_{1}-\{g\}\right)-\{1\}$. It is clear that x, y, z satisfy in definition of $M V$-algebra.
8) Let $y, z=1$ and $x \in\left(Q_{1}-\{g\}\right)-\{1\}$. It is clear that x, y, z satisfy in definition of $M V$-algebra.
Therefore $\left(Q, \oplus,{ }^{*}, 0\right)$ is an $M V$-algebra which is properly contained in L. Thus L is a Smarandache $B L$-algebra.

Example 9 Let $L_{1}=\{0, e, f, g\}$ and $L_{2}=\{g, a, b, c, d, 1\}$. With the following tables:

$$
\begin{array}{c|c}
\rightarrow & 0 e f g \\
\hline 0 & g g g g \\
e & e g g g \\
f & 0 e g g \\
g & 0 e f g
\end{array}
$$

$\left.\begin{array}{c|llllll}\rightarrow & g & a & b & c & d & 1 \\ \hline g & 1 & 1 & 1 & 1 & 1 & 1\end{array}\right]$

For $L=L_{1} \cup L_{2}$, whose tables are the following:

Then L is super $B L$-algebra. $Q_{1}=\{0, e, g\}$ and $Q_{2}=\{g, a, d, 1\}$ are $M V$-algebras
which are properly contained in L_{1} and L_{2}, respectively, with the following tables:

Therefore L_{1} and L_{2} are Smarandache $B L$-algebras. Thus L is a $b i$-Smarandache $B L$ algebra. Also $\mathscr{Q}=\{0, e, 1\}$ is the only $M V$-algebra which is properly contained in L, with the following tables:

Therefore L is a Smarandache $B L$-algebra.
From now on, $\left(Q_{i}, \oplus,{ }^{*}, 0\right)$ is an $M V$-algebra unless otherwise specified.
Definition 15 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. A nonempty subset I of L is called bi-Smarandache ideal of L related to Q (or briefly bi- Q-Smarandache ideal of L), where $Q=Q_{1} \cup Q_{2}$ if $I=I_{1} \cup I_{2}$ such that I_{1} and I_{2} are Q_{1}-Smarandache ideal of L_{1} and Q_{2}-Smarandache ideal of L_{2}, respectively.

Example 10 In Example 3, we consider $I_{1}=\{0, a\}$ and $I_{2}=\{n, e, 1\}$. I_{1} is a Q_{1-} Smarandache ideal of L_{1} and I_{2} is a Q_{2}-Smarandache ideal of L_{2}. Thus $I=I_{1} \cup I_{2}=$ $\{0, a, n, e, 1\}$ is a bi-Q-Smarandache ideal of L, where $Q=Q_{1} \cup Q_{2}=\{0, a, d, n, e, 1\}$.

Theorem 6 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra and $I=I_{1} \cup I_{2}$ be a bi-ideal of L. Then I is a bi-Q-Smarandache ideal of L.

Proof Let $I=I_{1} \cup I_{2}$ be a bi-ideal of $L=L_{1} \cup L_{2}$. Then I_{1} is an ideal of L_{1} and I_{2} is an ideal of L_{2}, hence by Theorem 2, I_{1} is a Q_{1}-Smarandache ideal of L_{1} and I_{2} is a Q_{2}-Smarandache ideal of L_{2}. Thus $I=I_{1} \cup I_{2}$ is a bi-Q-Smarandache ideal of L, where $Q=Q_{1} \cup Q_{2}$.

In the following example, we show that the converse of Theorem 6 is not true.
Example 11 In Example 3, consider $I_{1}=\{0, a, d, n\}$. It is clear that I_{1} is a Q_{1-} Smarandache ideal but not an ideal of L_{1}. Since $d \in I_{1},\left(d^{*} \rightarrow b^{*}\right)^{*}=n^{*}=0 \in I_{1}$
but $b \notin I_{1}$ and $I_{2}=\{n, e, 1\}$ is a Q_{2}-Smarandache ideal but not an ideal of L_{2}. Since $n \in I_{2},\left(n^{*} \rightarrow f^{*}\right)^{*}=n^{*}=1 \in I_{2}$ but $f \notin I_{2}$. Thus $I=I_{1} \cup I_{2}=\{0, a, d, n, e, 1\}$ is not a bi-ideal of L.

Definition 16 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. A bi-Q-Smarandache ideal $I=I_{1} \cup I_{2}$ of $L=L_{1} \cup L_{2}$ is called a bi-Smarandache implicative ideal of L related to $Q=Q_{1} \cup Q_{2}$ (or briefly bi- Q-Smarandache implicative ideal of L) if I_{1} and I_{2} are Q_{1}-Smarandache implicative ideal of L_{1} and Q_{2}-Smarandache implicative ideal of L_{2}, respectively.

Example 12 In Example 3, $I_{1}=\{0, a\}$ is a Q_{1}-Smarandache implicative ideal of L_{1} and $I_{2}=\{n, e, 1\}$ is a Q_{2}-Smarandache implicative ideal of L_{2}. Thus $I=I_{1} \cup I_{2}=$ $\{0, a, n, e, 1\}$ is a $b i-Q$-Smarandache implicative ideal of L, where $Q=Q_{1} \cup Q_{2}=$ $\{0, a, d, n, e, 1\}$.

Example 13 Let $L_{1}=\{0, a, b, c, d, e, f, g, n\}$ and $L_{2}=\{n, h, i, 1\}$. With the following tables:

	$0 a b c d e f g n$		$0 a b c d e f g n$
0	00000000	0	nnnnnnnn
	00a00a00a	a	gnngnngnn
b	$0 a b 0 a b 0 a b$	b	$f g n f g n f g n$
L_{1}	$000000 c c$	c	eeennnnnn
	$a 00 a c$	d	deegnngnn
	$0 a b 0 a b c d e$	e	cdefgnfgn
	$000 c c c f f f$	f	bbbeeennn
	$00 a c c d f f g$	g	$a b b d e e g n n$
	$0 a b c d e f g n$	n	$0 a b c d e f g n$

	nhi 1
n	nnnn
$L_{2} h$	nnhh
i	nhi i
1	$n h i 1$

$$
\begin{array}{c|ccc}
\rightarrow & n h i & 1 \\
\hline n & 1 & 1 & 1
\end{array} 1
$$

For $L=L_{1} \cup L_{2}$, whose tables are the following:

	$0 \mathrm{abcdefgnhi1}$		$0 \mathrm{abcdefgnhi1}$
0	00000000000	0	11111111111
a	$00 a 00 a 00 a a a a$	a	$g 11 \mathrm{~g} 11 \mathrm{~g} 11111$
b	$0 a b 0 a b 0 a b b b b$	b	$f \mathrm{~g} 1 \mathrm{fg} 1 \mathrm{fg} 1111$
	$000000 c c c c c c$	c	eee 111111111
	$00 a 00 a c c d d d d$	d	deeg11g11111
	$0 a b 0 a b c d e e e e$	e	cdefg1fg1111
	$000 c c c f f f f f f$	f	bbbe ee 111111
g	$00 a c c d f f g g \mathrm{~g}$	g	abbdeeg 11111
	$0 a b c d e f g n n n n$	n	0 abcdefg 1111
h	$0 \mathrm{abcdef} \mathrm{g} n \mathrm{nh} h$	h	0 abc defgh111
	0 abcdefgnhii	n	$0 a b c d e f g n h 11$
	$0 a b c d e f g n h i 1$	1	$0 \mathrm{abcdefgnhi1}$

Then $(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $b i-B L$-algebra. $Q_{1}=\{0, b, f, c, e, n\}$ and $Q_{2}=\{n, h, 1\}$ are $M V$-algebras which are properly contained in L_{1} and L_{2}, respectively, with the following tables:

Therefore L is a $b i$-Smarandache $B L$-algebra. Then $I_{1}=\{0, b\}$ is Q_{1}-Smarandache ideal of L_{1}, but not a Q_{1}-Smarandache implicative ideal of L_{1}. Since $(f * c) * e=$ $(f \odot e) \odot c=0 \in I_{1}$ and $c * e=c \odot c=0 \in I_{1}$, but $f * e=f \odot c=c \notin I_{1} . I_{2}=\{n, h, 1\}$ is a Q_{2}-Smarandache implicative ideal of L_{2}. Thus $I=I_{1} \cup I_{2}$ is a bi-Q-Smarandache ideal of $L=L_{1} \cup L_{2}$, but not a bi- Q-Smarandache implicative ideal of L.

Definition 17 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. A nonempty subset F of L is called bi-Smarandache implicative filter of L related to Q, where $Q=Q_{1} \cup Q_{2}$ (or
briefly bi-Q-Smarandache implicative filter of L), if $F=F_{1} \cup F_{2}$ such that F_{1} and F_{2} are Q_{1}-Smarandache implicative filters of L_{1} and Q_{2}-Smarandache implicative filter of L_{2}, respectively.

Example 14 In Example 3, $F_{1}=\{d, n\}$ is a Q_{1}-Smarandache implicative filter of L_{1} and $F_{2}=\{f, 1\}$ is a Q_{2}-Smarandache implicative filter of L_{2}. Thus $F=F_{1} \cup F_{2}=$ $\{d, n, f, 1\}$ is a $b i$ - Q-Smarandache implicative filter of L, where $Q=Q_{1} \cup Q_{2}$.

Remark 3 Let F be a bi-Q-Smarandache implicative filter of L. Then $F \neq \phi$ and F is not a bi-Smarandache BL-algebra since $0 \notin F$.

Proposition 1 Each filter of a BL-algebra is a Q-Smarandache implicative filter and not conversely.

Proof Let F be a filter of a $B L$-algebra L. Then $1 \in F$. Now let $x \in F, y \in Q$ and $x \rightarrow y \in F$. Since $Q \subseteq L$, then $y \in L$, thus $y \in F$. Therefore F is a Q-Smarandache implicative filter.

Consider $B L$-algebra $\mathcal{L}_{3 \times 2}$, with the following tables:
$Q=\{0, a, d, 1\}$ is an $M V$-algebra which is properly contained in $\mathcal{L}_{3 \times 2}$, with the following tables:

Therefore $\mathcal{L}_{3 \times 2}$ is Smarandache $B L$-algebra. Then $F=\{a, 1\}$ is a Q-Smarandache implicative filter of $\mathcal{L}_{3 \times 2}$, but not a filter of $\mathcal{L}_{3 \times 2}$, since $a \leq c$ and $a \in F$, but $c \notin F$.

Proposition 2 Each bi-filter of a bi-BL-algebra is a bi-Q-Smarandache implicativefilter and not conversely.

Definition 18 Let $L=L_{1} \cup L_{2}$ be a bi-Smarandache BL-algebra. A bi-Q-Smarandache ideal $M=M_{1} \cup M_{2}$ of L is called bi-maximal-Q-Smarandache ideal, where $Q=Q_{1} \cup Q_{2}$ if only if the following conditions hold:
$\left(M_{1}\right) M_{i}$ is a proper Q_{i}-Smarandache ideal.
$\left(M_{2}\right)$ For every Q_{i}-Smarandache ideal I_{i} such that $M_{i} \subseteq I_{i}$, we have either $M_{i}=I_{i}$ or $I_{i}=L_{i}$,
where $i=1,2$.
Example 15 In Example 3, $I_{1}=\{0, a, c, d, n\}$ is maximal Q_{1}-Smarandache ideal of L_{1} and $I_{2}=\{n, e, 1\}$ is maximal Q_{2}-Smarandache ideal of L_{2}. Thus $I=I_{1} \cup I_{2}=$ $\{0, a, c, d, n, e, 1\}$ is a $b i$-maximal- Q-Smarandache ideal of L, where $Q=Q_{1} \cup Q_{2}$.

Definition 19 Let $L=L_{1} \cup L_{2}$ be a bi-Smarandache BL-algebra. Then there exist MV-algebras Q_{1} and Q_{2} which are properly contained in L_{1} and L_{2}, respectively. Then $\frac{L_{i}}{Q_{i}}=\left\{[x]_{Q_{i}} \mid x \in L_{i}\right\}$ and $[x]_{Q_{i}}=\left\{y \in L_{i} \mid x \sim_{Q_{i}} y\right\}=\left\{y \in L_{i} \mid x \rightarrow y \in Q_{i}, y \rightarrow x \in\right.$ $\left.Q_{i}\right\}$ are quotient algebras via the congruence relations $\sim_{Q_{i}}$, where $i=1,2$ (or briefly bi-Smarandache quotient BL-algebra).

We defined on $\frac{L_{i}}{Q_{i}}$:
$[x]_{Q_{i}} \oplus[y]_{Q_{i}}=[x \oplus y]_{Q_{i}},[x]_{Q_{i}}^{*}=\left[x^{*}\right]_{Q_{i}},[x]_{Q_{i}} \rightarrow[y]_{Q_{i}}=[x \rightarrow y]_{Q_{i}}$,
$[x]_{Q_{i}} \odot[y]_{Q_{i}}=[x \odot y]_{Q_{i}},[x]_{Q_{i}} \wedge[y]_{Q_{i}}=[x \wedge y]_{Q_{i}},[x]_{Q_{i}} \vee[y]_{Q_{i}}=[x \vee y]_{Q_{i}}$,
$[0]_{Q_{i}}=\frac{0}{Q_{i}},[1]_{Q_{i}}=\frac{1}{Q_{i}}$, where $i=1,2$.
Then $\frac{\mathcal{L}}{Q}:=\frac{L_{1}}{Q_{1}} \cup \frac{L_{2}}{Q_{2}}$.
Example 16 In Example 3, consider $L_{1}=\{0, a, b, c, d, n\}, L_{2}=\{n, e, f, 1\}, Q_{1}=$ $\{0, a, d, n\}$ and $Q_{2}=\{n, e, 1\}$, then $\frac{L_{1}}{Q_{1}}=\left\{[0]_{Q_{1}},[a]_{Q_{1}},[b]_{Q_{1}},[c]_{Q_{1}},[d]_{Q_{1}},[n]_{Q_{1}}\right\}$ and $\frac{L_{2}}{Q_{2}}=\left\{[n]_{Q_{2}},[e]_{Q_{2}},[f]_{Q_{2}},[1]_{Q_{2}}\right\}$ such that $[0]_{Q_{1}}=[a]_{Q_{1}}=[d]_{Q_{1}}=[n]_{Q_{1}}=\{0, a, d, n\}$ and $[b]_{Q_{1}}=[c]_{Q_{1}}=\{b, c\}$ and $[n]_{Q_{2}}=[e]_{Q_{2}}=[f]_{Q_{2}}=[1]_{Q_{2}}=\{n, e, f, 1\}$.

Thus $\frac{\mathcal{L}}{Q}=\left\{[0]_{Q_{1}},[b]_{Q_{1}},[1]_{Q_{2}}\right\}$.
Example 17 In Example 9, consider $L_{1}=\{0, e, f, g\}, L_{2}=\{g, a, b, c, d, 1\}, Q_{1}=$ $\{0, e, g\}$ and $Q_{2}=\{g, a, d, 1\}$, then in $\frac{L_{1}}{Q_{1}}$, we have $[0]_{Q_{1}}=[e]_{Q_{1}}=[f]_{Q_{1}}=[g]_{Q_{1}}$, thus $\frac{L_{1}}{Q_{1}}=\left\{[0]_{Q_{1}}\right\}$ and in $\frac{L_{2}}{Q_{2}}$, we have $[g]_{Q_{2}}=[a]_{Q_{2}}=[b]_{Q_{2}}=[c]_{Q_{2}}=[d]_{Q_{2}}=[1]_{Q_{2}}$, thus $\frac{L_{2}}{Q_{2}}=\left\{[g]_{Q_{2}}\right\}$. Therefore $\frac{\mathcal{L}}{Q}=\left\{[0]_{Q_{1}},[g]_{Q_{2}}\right\}$.

But in $\frac{L}{Q}$, we have $[0]_{\varrho}=[e]_{\varrho}=[g]_{\varrho}=[a]_{\varrho}=[b]_{\varrho}=[c]_{\varrho}=[d]_{\varrho}=[1]_{\varrho}$, then $\frac{L}{\hat{Q}}=\left\{[0]_{\hat{Q}}\right\}$. Thus $\frac{\mathcal{L}}{Q} \neq \frac{L}{Q}$.

4. $b i$-Strong Smarandache $B L$-algebra

Definition 20 Let $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ be a BL-algebra. If there exists a chain of proper subsets

$$
P_{n-1}<P_{n-2}<\cdots<P_{2}<P_{1}<L,
$$

where " < " means"included in" whose corresponding structure verify the inverse chain

$$
W_{n-1}>W_{n-2}>\cdots>W_{2}>W_{1}>L,
$$

where " > " signifies strictly strong (i.e., structure satisfying more axioms). Then we call $L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ a strong Smarandache BL-algebra of rank n.

Remark 4 In above definition, W_{2} can be a Boolean algebra and W_{1} can be an MValgebra.

Example 18 Let $L=\{0, a, b, c, d, 1\}$. With the following tables:

	$0 a b c d 1$		0 abc d 1
0	00000	0	111111
a	$0 b b d 0 a$	a	$d 1 a c c 1$
b	$0 b b 00 b$	b	c 11 cc 1
c	$0 d 0 c d c$	c	$b a b 1 a 1$
d	$000 d 0 d$	d	$a 1 a 111$
	$0 a b c d 1$	1	$g a b c d 1$

$L=(L, \wedge, \vee, \odot, \rightarrow, 0,1)$ is a $B L$-algebra. $A=\{0, b, c, 1\}$ is an $M V$-algebra, $B=$ $\{0, b, 1\}$ is a Boolean algebra and $B \subset A \subset L$. Thus L is a strong Smarandache $B L$-algebra of rank 3 .

Proposition 3 Every strong Smarandache BL-algebra of rank n such that $n \geq 2$, is a Smarandache BL-algebra.

Corollary 1 Every strong Smarandache BL-algebra of rank 2 is a Smarandache BLalgebra.

The following example shows that the converse of Corollary 1 is not true.
Example 19 In Example 18, $A=\{0, b, c, 1\}$ is an $M V$-algebra which is properly contained in L. Thus L is a Smarandache $B L$-algebra, but L is not a strong Smarandache $B L$-algebra of rank 2.

Definition 21 Let $L=L_{1} \cup L_{2}$ be a bi-BL-algebra. If L_{1} is a strong Smarandache $B L$-algebra of rank n_{1} and L_{2} is a strong Smarandache BL-algebra of rank n_{2}, then we call $L=L_{1} \cup L_{2}$ a bi-strong Smarandache BL-algebra of rank n_{1}, n_{2}.

If only one of L_{1} or L_{2} is a strong Smarandache BL-algebra of rank n_{1} or n_{2}, respectively, then $L=L_{1} \cup L_{2}$ is a bi-weak Smarandache BL-algebra.

Example 20 In Example 3, L_{1} is a strong Smarandache $B L$-algebra of rank 3. Since $Q_{1}=\{0, a, d, 1\}$ is an $M V$-algebra, $B_{1}=\{0, d, 1\}$ is a Boolean algebra and $B_{1} \subset Q_{1} \subset$ L_{1}.
L_{2} is a strong Smarandache $B L$-algebra of rank 2. Since $Q_{2}=\{n, e, 1\}$ is an $M V$ algebra and $Q_{1} \subset L_{2}$. Thus $L=L_{1} \cup L_{2}$ is a bi-weak Smarandache $B L$-algebra of rank 3, 2 .

Proposition 4 Every bi-strong Smarandache BL-algebra of rank n_{1}, n_{2} such that $n_{1}, n_{2} \geq 2$, is a bi-Smarandache BL-algebra.

Corollary 2 Every bi-strong Smarandache BL-algebra of rank 2,2, is a bi-Smarandache BL-algebra.

The following example shows that the converse of Corollary 2 is not true.
Example 21 In Example 3, L is a $b i$-Smarandache $B L$-algebra, but L is a $b i$-strong Smarandache $B L$-algebra of rank 3,2 .

Now we consider case that $L=L_{1} \cup L_{2}$ is a super $B L$-algebra.
Example 22 In Example 9, L_{1} is a strong Smarandache $B L$-algebra of rank 2, since $Q_{1}=\{0, e, g\}$ is an $M V$-algebra and $Q_{1} \subset L_{1}$ and L_{2} is a strong Smarandache $B L$ algebra of rank 3, since $Q_{2}=\{g, a, d, 1\}$ is an $M V$-algebra and $B=\{g, d, 1\}$ is a Boolean algebra and $B \subset Q_{2} \subset L_{2}$.

Thus $L=L_{1} \cup L_{2}$ is a bi-strong Smarandache $B L$-algebra of rank 2,3. But in $B L$ algebra L, we have $Q=\{0, e, 1\}$ is the only $M V$-algebra which is properly contained in L and $Q \subset L$. Therefore L is a strong Smarandache $B L$-algebra of rank 2 (or Smarandache $B L$-algebra).

We show that in a strong Smarandache $B L$-algebra, and rank is not unique.
Example 23 Let $L=\{0, a, b, c, d, e, f, g, 1\}$. Then L is a $B L$-algebra with the following tables:

\odot	$0 a b c d e f g 1$	\rightarrow	0 abcdefg 1
0	00000000	0	111111111
a	00a00a00a	a	$g 11 \mathrm{~g} 11 \mathrm{~g} 11$
b	$0 a b 0 a b 0 a b$	b	$f \mathrm{~g} 1 \mathrm{fg} 1 \mathrm{fg} 1$
L^{c}	$000000 c c c$	c	eee 111111
d	$00 a 00 a c c d$	d	deeg11g11
e	$0 \mathrm{ab0abcde}$	e	cdefg 1 fg 1
f	$000 c c c f f f$	f	b bbeee111
g	$00 a c c d f f g$	g	abbdeeg 11
1	0 abcdefg 1	1	$0 a b c d e f g 1$

$Q_{1}=\{0, d, 1\}$ is an $M V$-algebras which is properly contained in L, i.e., $Q_{1} \subset L$. Then L is a strong Smarandache $B L$-algebra of rank 2.

Now we consider $M V$-algebra $Q_{2}=\{0, b, f, c, e, 1\}$ which is properly contained in L. $B_{2}=\{0, b, f, 1\}$ is a Boolean algebra which is properly contained in Q_{2}. Thus $B_{2} \subset Q_{2} \subset L$. Then L is a strong Smarandache $B L$-algebra of rank 3 .

Theorem 7 All bi-strong Smarandache BL-algebras of rank n_{1}, n_{2} are bi-weak Smarandache BL-algebras and not conversely.
proof By Proposition 4 and Theorem 4.

5. Conclusion

Smarandache structure occurs as a weak structure in any structure.
In the present paper, by using this notion, we have introduced the concept of biSmarandache $B L$-algebras and investigated some of their useful properties. We have
also presented definition of strong Smarandache $B L$-algebra and bi-strong Smarandache $B L$-algebra and investigated relationship between strong Smarandache $B L$ algebras with Smarandache $B L$-algebras and relationship between bi-strong Smarandache $B L$-algebras with $b i$-Smarandache $B L$-algebras and introduced the notion of $b i$-weak Smarandache $B L$-algebras and investigated relationship between $b i$-weak Smarandache $B L$-algebras with $b i$-Smarandache $B L$-algebras and bi-strong Smarandache $B L$-algebras.

In our future study of bi-Smarandache $B L$-algebras, maybe the following topics should be considered:
(1) To get more results in $b i$-Smarandache $B L$-algebras and application;
(2) To obtain more results in $b i$-strong Smarandache $B L$-algebra and application;
(3) To have more connection to strong Smarandache $B L$-algebra and Smarandache $B L$-algebra;
(4) To grasp more connection to bi-strong Smarandache $B L$-algebra and bi-Smarandache $B L$-algebra;
(5) To have more connection of ranks $b i$-strong Smarandache $B L$-algebra together.

Acknowledgments

The author is very indebted to the referees for their valuable suggestions that improved the readability of the paper.

References

1. Abbasloo M, Saeid A B (2011) bi-BL-algebra. Discussiones Mathematicae. General Algebra and Applications 31 (2): 31-60
2. Saeid A B, Ahadpanah A, Torkzadeh L (2010) Smarandache BL-algebra. J. Applied Logic 8: 253261
3. Haveshki M, Saeid A B, Eslami E (2006) Some types of filters in BL-algebra. Soft Computing 10: 657-664
4. Cingnoli R, D'Ottaviano I M L, Mundici D (2000) "Algebraic foundations of many-valued reasoning". Kluwer Academic publ, Dordrecht
5. Hajek P (1998) Metamathematics of fuzzy logic. Kluwer Academic Publishers
6. Iorgulescu A (2008) Algebra of logic as BCK algebras. ASE publishing House Bucharest
7. Padilla R (1998) "Smarandache algebraic structures". Bull. Pure Appl. Sci., Delhi 17(1): 119-121
8. Turunen E (1999) Mathematics behind fuzzy logic. Physica-Verlag
9. Vasantha Kandasamy W B (2002) Smarandache groupoids. [http://WWW. gallup.umn.edu/smarandache/ groupoids.pdf]
10. Vasantha Kandasamy W B (2003) Bialgebraic structures and Samaranche bialgebraic structures. American Research Press

[^0]: Mahdieh Abbasloo(\boxtimes)
 Dept. of Math. Islamic Azad University, Kerman Branch, Kerman, Iran
 email: m.abbasloo@iauba.ac.ir
 Arsham Borumand Saeid ($\begin{aligned} & \text {) }\end{aligned}$
 Dept. of Math. Shahid Bahonar University of Kerman, Kerman, Iran
 email: arsham@mail.uk.ac.ir

