Menelaus's Theorem for Hyperbolic Quadrilaterals in The Einstein Relativistic Velocity Model of Hyperbolic Geometry

Cătălin Barbu
"Vasile Alecsandri" College - Bacău, str. Iosif Cocea, nr. 12, sc. A, ap. 13, Romania
kafka_mate@yahoo.com

Abstract

In this study, we present (i) a proof of the Menelaus theorem for quadrilaterals in hyperbolic geometry, (ii) and a proof for the transversal theorem for triangles, and (iii) the Menelaus's theorem for n-gons

2000 Mathematical Subject Classification: 51K05, 51M10, 30F45, 20N99, 51B10

Keywords and phrases: hyperbolic geometry, hyperbolic triangle, hyperbolic quadrilateral, Menelaus theorem, transversal theorem, gyrovector

1. Introduction

Hyperbolic Geometry appeared in the first half of the $19^{\text {th }}$ century as an attempt to understand Euclid's axiomatic basis of Geometry. It is also known as a type of non-Euclidean Geometry, being in many respects similar to Euclidean Geometry. Hyperbolic Geometry includes similar concepts as distance and angle. Both these geometries have many results in common but many are different. There are known many models for Hyperbolic Geometry, such as: Poincaré disc model, Poincaré halfplane, Klein model, Einstein relativistic velocity model, etc. Menelaus of Alexandria was a Greek mathematician and astronomer, the first to recognize geodesics on a curved surface as natural analogs of straight lines. Here, in this study, we give hyperbolic version of Menelaus theorem for quadrilaterals. The well-known Menelaus theorem states that if l is a line not through any vertex of a triangle $A B C$ such that l meets $B C$ in $D, C A$ in E, and $A B$ in F, then $\frac{D B}{D C} \cdot \frac{E C}{E A} \cdot \frac{F A}{F B}=1$ [1]. F. Smarandache (1983) has generalized the Theorem of Menelaus for any polygon with $n \geq 4$ sides as follows: If a line l intersects the n-gon $A_{1} A_{2} \ldots A_{n}$ sides $A_{1} A_{2}, A_{2} A_{3}, \ldots$, and $A_{n} A_{1}$ respectively in the points M_{1}, M_{2}, \ldots, and M_{n}, then $\frac{M_{1} A_{1}}{M_{1} A_{2}} \cdot \frac{M_{2} A_{2}}{M_{2} A_{3}} \cdot \ldots \cdot \frac{M_{n} A_{n}}{M_{n} A_{1}}=1 \quad[2]$.

Let D denote the complex unit disc in complex z - plane, i.e.

$$
D=\{z \in \mathbb{C}:|z|<1\} .
$$

The most general Möbius transformation of D is

$$
z \rightarrow e^{i \theta} \frac{z_{0}+z}{1+\overline{z_{0}} z}=e^{i \theta}\left(z_{0} \oplus z\right),
$$

which induces the Möbius addition \oplus in D, allowing the Möbius transformation of the disc to be viewed as a Möbius left gyrotranslation

$$
z \rightarrow z_{0} \oplus z=\frac{z_{0}+z}{1+\overline{z_{0}} z}
$$

followed by a rotation. Here $\theta \in \mathbb{R}$ is a real number, $z, z_{0} \in D$, and $\overline{z_{0}}$ is the complex conjugate of z_{0}. Let $\operatorname{Aut}(D, \oplus)$ be the automorphism group of the grupoid (D, \oplus). If we define

$$
g y r: D \times D \rightarrow \operatorname{Aut}(D, \oplus), g y r[a, b]=\frac{a \oplus b}{b \oplus a}=\frac{1+a \bar{b}}{1+\bar{a} b},
$$

then is true gyrocommutative law

$$
a \oplus b=g y r[a, b](b \oplus a)
$$

A gyrovector space (G, \oplus, \otimes) is a gyrocommutative gyrogroup (G, \oplus) that obeys the following axioms:
(1) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a} \cdot \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{b}=\mathbf{a} \cdot \mathbf{b}$ for all points $\mathbf{a}, \mathbf{b}, \mathbf{u}, \mathbf{v} \in G$.
(2) G admits a scalar multiplication, \otimes, possessing the following properties. For all real numbers $r, r_{1}, r_{2} \in \mathbb{R}$ and all points $\mathbf{a} \in G$:
(G1) $1 \otimes \mathbf{a}=\mathbf{a}$
(G2) $\left(r_{1}+r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes \mathbf{a} \oplus r_{2} \otimes \mathbf{a}$
(G3) $\left(r_{1} r_{2}\right) \otimes \mathbf{a}=r_{1} \otimes\left(r_{2} \otimes \mathbf{a}\right)$
(G4) $\frac{|r| \otimes \mathbf{a}}{\|r \otimes \mathbf{a}\|}=\frac{\mathbf{a}}{\|\mathbf{a}\|}$
(G5) $\operatorname{gyr}[\mathbf{u}, \mathbf{v}](r \otimes \mathbf{a})=r \otimes \operatorname{gyr}[\mathbf{u}, \mathbf{v}] \mathbf{a}$
(G6) $\operatorname{gyr}\left[r_{1} \otimes \mathbf{v}, r_{1} \otimes \mathbf{v}\right]=1$
(3) Real vector space structure $(\|G\|, \oplus, \otimes)$ for the set $\|G\|$ of onedimensional "vectors"

$$
\|G\|=\{ \pm\|\mathbf{a}\|: \mathbf{a} \in G\} \subset \mathbb{R}
$$

with vector addition \oplus and scalar multiplication \otimes, such that for all $r \in \mathbb{R}$ and $\mathbf{a}, \mathbf{b} \in G$,
$\left(G^{7}\right)\|r \otimes \mathbf{a}\|=|r| \otimes\|\mathbf{a}\|$
(G8) $\|\mathbf{a} \oplus \mathbf{b}\| \leq\|\mathbf{a}\| \oplus\|\mathbf{b}\|$

Definition 1 Let $A B C$ be a gyrotriangle with sides a, b, c in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$, and let h_{a}, h_{b}, h_{c} be three altitudes of $A B C$ drawn from vertices A, B, C perpendicular to their opposite sides a, b, c or their extension, respectively. The number

$$
S_{A B C}=\gamma_{a} a \gamma_{h_{a}} h_{a}=\gamma_{b} b \gamma_{h_{b}} h_{b}=\gamma_{c} c \gamma_{h_{c}} h_{c}
$$

is called the gyrotriangle constant of gyrotriangle $A B C$ (here $\gamma_{\mathbf{v}}=$ $\frac{1}{\sqrt{1-\frac{\|v\|^{2}}{s^{2}}}}$ is the gamma factor).
(see $[3, \mathrm{pp} 558]$)

Theorem 1 (The Gyrotriangle Constant Principle) Let $A_{1} B C$ and $A_{2} B C$ be two gyrotriangles in a Einstein gyrovector plane $\left(\mathbb{R}_{s}^{2}, \oplus, \otimes\right)$, $A_{1} \neq A_{2}$ such that the two gyrosegments $A_{1} A_{2}$ and $B C$, or their extensions, intersect at a point $P \in \mathbb{R}_{s}^{2}$, as shown in Figs 1-2. Then,

$$
\frac{\gamma_{\left|A_{1} P\right|}\left|A_{1} P\right|}{\gamma_{\left|A_{2} P\right|}\left|A_{2} P\right|}=\frac{S_{A_{1} B C}}{S_{A_{2} B C}}
$$

(see [3, pp 563])

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein
Gyrovector Space) Let $\mathbf{a}_{1}, \mathbf{a}_{2}$, and \mathbf{a}_{3} be three non-gyrocollinear points
in an Einstein gyrovector space $\left(V_{s}, \oplus, \otimes\right)$. If a gyroline meets the sides of gyrotriangle $\mathbf{a}_{1} \mathbf{a}_{2} \mathbf{a}_{3}$ at points $\mathbf{a}_{12}, \mathbf{a}_{13}, \mathbf{a}_{23}$, as in Figure 3, then

$$
\frac{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{12}\right\|}{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{12}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{2} \oplus \mathbf{a}_{23}\right\|}{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{23}\right\|} \frac{\gamma_{\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{3} \oplus \mathbf{a}_{13}\right\|}{\gamma_{\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}}\left\|\ominus \mathbf{a}_{1} \oplus \mathbf{a}_{13}\right\|}=1
$$

(see [3, pp 463])
For further details we refer to the recent book of A.Ungar [3].

2. Main results

In this section, we prove Menelaus's theorem for hyperbolic quadrilateral.

Theorem 3 If l is a gyroline not through any vertex of a gyroquadrilateral $A B C D$ such that l meets $A B$ in $X, B C$ in $Y, C D$ in Z, and $D A$ in W, then

$$
\begin{equation*}
\frac{\gamma_{|A X|}|A X|}{\gamma_{|B X||B X|}} \cdot \frac{\gamma_{|B Y|}|B Y|}{\gamma_{|C Y|}|C Y|} \cdot \frac{\gamma_{|C Z|}|C Z|}{\gamma_{|D Z|}|D Z|} \cdot \frac{\gamma_{|D W|}|D W|}{\gamma_{|A W||A W|}}=1 \tag{1}
\end{equation*}
$$

Proof. Let T be the intersection point of the gyroline $D B$ and the gyroline $X Y Z$ (See Figure 4).

If we use a theorem 3 in the triangles $A B D$ and $B C D$ respectively, then

$$
\begin{equation*}
\frac{\gamma_{|A X|}|A X|}{\gamma_{|B X||B X|}} \cdot \frac{\gamma_{|B T|}|B T|}{\gamma_{|D T|}|D T|} \cdot \frac{\gamma_{|D W|}|D W|}{\gamma_{|A W|}|A W|}=1 \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\frac{\gamma_{|D T|}|D T|}{\gamma_{|B T||B T|}} \cdot \frac{\gamma_{|C Z|}|C Z|}{\gamma_{|D Z|}|D Z|} \cdot \frac{\gamma_{|B Y||B Y|}}{\gamma_{|C Y|}|C Y|}=1 . \tag{3}
\end{equation*}
$$

Multiplying relations (2) and (3) member with member, we obtain the conclusion.

We have thus obtained in (1) the following:
Theorem 4 (Transversal theorem for triangles) Let D be on gyroside $B C$, and l is a gyroline not through any vertex of a gyrotriangle $A B C$ such that l meets $A B$ in $M, A C$ in N, and $A D$ in P, then

$$
\frac{\gamma_{|A M||A M|}}{\gamma_{|A B|}|A B|} \cdot \frac{\gamma_{|A C|}|A C|}{\gamma_{|A N|}|A N|} \cdot \frac{\gamma_{|P N|}|P N|}{\gamma_{|P M|}|P M|} \cdot \frac{\gamma_{|D B||D B|}}{\gamma_{|D C|}|D C|}=1
$$

Proof. If we use a theorem 4 for gyroquadrilateral $B C N M$ and gyrocollinear points D, A, P, and A (See Figure 5) then the conclusion follows.

Theorem 5 If l is a gyroline not through any vertex of a n-gyrogon $A_{1} A_{2} \ldots A_{n}$ such that l meets $A_{1} A_{2}$ in $M_{1}, A_{2} A_{3}$ in M_{2}, \ldots, and $A_{n} A_{1}$ in M_{n}, then

$$
\begin{equation*}
\frac{\gamma_{\left|M_{1} A_{1}\right| M_{1} A_{1} \mid}}{\gamma_{\left|M_{1} A_{2}\right|\left|M_{1} A_{2}\right|}} \cdot \frac{\gamma_{\left|M_{2} A_{2}\right|}\left|M_{2} A_{2}\right|}{\gamma_{\left|M_{2} A_{3}\right| M_{2} A_{3} \mid}} \cdot \ldots \cdot \frac{\gamma_{\left|M_{n} A_{n}\right|}\left|M_{n} A_{n}\right|}{\gamma_{\left|M_{n} A_{1}\right|\left|M_{n} A_{1}\right|}}=1 \tag{4}
\end{equation*}
$$

Proof. We use mathematical induction. For $n=3$ the theorem is true (see Theorem 3). Let's suppose by induction upon $k \geq 3$ that the theorem is true for any k-gyrogon with $3 \leq k \leq n-1$, and we need to prove it is also true for $k=n$. Suppose a line l intersect the gyroline $A_{2} A_{n}$ into the point M. We consider the n-gyrogon $A_{1} A_{2} \ldots A_{n}$ and we split in a 3 - gyrogon $A_{1} A_{2} A_{n}$ and $(n-1)$-gyrogon $A_{n} A_{2} A_{3} \ldots A_{n-1}$ and we can respectively apply the theorem 3 according to our previously hypothesis
of induction in each of them, and we respectively get:

$$
\frac{\gamma_{\left|M_{1} A_{1}\right|\left|M_{1} A_{1}\right|}}{\gamma_{\left|M_{1} A_{2}\right|\left|M_{1} A_{2}\right|}} \cdot \frac{\gamma_{\left|M A_{2}\right|}\left|M A_{2}\right|}{\gamma_{\left|M A_{n}\right|\left|M A_{n}\right|}} \cdot \frac{\gamma_{\left|M_{n} A_{n}\right|}\left|M_{n} A_{n}\right|}{\gamma_{\left|M_{n} A_{1}\right|\left|M_{n} A_{1}\right|}}=1
$$

and
$\frac{\gamma_{\left|M A_{n}\right|}\left|M A_{n}\right|}{\gamma_{\left|M A_{2}\right|\left|M A_{2}\right|}} \cdot \frac{\gamma_{\left|M_{2} A_{2}\right|\left|M_{2} A_{2}\right|}}{\gamma_{\left|M_{2} A_{3}\right|\left|M_{2} A_{3}\right|}} \cdot \ldots \cdot \frac{\gamma_{\left|M_{n-2} A_{n-2}\right|}\left|M_{n-2} A_{n-2}\right|}{\gamma_{\left|M_{n-2} A_{n-1}\right|}\left|M_{n-2} A_{n-1}\right|} \cdot \frac{\gamma_{\left|M_{n-1} A_{n-1}\right|}\left|M_{n-1} A_{n-1}\right|}{\gamma_{\left|M_{n-1} A_{n}\right|}\left|M_{n-1} A_{n}\right|}=1$
whence, by multiplying the last two equalities, we get

$$
\frac{\gamma_{\left|M_{1} A_{1}\right|\left|M_{1} A_{1}\right|}}{\gamma_{\left|M_{1} A_{2}\right|\left|M_{1} A_{2}\right|}} \cdot \frac{\gamma_{\left|M_{2} A_{2}\right|}\left|M_{2} A_{2}\right|}{\gamma_{\left|M_{2} A_{3}\right|}\left|M_{2} A_{3}\right|} \cdot \ldots \cdot \frac{\gamma_{\left|M_{n} A_{n}\right|}\left|M_{n} A_{n}\right|}{\gamma_{\left|M_{n} A_{1}\right|\left|M_{n} A_{1}\right|}}=1 .
$$

References

[1] Honsberger, R., Episodes in Nineteenth and Twentieth Century Euclidean Geometry, Washington, DC: Math. Assoc. Amer., pp. 147154, 1995.
[2] Smarandache, F., Généralisation du Théorčme de Ménélaus, Rabat, Morocco, Seminar for the selection and preparation of the Moroccan students for the International Olympiad of Mathematics in Paris France, 1983.
[3] Ungar, A.A., Analytic Hyperbolic Geometry and Albert Einstein's Special Theory of Relativity, Hackensack, NJ:World Scientific Publishing Co.Pte. Ltd., 2008.

