The Gröbner basis of the ideal of vanishing polynomials

Gert-Martin Greuel, Frank Seelisch, Oliver Wienand
Department of Mathematics, Working Group Algebra, Geometry, and Computer Algebra, University of Kaiserslautern, Germany

ARTICLE INFO

Article history:

Received 31 January 2009
Accepted 2 February 2010
Available online 13 October 2010

Keywords:

Gröbner bases
Polynomial rings and ideals
Polynomials over commutative rings
Vanishing ideal

Abstract

We construct an explicit minimal strong Gröbner basis of the ideal of vanishing polynomials in the polynomial ring over \mathbb{Z} / m for $m \geq 2$. The proof is done in a purely combinatorial way. It is a remarkable fact that the constructed Gröbner basis is independent of the monomial order and that the set of leading terms of the constructed Gröbner basis is unique, up to multiplication by units. We also present a fast algorithm to compute reduced normal forms, and furthermore, we give a recursive algorithm for building a Gröbner basis in $\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ along the prime factorization of m. The obtained results are not only of mathematical interest but have immediate applications in formal verification of data paths for microelectronic systems-onchip.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Although the basic properties of Gröbner bases in polynomial rings over a ring C are well known (see Adams and Loustaunau, 2003), they have not been studied very much, mainly because they were considered as academic, in contrast to the case where the ground ring C is a field. Recently however, Gröbner basis techniques in polynomial rings over $C=\mathbb{Z} / m$ (in particular $\mathbb{Z} / 2^{k}$) have attracted some attention due to their potential applications to proving correctness of data paths in system-on-chip design (cf. e.g. Greuel et al., 2008; Shekhar et al., 2005; Wienand et al., 2008).

When the underlying ring C has only finitely many elements, then there exist polynomials in $C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ which evaluate to zero for all $\left(a_{1}, a_{2}, \ldots, a_{n}\right) \in C^{n}$, called vanishing polynomials. Thus, any polynomial function $\widetilde{f}: C^{n} \rightarrow C$ given by an arbitrary element $f \in C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$,

[^0]will have many alternative representations in $C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, as $\widetilde{f}=\widetilde{f+g}$, for all g that constantly vanish on C^{n}. All vanishing polynomials constitute an ideal I_{0}.

In the applications mentioned above, not the polynomials but only the polynomial functions are of interest. Thus, if we want to apply algebraic methods we need to be able to efficiently compute normal forms of polynomials with respect to a Gröbner basis of I_{0}. In the presented paper, we set the theoretical ground and provide fast algorithms for doing these computations.

From a mathematical point of view, $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ has some interesting properties. In this paper, we will give an explicit minimal strong Gröbner basis G_{m} for I_{0}. As will turn out, G_{m} is a Gröbner basis with respect to every global monomial order. Moreover, we will show for any alternative minimal strong Gröbner basis G of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ that the sets of leading terms of G_{m} and G are the same up to multiplication by units. This is remarkable, since the ring \mathbb{Z} / m has zero divisors. In general, the leading terms of two minimal strong Gröbner bases of an ideal $I \subset C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ need not be related by a unit but only by some element of C. We will prove both properties and show also that in general all minimal strong Gröbner bases of an arbitrary ideal $I \subset C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ have the same number of elements.

From a practical point of view, as mentioned above, engineering tasks involving the computation of Gröbner bases over finite rings will often need to deal with vanishing polynomials. This is due to the fact that normally the elements of a Gröbner basis G will be used to decide the consistency of a mathematical model. And typically, such a check involves the question whether the set of zeros of all polynomials $f \in G$ coincides with the set of all feasible input-output vectors of the modelled artifact; see also Greuel et al. (2008). Our interest was specifically spurred by a cooperation with the local Electronic Design Automation Group in which we use Gröbner bases to formally verify chip designs. More precisely, a given verification task is translated into a polynomial ideal in $\mathbb{Z} / 2^{k}$, where typically $k=32$ or $k=64$; cf. Wienand (in preparation). For the special case of polynomial datapath verification we also refer to Wienand et al. (2008) in which it was shown that the Gröbner basis approach proves tractable for industrial applications where standard property checking techniques failed.

This paper is organized as follows. Section 2 briefly recalls the basic concepts from the theory of polynomial rings and Gröbner bases needed later. Section 3 starts by presenting canonical members of the ideal of vanishing polynomials $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Next we show that the leading term of any given vanishing polynomial is divisible by the leading term of an appropriate canonical member. This relation enables us to finally construct an explicit minimal strong Gröbner basis G_{m} of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. We also show that the size of G_{m} is of polynomial order of degree k in the number of variables n, when we are in the practically relevant case $m=2^{k}$.

The theoretical results are followed by algorithms for computing reduced normal forms with respect to the constructed basis, and for recursively computing a Gröbner basis of $I_{0} \subset$ $\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ along the prime factorization of m. The normal form algorithm has been implemented in the computer algebra system SINGULAR (Greuel et al., 2009) and successfully applied, (Wienand et al., 2008).

2. Preliminaries

Let C be a commutative, noetherian ring with 1 , and $C[\mathbf{x}]:=C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a multivariate polynomial ring over C, where $n \geq 1$. For any multi-index $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1,2, \ldots\}^{n}$, a product of variables $\mathbf{x}^{\alpha}:=x_{1}^{\alpha_{1}} \cdots x_{n}^{\alpha_{n}}$ is called a monomial, and a product $a \cdot \mathbf{x}^{\alpha}$ with $a \in C$ is called a term.

Given two multi-indices $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right), \beta=\left(\beta_{1}, \ldots, \beta_{n}\right)$, we define $\alpha \pm \beta:=\left(\alpha_{1} \pm\right.$ $\beta_{1}, \ldots, \alpha_{n} \pm \beta_{n}$). We may compare α and β according to the predicate $\alpha \preceq \beta: \Leftrightarrow \forall i \in\{1, \ldots, n\}$: $\alpha_{i} \leq \beta_{i}$, and similarly $\alpha \prec \beta: \Leftrightarrow \alpha \preceq \beta \wedge \alpha \neq \beta$. For $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1,2, \ldots\}^{n}$, we write $\alpha!:=\alpha_{1}!\cdots \alpha_{n}!$, and $|\alpha|:=\alpha_{1}+\cdots+\alpha_{n}$.

Moreover, we require the polynomial ring $C[\mathbf{x}]$ to be equipped with a global monomial order $<$, i.e., $<$ is a well-order on the set of monomials and satisfies $\mathbf{x}^{\alpha}>\mathbf{x}^{\beta} \Rightarrow \mathbf{x}^{\alpha+\gamma}>\mathbf{x}^{\beta+\gamma}$ for all $\alpha, \beta, \gamma \in\{0,1,2, \ldots\}^{n}$. Then $<$ refines the partial order \prec.

Since we are going to work with divisibility in $\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we need to distinguish between divisibility in \mathbb{Z} / m and in \mathbb{Z}. We set $\left.a\right|_{\mathbb{Z}} b: \Leftrightarrow \exists k \in \mathbb{Z}: b=a \cdot k$ and $\left.a\right|_{m} b: \Leftrightarrow \exists k \in \mathbb{Z}:\left.m\right|_{\mathbb{Z}}(b-a \cdot k)$, that is, b and $a \cdot k$ represent the same residue class in \mathbb{Z} / m. For two monomials $a \mathbf{x}^{\alpha}, b \mathbf{x}^{\beta}$, we say that $a \mathbf{x}^{\alpha}$ divides $b \mathbf{x}^{\beta}$, if $\left.a\right|_{m} b \wedge \alpha \preceq \beta$. We then write $a \mathbf{x}^{\alpha} \mid b \mathbf{x}^{\beta}$, using the ordinary symbol.

Let $f=a_{0} \cdot \mathbf{x}^{\alpha^{(0)}}+\cdots+a_{k} \cdot \mathbf{x}^{\alpha^{(k)}}$ be a polynomial in $C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ with $a_{i} \neq 0$ for $0 \leq i \leq k$, and $x^{\alpha^{(0)}}>x^{\alpha^{(1)}}>\cdots>x^{\alpha^{(k)}}$. We use the following notation:

$$
\begin{array}{rlrl}
\operatorname{deg}(f) & =\max \left\{\left|\alpha^{(i)}\right| \mid 0 \leq i \leq k\right\} & & \text { total degree of } f, \\
\operatorname{LT}(f) & =a_{0} \cdot \mathbf{x}^{\alpha^{(0)}} & & \text { leading term of } f, \\
\operatorname{LM}(f) & =\mathbf{x}^{\alpha(0)} & & \text { leading monomial of } f, \\
\text { LC }(f) & =a_{0} & & \text { leading coefficient of } f, \\
\mathrm{~L}(A) & \left.=\langle\operatorname{LT}(f) \mid f \in A\rangle_{C\left[x_{1}, x_{2}, \ldots, x_{n}\right]}\right] & & \text { leading ideal of } A, \\
& & \text { for } A \subset C\left[x_{1}, x_{2}, \ldots, x_{n}\right], A \neq \emptyset .
\end{array}
$$

For an ideal $I \subset C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ a finite set $G \subset C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ is called a Gröbner basis of I if $G \subset I, \quad$ and $\mathrm{L}(I)=\mathrm{L}(G)$.
That is, G is a Gröbner basis, if the leading terms of G generate the leading ideal of I. Note that in general, all defined objects depend on the chosen monomial order. Especially, a set G may be a Gröbner basis only with respect to a certain monomial order. We also remind the reader that with the given definition, G already generates I, cf. Adams and Loustaunau (2003).
G is furthermore called a strong Gröbner basis if for any $f \in I \backslash\{0\}$ there exists a polynomial $g \in G$ satisfying LT $(g) \mid$ LT (f). A strong Gröbner basis G is called minimal strong if LT $\left(g_{1}\right) \nmid$ LT $\left(g_{2}\right)$ for all distinct $g_{1}, g_{2} \in G$. It is a well known fact that a strong Gröbner basis can always be constructed from a given Gröbner basis when C is a principal ideal domain, see e.g. Adams and Loustaunau (2003).

Note that if C is a field, any non-zero coefficient of a term is invertible in C, and thus $\mathrm{L}(A)=$ $\langle\mathrm{LM}(f) \mid f \in A\rangle$. It is easy to verify that in this case every Gröbner basis is a strong Gröbner basis. As the following example shows, this does in general not hold when C is a ring:
Example 2.1. Consider $C:=\mathbb{Z} / 6$, and the polynomial ring $C[x]$ with one variable. Then $G:=\{2 x, 3 x\}$ is a Gröbner basis of the ideal $I:=\langle x\rangle$. But since neither $2 x$ nor $3 x$ divide x, G is not a strong Gröbner basis.

We shall now capture the central notions of this paper.
Definition 2.2. To any polynomial $f \in C\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ we associate the polynomial function $\tilde{\mathscr{L}}$: $C^{n} \rightarrow C,\left(c_{1}, c_{2}, \ldots, c_{n}\right) \mapsto f\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. We call f a vanishing polynomial if the function f is identically zero.

The set $I_{0}=\left\{f \in C\left[x_{1}, x_{2}, \ldots, x_{n}\right] \mid f\right.$ is a vanishing polynomial $\}$ is obviously an ideal in $\mathrm{C}\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, called the ideal of vanishing polynomials.

3. A minimal strong Gröbner basis of the ideal of vanishing polynomials

3.1. The ideal of vanishing polynomials

From now on let the coefficient ring be $C=\mathbb{Z} / m$, where $m \geq 2$, except stated otherwise. The following results were inspired by the work of Singmaster (1974), Kempner (1921), Halbeisen et al. (1999), and Hungerbühler and Specker (2006). Already in Lemma 5 of Kempner (1921), a univariate version of the following lemma was proven. Theorem 7 of Halbeisen et al. (1999) restated this result, and Hungerbühler and Specker (2006) came up with a generalization to multivariate polynomial rings over \mathbb{Z} / m.
Lemma 3.1. Let $a \in \mathbb{Z}$ and $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in \mathbb{N}_{0}^{n}$ such that $\left.m\right|_{\mathbb{Z}} a \alpha$!. Then

$$
p_{\alpha, a}:=a \prod_{i=1}^{n} \prod_{l=1}^{\alpha_{i}}\left(x_{i}-l\right) \in \mathbb{Z} / m\left[x_{1}, \ldots, x_{n}\right]
$$

is a vanishing polynomial.

Proof. Fix an arbitrary point $\left(c_{1}, c_{2}, \ldots, c_{n}\right) \in C^{n}$. Then $p_{\alpha, a}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$ contains, for all i, by definition the α_{i} successive factors $c_{i}-1, c_{i}-2, \ldots, c_{i}-\alpha_{i}$. Independent of the value of c_{i}, these contain all factors from 2 up to α_{i}. Therefore, α_{i} ! divides $p_{\alpha, a}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$, for all i. By combining these results, it follows immediately that $a \alpha_{1}!\cdots \alpha_{n}$! divides $p_{\alpha, a}\left(c_{1}, c_{2}, \ldots, c_{n}\right)$. With $\left.m\right|_{\mathbb{Z}} a \alpha$! this yields $p_{\alpha, a}\left(c_{1}, c_{2}, \ldots, c_{n}\right)=0$ modulo m.

Let us now take a closer look at an arbitrary vanishing polynomial:
Lemma 3.2. Let $f \in I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an arbitrary vanishing polynomial with $\operatorname{LT}(f)=b \mathbf{x}^{\beta}$. Then $\left.m\right|_{\mathbb{Z}} b \beta$!.
For the proof we use some of the ideas introduced in Hungerbühler and Specker (2006), which are based on the notion of partial differences in the multivariate setting. Already Carlitz used partial differences in the univariate case, see Carlitz (1964), to give a necessary and sufficient condition for a function f over \mathbb{Z} / p^{k} to be a polynomial function. ${ }^{1}$
Proof. Let $C\left[x_{1}, \ldots, x_{n}\right]$ denote an arbitrary polynomial ring over $n \geq 1$ variables, and let $h \in C[\mathbf{x}]$ be a polynomial. Then we may define the i th partial difference

$$
\nabla_{i} h:=h\left(x_{1}, \ldots, x_{i-1}, x_{i}+1, x_{i+1}, \ldots, x_{n}\right)-h\left(x_{1}, \ldots, x_{i-1}, x_{i}, x_{i+1}, \ldots, x_{n}\right),
$$

for $1 \leq i \leq n$. Note that ∇_{i} is a linear operator.
Now we can define the successive application of the operator by

$$
\nabla_{i}^{0} h:=h, \quad \text { and } \quad \nabla_{i}^{k+1} h:=\nabla_{i} \nabla_{i}^{k} h, \quad \text { for } k \geq 0 .
$$

(For $n=1, \nabla_{1}^{k} h$ coincides with Carlitz' $\Delta^{k} h$; see Carlitz, 1964.)
Since obviously, $\nabla_{i} \nabla_{j} h=h\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{j}+1, \ldots, x_{n}\right)-h\left(x_{1}, \ldots, x_{i}+1, \ldots, x_{n}\right)-$ $h\left(x_{1}, \ldots, x_{j}+1, \ldots, x_{n}\right)+h\left(x_{1}, \ldots, x_{n}\right)=\nabla_{j} \nabla_{i} h$, for all $i, j \in\{1, \ldots, n\}$, we can extend the operator to arbitrary multi-indices, that is, with $\alpha=\left(\alpha_{1}, \ldots, \alpha_{n}\right) \in\{0,1,2, \ldots\}^{n}$, the term

$$
\nabla^{\alpha} h:=\nabla_{1}^{\alpha_{1}} \nabla_{2}^{\alpha_{2}} \ldots \nabla_{n}^{\alpha_{n}} h
$$

is independent from the order of application of the ∇_{i} operators and hence well-defined.
Let us consider the difference $\left(x_{i}+1\right)^{k}-x_{i}^{k}=k \cdot x_{i}^{k-1}+g\left(x_{i}\right)$, where g consists of lower terms only, that is, $\operatorname{deg}(g)<k-1$. A simple induction shows that $\nabla_{i}^{k} x_{i}^{k}=k!$ and $\nabla_{i}^{j} x_{i}^{k}=0$, whenever $j>k$. Let now $a \mathbf{x}^{\alpha}:=\mathrm{LT}(h)$ denote the leading term. Then, mainly due to the linearity of the ∇_{i} operators, it is easy to see that the previous facts can be further abstracted to the general statements

$$
\nabla^{\alpha} h=a \alpha!\quad \text { and } \quad \nabla^{\beta} h=0, \quad \text { for all } \beta \succ \alpha .
$$

We apply the first equation to the vanishing polynomial f over the ring \mathbb{Z} / m : With f also $\nabla^{\beta} f=b \beta$! must be a vanishing polynomial, by construction. But this implies $b \beta!=0$ modulo m.

3.2. A minimal strong Gröbner basis of I_{0}

The above lemmas suggest to consider the set of all polynomials $p_{\alpha, a}$ for which neither α nor a can be replaced by a smaller multi-index or element of \mathbb{Z} / m, respectively, without losing the condition $\left.m\right|_{\mathbb{Z}} a \alpha!$. (This minimality of α has been inspired by the so-called Smarandache function which maps m to $\min \left\{k \in \mathbb{N}|m|_{\mathbb{Z}} k!\right\}$. This function played a role in previous works which studied the univariate case, and had been named after Smarandache, see Smarandache (1980), although the idea had been introduced earlier by Kempner in Definition 1 of Kempner (1921).) We thus define

$$
\begin{aligned}
S_{m}:= & \left\{(\alpha, a)|1 \leq a<m, a|_{\mathbb{Z}} m, \alpha \in \mathbb{N}_{0}^{n},\left.m\right|_{\mathbb{Z}} a \alpha!,\right. \\
& \forall \beta \prec \alpha: m \dagger_{\mathbb{Z}} a \beta!, \\
& \left.\forall b<a,\left.b\right|_{\mathbb{Z}} a: m \dagger_{\mathbb{Z}} b \alpha!\right\}, \\
G_{m}:= & \left\{p_{\alpha, a} \mid(\alpha, a) \in S_{m}\right\} .
\end{aligned}
$$

[^1]Note that, according to Lemma 3.1, all polynomials in G_{m} will still be elements of I_{0}. And by Lemma 3.2, we can hope to have constructed a strong Gröbner basis.

Theorem 3.3. Let $m \geq 2$ and $n \geq 1$ be arbitrary integers. With the above notations, G_{m} is a minimal strong Gröbner basis of the ideal of vanishing polynomials $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, independent of the global monomial order.

Before we prove the theorem, let us take a look at an example.
Example 3.4. Let $m=q_{1} \cdot q_{2} \cdots q_{k}$ be a product of $k \geq 1$ mutually distinct primes, and $n \geq 1$ arbitrary. We assume $q_{1}<q_{2}<\cdots<q_{k}$. Then we can immediately write down all elements of G_{m} :

$$
\begin{aligned}
&\left(x_{i}-1\right)\left(x_{i}-2\right) \cdots\left(x_{i}-q_{k}\right), \\
& q_{k} \cdot\left(x_{i}-1\right)\left(x_{i}-2\right) \cdots\left(x_{i}-q_{k-1}\right), \\
& q_{k} \cdot q_{k-1} \cdot\left(x_{i}-1\right)\left(x_{i}-2\right) \cdots\left(x_{i}-q_{k-2}\right), \\
& \cdots \\
& q_{k} \cdot q_{k-1} \cdots q_{2} \cdot\left(x_{i}-1\right)\left(x_{i}-2\right) \cdots\left(x_{i}-q_{1}\right),
\end{aligned}
$$

in each row for all $i \in\{1,2, \ldots, n\}$.
Note that the first type of polynomial is in G_{m}, as q_{k} ! already contains all q_{j}, thus $\left.m\right|_{\mathbb{Z}} q_{k}!$. Also, we need to have all q_{k} polynomial factors since, for all $r<q_{k}, q_{k} \dagger_{Z} r$!, i.e. $m \Varangle_{Z} r$!. For the following polynomials, the argument is similar. Moreover, it is easy to see that we do not have elements in G_{m} involving two or more variables, and the presented polynomials are all elements of G_{m}.

In this special case $\left|G_{m}\right|=k \cdot n$, and the maximal degree is q_{k}. This means that the size of the basis is only linear in the number of variables.

For the case $k=1, \mathbb{Z} / q_{1}$ is a field, and we obtain only the n polynomials in the top row, which are well-known for this case.

We now prove the theorem:
Proof. Let us fix $m \geq 2$, the number of variables $n \geq 1$, and an arbitrary global monomial order. We first show that G_{m} is indeed a Gröbner basis of I_{0}. To this end, it suffices to show that (i) S_{m} and hence G_{m} is a finite set, (ii) $G_{m} \subset I_{0}$, and (iii) $\mathrm{L}\left(I_{0}\right) \subset \mathrm{L}\left(G_{m}\right)$, since (ii) implies the other inclusion $\mathrm{L}\left(G_{m}\right) \subset \mathrm{L}\left(I_{0}\right)$.
(i) Since $(\alpha, a) \in S_{m}$ implies $\alpha \preceq(m, m, \ldots, m)$, the set is clearly finite.
(ii) G_{m} consists of polynomials $p_{\alpha, a}$ with $\left.m\right|_{\mathbb{Z}} a \alpha$!. Then $G_{m} \subset I_{0}$ by Lemma 3.1.
(iii) Let $f \in \mathrm{~L}\left(I_{0}\right)$ be arbitrary. Then there exist some integer $N \geq 1, h_{i} \in \mathbb{Z} /(m)\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ and $f_{i} \in I_{0}, 1 \leq i \leq N$, such that

$$
f=\sum_{i=1}^{N} h_{i} \cdot \operatorname{LT}\left(f_{i}\right) .
$$

Writing $a_{i} \mathbf{x}^{\left({ }^{(i)}\right.} \quad:=\operatorname{LT}\left(f_{i}\right)$, we obtain $\left.m\right|_{\mathbb{Z}} a_{i} \alpha^{(i)}$! from Lemma 3.2. Now either $\left(\alpha^{(i)}, a_{i}\right)$ is already an element of S_{m}. Or we can replace a_{i} by some $\left.b_{i}\right|_{\mathbb{Z}} a_{i}$ and/or $\alpha^{(i)}$ by some $\beta^{(i)} \preceq \alpha^{(i)}$ such that $\left(\beta^{(i)}, b_{i}\right) \in S_{m}$. We can subsume both cases in saying that, for each $i \in\{1,2, \ldots, N\}$, there is some $\left(\beta^{(i)}, b_{i}\right) \in S_{m}$ such that $b_{i} \mathbf{X}^{\beta^{(i)}} \mid \mathrm{LT}\left(f_{i}\right)$. With appropriate polynomials $g_{i}, 1 \leq i \leq N$, this amounts to

$$
f=\sum_{i=1}^{N} h_{i} \cdot g_{i} \cdot \operatorname{LT}\left(p_{\beta^{(i)}, b_{i}}\right),
$$

i.e., $f \in \mathrm{~L}\left(G_{m}\right)$.

Next, let $f \in I_{0}$. Then, with the same argument as for the f_{i} above, there exists a $p_{\gamma, c} \in G_{m}$ such that $\operatorname{LT}\left(p_{\gamma, c}\right) \mid \operatorname{LT}(f)$. This shows that G_{m} is a strong Gröbner basis.

It remains to show that G_{m} is minimal. To this end, pick two pairs $(\alpha, a),(\beta, b) \in S_{m}$ such that $a \mathbf{x}^{\alpha} \mid b \mathbf{x}^{\beta}$. Then $\left.a\right|_{m} b,\left.a\right|_{\mathbb{Z}} m,\left.b\right|_{\mathbb{Z}} m$, and $\alpha \preceq \beta$. We need to prove that $a=b$ and $\alpha=\beta$. Computing in \mathbb{Z}, take a prime factor q of b and $k \geq 1$ maximal such that $\left.q^{k}\right|_{\mathbb{Z}} b$. Suppose $q^{k} \dagger_{\mathbb{Z}} a$. Then $a \alpha$! would have at least one less factor q in its prime factorization than $b \alpha$!. But since $\left.m\right|_{z} a \alpha$!, we then had $\left.m\right|_{\mathbb{Z}} b /\left.q \cdot \alpha!\right|_{\mathbb{Z}} b / q \cdot \beta!$, and b would not be minimal in $(\beta, b) \in S_{m}$. We conclude that $\left.b\right|_{\mathbb{Z}} a$. We write this as $a=d \cdot b$ for some $\left.d\right|_{Z} m$. Now $\left.a\right|_{m} b$, that is, $\left.m\right|_{Z} a \cdot c-b$ for some c. Putting things together we get $b d=\left.\left.a\right|_{\mathbb{Z}} m\right|_{\mathbb{Z}} b c d-b=b(c d-1)$. Hence $\left.d\right|_{\mathbb{Z}}(c d-1)$ which can only hold for $d=1$, implying $a=b$. But then we must also have $\alpha=\beta$, since otherwise β would not be minimal in $(\beta, b) \in S_{m}$.

We now show that leading terms of minimal strong Gröbner bases of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ are unique, up to multiplication by units of \mathbb{Z} / m. We prove this result as a consequence of a more general statement for ideals over arbitrary commutative rings with 1 that has, to our knowledge, not been stated before. (Note the similar statement in the field case; see e.g. Proposition 1.8.4 in Adams and Loustaunau (2003).)

Theorem 3.5. (a) Let G, F be two minimal strong Gröbner bases of an arbitrary ideal I $\subset \subset\left[x_{1}\right.$, $\left.x_{2}, \ldots, x_{n}\right]$, where C is any commutative ring with 1 . Then $|G|=|F|$, and the sets of leading terms in G and F coincide up to multiplication by elements of C, i.e.,

$$
\begin{equation*}
\forall g \in G \quad \exists f \in F \quad \exists c \in C \quad \operatorname{LT}(g)=c \cdot \operatorname{LT}(f) . \tag{*}
\end{equation*}
$$

(b) In the case of $C=\mathbb{Z} / m$ and $I=I_{0}$, the ring elements c in $\left(^{*}\right)$ can be chosen to be units of \mathbb{Z} / m.

Note that the second statement holds for any ideal, if the ring C is a domain.
Proof. (a) Starting with the proof of $\left({ }^{*}\right)$, we pick any $g \in G \subset I$. Then, by the strength of F, there is some $f \in F$ such that $\operatorname{LT}(f) \mid \operatorname{LT}(g)$. Vice versa, by the strength of G, there must be some $g^{\prime} \in G$ such that LT $\left(g^{\prime}\right) \mid \operatorname{LT}(f)$. Therefore, $\operatorname{LT}\left(g^{\prime}\right)|\operatorname{LT}(f)| \operatorname{LT}(g)$, which implies $g=g^{\prime}$, by minimality of G. But then the leading monomials $\mathrm{LM}(f)$ and $\mathrm{LM}(g)$ must also coincide, yielding the desired relation between $\mathrm{LT}(f)$ and LT (g).

Similar to the previous argument, it is easy to see that no two distinct leading terms in F can fulfil a relation $\left({ }^{*}\right)$ with the same leading term in G, and vice versa. This implies the equality $\mid\{L T(g) \mid g \in$ $G\}|=|\{\operatorname{LT}(f) \mid f \in F\}|$ which clearly amounts to $| G|=|F|$, by the minimality of G and F.
(b) We first choose $G=G_{m}$ to be the explicitly given Gröbner basis, and F any other minimal strong Gröbner basis of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$. Consider a relation as in (${ }^{*}$), i.e., $b \cdot \mathbf{x}^{\beta}=c \cdot a \cdot \mathbf{x}^{\alpha}$, where $(\beta, b) \in S_{m}$ and $a \cdot \mathbf{x}^{\alpha}$ denotes the leading term of some $f \in F$. Then $b=a \cdot c$ mod m, in other words $\left.m\right|_{\mathbb{Z}} a c-b$. Now let $\tilde{a}:=\operatorname{gcd}(a, m)$ be the maximum portion of a that divides m, that is, $a=\tilde{a} \cdot u$, where $\operatorname{gcd}(u, m)=1$ which is equivalent to u being a unit in \mathbb{Z} / m. Since $\left.\left.\tilde{a}\right|_{\mathbb{Z}} m\right|_{\mathbb{Z}} a c-b$, we obtain $\left.\tilde{a}\right|_{\mathbb{Z}} b$.

We want to show $\tilde{a}=b$, so for a contradiction let us assume $\tilde{a}<b . f \in F \subset I_{0}$ implies $\left.m\right|_{\mathbb{Z}} a \alpha$! by Lemma 3.2, hence $\left.m\right|_{\mathbb{Z}} \tilde{a} \alpha!=\tilde{a} \beta$!, as the factors in a / \tilde{a} do not affect divisibility by m and since obviously $\alpha=\beta$. But this means that we could replace b by the smaller \tilde{a} and still preserve the condition $\left.m\right|_{\mathbb{Z}} \tilde{a} \beta$!. This contradicts the minimality of b in $(\beta, b) \in S_{m}$. Hence $\tilde{a}=b$.

We thus arrive at the claimed relation $u \cdot b \mathbf{x}^{\beta}=a \mathbf{x}^{\alpha}$, and c can be replaced by the unit $u^{-1} \in$ $(\mathbb{Z} / m)^{*}$.

We have shown that we can relate the leading terms of any minimal strong Gröbner basis F of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ to the leading terms in G_{m} by units. By transitivity, we can now clearly also relate the leading terms of any two minimal strong Gröbner bases by units. This concludes the proof.

Note that an arbitrary factor c, relating two leading terms, need not necessarily be a unit. For example, consider the polynomial $f(x, y)=3(x-1)(x-2) \cdot(y-1)(y-2) \in G_{12}$. We may switch to
another minimal strong Gröbner basis of $I_{0} \subset \mathbb{Z} / 12[x, y]$, simply by replacing $f(x, y)$ by $f^{\prime}(x, y)=9$ $(x-1)(x-2) \cdot(y-1)(y-2)$. Note that over $\mathbb{Z} / 12$ the ideals $\langle f\rangle$ and $\left\langle f^{\prime}\right\rangle$ are identical. Thus, $G_{m} \backslash\{f\} \cup\left\{f^{\prime}\right\}$ must still be a minimal strong Gröbner basis. Now obviously LT $\left(f^{\prime}\right)=3 \cdot$ LT (f), but 3 is not a unit in $\mathbb{Z} / 12$.

We point out that minimal strong Gröbner bases are in general not unique. This is due to the fact that we only consider leading terms and do not require tail reduction here. For example, in the case of the ideal I_{0}, we can easily modify the basis G_{m} and still obtain a minimal strong Gröbner basis. To this end, we may pick two elements $f, g \in G_{m}$ with $\operatorname{LM}(g)<\operatorname{LM}(f)$ and replace f by $f+g$.

Let us once again take a look at the complexity of G_{m}, that is, the size $\left|G_{m}\right|$ as a function of the number of variables n. The discussion that followed Example 3.4 already made it clear that $\left|G_{m}\right|$ is only linear in n, when all prime factors of m are mutually distinct. In the general case when $m=q_{1}^{e_{1}} \cdot q_{2}^{e_{2}} \cdots q_{k}^{e_{k}}$ with some $e_{j}>1$, the construction is combinatorially more complex. However, based on the following investigation for the practically relevant case $m=q^{k}$, we conjecture that for a fixed m the size of G_{m} is always of polynomial order in n.

Since we are interested in the asymptotic behaviour of $\left|G_{m}\right|$ for a large n, we may assume that n is much larger than $m=q^{k}$. We can decompose G_{m} into the disjoint union

$$
\begin{aligned}
G_{m}= & \bigcup_{0 \leq j<k} G_{m}^{(j)}, \text { where } \\
G_{m}^{(j)}:= & \left\{q^{j} \cdot\left(x_{i}-1\right) \cdots\left(x_{i}-(k-j) q\right) \mid 1 \leq i \leq n\right\} \\
& \cup\left\{q^{j} \cdot\left(x_{i_{1}}-1\right) \cdots\left(x_{i_{1}}-s_{1} q\right)\left(x_{i_{2}}-1\right) \cdots\left(x_{i_{2}}-s_{2} q\right) \mid\right. \\
& \left.1 \leq i_{1}, i_{2} \leq n ; i_{1} \neq i_{2} ; 1 \leq s_{1}, s_{2} ; s_{1}+s_{2}=k-j\right\} \\
& \cdots \\
& \cup\left\{q^{j} \cdot\left(x_{i_{1}}-1\right) \cdots\left(x_{i_{1}}-q\right)\left(x_{i_{2}}-1\right) \cdots\left(x_{i_{2}}-q\right) \cdots\right. \\
& \left.\left(x_{i_{k-j}}-1\right) \cdots\left(x_{i_{k-j}}-q\right) \mid 1 \leq i_{u} \leq n ; i_{u} \neq i_{v} \text { for } u \neq v\right\},
\end{aligned}
$$

that is, in $G_{m}^{(j)}$ we have the constant coefficient q^{j}, and we have polynomials in 1 up to $k-j$ variables. With $h_{j}:=\left|G_{m}^{(j)}\right|$, we obtain the very rough estimates

$$
\begin{aligned}
& h_{j} \leq n+\binom{n}{2} \cdot k^{1}+\cdots+\binom{n}{k-j} \cdot k^{k-j-1}=\sum_{l=1}^{k-j}\binom{n}{l} \cdot k^{l-1} \leq\binom{ n}{k} \cdot k^{k}, \\
& h_{j} \geq\binom{ n}{k-j} .
\end{aligned}
$$

For $h:=\left|G_{m}\right|=\sum_{0 \leq j<k} h_{j}$ we thus get

$$
\binom{n}{k} \leq \sum_{j=0}^{k-1}\binom{n}{k-j} \leq h \leq k \cdot\binom{n}{k} \cdot k^{k}=\binom{n}{k} \cdot k^{k+1},
$$

and $h=\left|G_{m}\right|$ is of polynomial order of degree k in the number of variables n.

3.3. Computing the reduced normal form of a polynomial

After we have given a minimal strong Gröbner basis of $I_{0} \subset \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$, we shall now turn to computing representatives of the residue classes in $\left(\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right) / I_{0}$. When we impose certain bounds on the coefficients of all monomials, these representatives are unique:

Proposition 3.6. Every residue class $\bar{f} \in\left(\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right) / I_{0}$ has a unique representative $f \in$ $\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ of the form

$$
f=\sum_{\alpha \in\{0,1, \ldots, m-1\}^{n}} a_{\alpha} \mathbf{x}^{\alpha}, \text { where } 0 \leq a_{\alpha}<\frac{m}{\operatorname{gcd}(m, \alpha!)}, \text { for all } \alpha
$$

Note that, whenever $\left.m\right|_{\mathbb{Z}} \alpha$!, the given bound forces a_{α} to be zero.
Proof. Let $f \in \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ be an arbitrary polynomial. Suppose f contains a monomial $a \mathbf{x}^{\alpha}$ for which $a \geq c:=\frac{m}{\operatorname{gcd}(m, \alpha!)}$. Due to division with remainder of a by c in \mathbb{Z}, we obtain $a=k \cdot c+r$ for some $k \in\{1,2, \ldots\}$, and $0 \leq r<c$. Now, $\left.m\right|_{\mathbb{Z}} \frac{m \alpha!}{\operatorname{gcd}(m, \alpha!)}$. In other words, $\left.m\right|_{\mathbb{Z}} c \alpha!$, and $p_{\alpha, c} \in I_{0}$ by Lemma 3.1.

As a consequence, f and $f^{\prime}:=f-k \cdot p_{\alpha, c}$ lie in the same residue class. Moreover, the coefficient of \mathbf{x}^{α} in f^{\prime} is $a-k \cdot c=r$, for which the claimed bound holds. Since we have a global order on the monomials, we need only finitely many repetitions of the presented reduction step, in order to arrive at a polynomial g which also lies in the residue class of f, and the coefficients of which all satisfy the required bound condition.

To prove the uniqueness of the constructed representative, assume we have two representatives f_{1}, f_{2} of the residue class of f, realising all coefficient bounds. Then, by defining either $g:=f_{1}-f_{2}$ or $g:=f_{2}-f_{1}$, we obtain a polynomial $g \in I_{0}$ with LT $(g)=a \mathbf{x}^{\alpha}$ and $0 \leq a<\frac{m}{\operatorname{gcd}(m, \alpha!!}$. By Lemma 3.2, we know that $\left.m\right|_{\mathbb{Z}} a \alpha$!.

We need to show that $a=0$; so for a contradiction, let us assume that $a>0$. With $b:=\operatorname{gcd}(m, a)$ we still have $\left.m\right|_{\mathbb{Z}} b \alpha$!, i.e., $\left.\frac{m}{b}\right|_{\mathbb{Z}} \alpha$!. Then also $\left.\frac{m}{b}\right|_{\mathbb{Z}} \operatorname{gcd}(m, \alpha!)$ which implies $\left.m\right|_{\mathbb{Z}} b \cdot \operatorname{gcd}(m, \alpha!)$. But $b \cdot \operatorname{gcd}(m, \alpha!) \leq a \cdot \operatorname{gcd}(m, \alpha!)<m$, yielding the desired contradiction.

As an immediate consequence, we can count the number of polynomial functions which is the same as the number of residue classes in $\left(\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\right) / I_{0}$:

Corollary 3.7. The number of polynomial functions $(\mathbb{Z} / m)^{n} \rightarrow \mathbb{Z} / m$ is given by

$$
N=\prod_{\alpha \in\{0,1, \ldots, m-1\}^{n}} \frac{m}{\operatorname{gcd}(m, \alpha!)}
$$

In comparison, the number of all functions $(\mathbb{Z} / m)^{n} \rightarrow \mathbb{Z} / m$ equals

$$
m^{\left(m^{n}\right)}=\prod_{\alpha \in\{0,1, \ldots, m-1\}^{n}} m=N \cdot \prod_{\alpha \in\{0,1, \ldots, m-1\}^{n}} \operatorname{gcd}(m, \alpha!) .
$$

$\mathbb{Z} / m \longrightarrow \mathbb{Z} / m$	No. of functions	No. of polynomial functions
$m=2^{2}$	256	64
$m=2^{8}$	10^{616}	10^{16}
$m=2^{16}$	10^{315652}	10^{52}
$m=2^{32}$	$10^{41373247567}$	10^{184}

Hence, if m is not prime, there are much fewer polynomial functions $(\mathbb{Z} / m)^{n} \rightarrow \mathbb{Z} / m$ than functions. This has the consequence that not every problem which can be modelled by functions, like problems coming from formal verification, can be modelled by polynomials over \mathbb{Z} / m (cf. Wienand et al. (2008) where, nevertheless, polynomial ideals over $\mathbb{Z} / 2^{k}$ have been used successfully).

Following the idea in the proof of Proposition 3.6, we are able to present a very fast algorithm for computing the reduced normal form, that is, the unique representative of a residue class in the ring $\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]$ module I_{0}. (see Shekhar et al. (2005) for $\mathbb{Z} / 2^{k}$):

```
Algorithm 1 Reduced normal form in \(\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) with respect to \(I_{0}\)
Input: \(f \in \mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\) a polynomial, \(>\) any monomial order on \(\mathbb{Z} / m\left[x_{1}, x_{2}, \ldots, x_{n}\right]\)
Output: \(h\) the reduced normal form of \(f\) with respect to \(I_{0}\)
    \(h:=0\)
    while \(f \neq 0\) do
        \(a \mathbf{x}^{\alpha}:=\operatorname{LT}(f)\)
        \(c:=\frac{m}{\operatorname{gcd}(m, \alpha!)}\)
        solve \(a=k \cdot c+r\) with \(k \in \mathbb{N}\) and \(0 \leq r<c\)
        \(h:=h+r \mathbf{x}^{\alpha}\)
        \(f:=f-k \cdot p_{\alpha, c}-r \mathbf{x}^{\alpha}\)
    end while
    return \(h\)
```

Note that the algorithm makes sure that $f+h$ will always represent the same residue class, as $p_{\alpha, c} \in I_{0}$. Since initially $h=0$, this class must be the residue class of f. After termination, which is ensured by the global order, h consists only of terms with appropriate coefficient bound, i.e., h must be the unique representative as given in Proposition 3.6.

3.4. Computing minimal strong Gröbner bases over different rings \mathbb{Z} / m

The simple structure of minimal strong Gröbner bases provides us with a recursive means to construct G_{m} from bases for smaller m. We are especially interested in computing G_{M} from the elements of the already computed set G_{m}, where $M=q \cdot m$ with q a prime number. The following pairwise disjoint decomposition of G_{M} is easy to verify:

$$
\begin{aligned}
G_{M} & =\left\{p_{\alpha, a} \mid p_{\alpha, a} \in G_{m},(\alpha, a) \in S_{M}\right\} \\
& \cup\left\{p_{\alpha, a q} \mid p_{\alpha, a} \in G_{m},(\alpha, a q) \in S_{M}\right\} \\
& \cup\left\{p_{\alpha+\beta, b}\left|p_{\alpha, a} \in G_{m}, \exists \beta \in B(\alpha, a, q) \exists b\right|_{\mathbb{Z}} M:(\alpha+\beta, b) \in S_{M}\right\},
\end{aligned}
$$

where $B(\alpha, a, q)$ denotes the set of all $\beta \succ(0,0, \ldots, 0)$ such that $(\alpha+\beta)$! contains one more prime factor q than $a \alpha$!.

This decomposition says that we may already directly find elements of G_{M} in G_{m}. Or, secondly, we may build an element of G_{M} by multiplying an element of G_{m} by q. Besides altering the coefficient only, we can also try to enlarge the exponent vector of some $p_{\alpha, a} \in G_{m}$ such that the new exponent factorial $(\alpha+\beta)$! contains one more prime factor q than $a \alpha!$. However, enlarging the exponent may introduce many more divisors of M, so that in general we need to adjust the coefficient. It is easy to see that once a suitable β is found, we can set $b=\frac{M}{\operatorname{gcd}(M,(\alpha+\beta)!)}$. The search for suitable β can obviously be limited to the set defined by the condition $\beta \preceq(q, q, \ldots, q)$, that is, we know a finite superset of $B(\alpha, a, q)$.

In practice, all three cases may occur. The following examples are numbered according to the order in the above decomposition. (The number of variables, n, equals 2 .)

Example 3.8. 1. $G_{3} \subset G_{6}$, since $3!=6$ already contains all necessary factors; see Example 3.4 (and the remark regarding $k=1$) to recall the elements of G_{3}.
2. With q any prime, we have $p_{(3,0), 2} \in G_{12}$ and $p_{(3,0), 2 \cdot q} \in G_{12 \cdot q}$.
3. We have $6(x-1)(x-2)(y-1)(y-2) \in G_{24}$. We try to construct an element in $G_{24 \cdot 3}$ by enlarging the product of x and y terms. Since $6 \cdot 2!\cdot 2!$ contains one prime factor 3 , we try to move to the target product $(x-1)(x-2)(x-3)(y-1)(y-2)(y-3)$ which realizes one more factor 3 because $\left.3^{2}\right|_{\mathbb{Z}} 3!\cdot 3!$. Now $b=\frac{72}{\operatorname{gcd}(72,3!\cdot 3!)}=2$ and hence $2(x-1)(x-2) \cdot(x-3)(y-1)(y-2)(y-3) \in G_{72}$.

The above decomposition of G_{M}, and the structure of G_{q} for a prime q as discussed in Example 3.4, give rise to the following algorithm.

```
Algorithm \(2 \operatorname{Rec} \operatorname{Comp}(M)\), Recursive computation of \(G_{M}\)
Input: \(M \in\{2,3, \ldots\}\)
Output: \(G_{M}\)
    pick any prime factor \(q\) of \(M\)
    if \(M=q\) then
        \(A:=\left\{q \cdot e_{i} \mid 1 \leq i \leq n\right\}\), where the \(e_{i}\) are the unit vectors in \(\mathbb{N}^{n}\)
        \(G:=\left\{p_{\alpha, 1} \mid \alpha \in A\right\}\)
    else
        \(m:=M / q\)
        \(H:=\operatorname{Rec} \operatorname{Comp}(m)\)
        \(G:=\{ \}\)
        for all \(p_{\alpha, a} \in H\) do
            if \((\alpha, a) \in S_{M}\) then
                \(G:=G \cup\left\{p_{\alpha, a}\right\}\)
            else
                \(G:=G \cup\left\{p_{\alpha, a \cdot q}\right\}\)
                for all \(\beta \in B(\alpha, a, q) \subset\{\beta \mid(0,0, \ldots, 0) \prec \beta \preceq(q, q, \ldots, q)\}\) do
                \(b:=\frac{M}{\operatorname{gcd}(M,(\alpha+\beta)!}\)
                    \(G:=G \cup\left\{p_{\alpha+\beta, b}\right\}\)
                end for
        end if
        end for
    end if
    return \(G\)
```


References

Adams, W., Loustaunau, P., 2003. An introduction to Gröbner bases. In: Graduate Studies in Mathematics, AMS.
Carlitz, L., 1964. Functions and polynomials $\left(\bmod p^{n}\right)$. Acta Arithmetica 9, 67-78.
Greuel, G.-M., Pfister, G., Schönemann, H., 2009. Singular 3.1.0-a computer algebra system for polynomial computations. http://www.singular.uni-kl.de.
Halbeisen, L., Hungerbühler, N., Läuchli, H., 1999. Powers and polynomials in \mathbb{Z} / m. Elemente der Mathematik 54 (3), 118-129.
Hungerbühler, N., Specker, E., 2006. A generalization of the smarandache function. Integers: Electronic Journal of Combinatorial Number Theory 6.
Kempner, A.J., 1921. Polynomials and their residue systems. American Mathematical Society Translations 22, 240-266.
Greuel, G.-M., Wedler, M., Wienand, O., Brickenstein, M., Dreyer, A., 2008. New developments in the theory of Groebner bases and applications to formal verification. Journal of Pure and Applied Algebra.
Shekhar, N., Kalla, P., Enescu, F., Gopalakrishnan, S., 2005. Equivalence verification of polynomial datapaths with fixed-size bitvectors using finite ring algebra. In: ICCAD '05: Proceedings of the 2005 IEEE/ACM International Conference on Computeraided Design. IEEE Computer Society, Washington, DC, USA, pp. 291-296.
Singmaster, D., 1974. On polynomial functions $(\bmod m)$. Journal of Number Theory 6, 345-352.
Smarandache, F., 1980. A function in the number theory. In: Analele Univ. Timisoara, Fascicle 1, XVIII. pp. 79-88.
Wienand, O., 2010. Ph.D. thesis. Kaiserlautern, Germany (in preparation).
Wienand, Oliver, Wedler, Markus, Stoffel, Dominik, Kunz, Wolfgang, Greuel, Gert-Martin, 2008. An algebraic approach for proving data correctness in arithmetic data paths. In: CAV'08: Proceedings of the 20th International Conference on Computer Aided Verification. Springer-Verlag, Berlin, Heidelberg, pp. 473-486.

[^0]: E-mail addresses: greuel@mathematik.uni-kl.de (G.-M. Greuel), seelisch@mathematik.uni-kl.de (F. Seelisch).

[^1]: ${ }^{1}$ I.e., $f(a)=g(a) \bmod p^{k}$, for all $a \in \mathbb{Z} / p^{k}$ and some polynomial $g \in \mathbb{Z} / p^{k}[x]$.

