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Abstract

In this study, we present (i) a proof of the Menelaus theorem

for quadrilaterals in hyperbolic geometry, (ii) and a proof for the

transversal theorem for triangles, and (iii) the Menelaus�s theorem

for n-gons

2000 Mathematical Subject Classi�cation: 51K05, 51M10,

30F45, 20N99, 51B10

Keywords and phrases: hyperbolic geometry, hyperbolic triangle,

hyperbolic quadrilateral, Menelaus theorem, transversal theorem, gy-

rovector

1



1. Introduction

Hyperbolic Geometry appeared in the �rst half of the 19th century

as an attempt to understand Euclid�s axiomatic basis of Geometry. It is

also known as a type of non-Euclidean Geometry, being in many respects

similar to Euclidean Geometry. Hyperbolic Geometry includes similar

concepts as distance and angle. Both these geometries have many re-

sults in common but many are di¤erent. There are known many models

for Hyperbolic Geometry, such as: Poincaré disc model, Poincaré half-

plane, Klein model, Einstein relativistic velocity model, etc. Menelaus

of Alexandria was a Greek mathematician and astronomer, the �rst to

recognize geodesics on a curved surface as natural analogs of straight

lines. Here, in this study, we give hyperbolic version of Menelaus theo-

rem for quadrilaterals. The well-known Menelaus theorem states that if l

is a line not through any vertex of a triangle ABC such that l meets BC

in D; CA in E, and AB in F , then DB
DC
� EC
EA
� FA
FB
= 1 [1]. F. Smarandache

(1983) has generalized the Theorem of Menelaus for any polygon with

n � 4 sides as follows: If a line l intersects the n-gon A1A2:::An sides

A1A2; A2A3; :::; and AnA1 respectively in the points M1;M2; :::; and Mn,

then M1A1
M1A2

� M2A2
M2A3

� ::: � MnAn
MnA1

= 1 [2].

Let D denote the complex unit disc in complex z - plane, i.e.

D = fz 2 C : jzj < 1g:

The most general Möbius transformation of D is

z ! ei�
z0 + z

1 + z0z
= ei�(z0 � z);
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which induces the Möbius addition � in D, allowing the Möbius trans-

formation of the disc to be viewed as a Möbius left gyrotranslation

z ! z0 � z =
z0 + z

1 + z0z

followed by a rotation. Here � 2 R is a real number, z; z0 2 D; and z0 is

the complex conjugate of z0: Let Aut(D;�) be the automorphism group

of the grupoid (D;�). If we de�ne

gyr : D �D ! Aut(D;�); gyr[a; b] = a� b
b� a =

1 + ab

1 + ab
;

then is true gyrocommutative law

a� b = gyr[a; b](b� a):

A gyrovector space (G;�;
) is a gyrocommutative gyrogroup (G;�)

that obeys the following axioms:

(1) gyr[u;v]a� gyr[u;v]b = a � b for all points a;b;u;v 2G:

(2) G admits a scalar multiplication,
, possessing the following prop-

erties. For all real numbers r; r1; r2 2 R and all points a 2G:

(G1) 1
 a = a

(G2) (r1 + r2)
 a = r1 
 a� r2 
 a

(G3) (r1r2)
 a = r1 
 (r2 
 a)

(G4) jrj
a
kr
ak =

a
kak

(G5) gyr[u;v](r 
 a) = r 
 gyr[u;v]a

(G6) gyr[r1 
 v; r1 
 v] =1

(3) Real vector space structure (kGk ;�;
) for the set kGk of oned-

imensional "vectors"

kGk = f�kak : a 2 Gg � R
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with vector addition � and scalar multiplication 
; such that for all

r 2 R and a;b 2 G;

(G7) kr 
 ak = jrj 
 kak

(G8) ka� bk � kak � kbk

De�nition 1 Let ABC be a gyrotriangle with sides a; b; c in an Einstein

gyrovector space (Vs;�;
); and let ha; hb; hc be three altitudes of ABC

drawn from vertices A;B;C perpendicular to their opposite sides a; b; c

or their extension, respectively. The number

SABC = aahaha = bbhbhb = cchchc

is called the gyrotriangle constant of gyrotriangle ABC (here v =

1r
1� kvk2

s2

is the gamma factor).

(see [3, pp558])

Theorem 1 (The Gyrotriangle Constant Principle) Let A1BC

and A2BC be two gyrotriangles in a Einstein gyrovector plane (R2s;�;
);

A1 6= A2 such that the two gyrosegments A1A2 and BC, or their exten-

sions, intersect at a point P 2 R2s, as shown in Figs 1-2. Then,

jA1P j jA1P j
jA2P j jA2P j

=
SA1BC
SA2BC

(see [3, pp 563])

Theorem 2 (The Hyperbolic Theorem of Menelaus in Einstein

Gyrovector Space) Let a1; a2; and a3 be three non-gyrocollinear points
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in an Einstein gyrovector space (Vs;�;
): If a gyroline meets the sides

of gyrotriangle a1a2a3 at points a12; a13; a23; as in Figure 3, then

	a1�a12 k	a1 � a12k
	a2�a12 k	a2 � a12k

	a2�a23 k	a2 � a23k
	a3�a23 k	a3 � a23k

	a3�a13 k	a3 � a13k
	a1�a13 k	a1 � a13k

= 1

(see [3, pp 463])

For further details we refer to the recent book of A.Ungar [3].

2. Main results

In this section, we prove Menelaus�s theorem for hyperbolic quadri-

lateral.

Theorem 3 If l is a gyroline not through any vertex of a gyroquadrilat-

eral ABCD such that l meets AB in X; BC in Y , CD in Z, and DA

in W , then

(1)

jAXjjAXj


jBXjjBXj

�

jBY jjBY j


jCY jjCY j

�

jCZjjCZj


jDZjjDZj

�

jDW jjDW j


jAW jjAW j

= 1

Proof. Let T be the intersection point of the gyroline DB and the

gyroline XY Z (See Figure 4).
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If we use a theorem 3 in the triangles ABD and BCD respectively, then

(2)

jAXjjAXj


jBXjjBXj

�

jBT jjBT j


jDT jjDT j

�

jDW jjDW j


jAW jjAW j

= 1

and

(3)

jDT jjDT j


jBT jjBT j

�

jCZjjCZj


jDZjjDZj

�

jBY jjBY j


jCY jjCY j

= 1:

Multiplying relations (2) and (3) member with member, we obtain the

conclusion:

We have thus obtained in (1) the following:

Theorem 4 (Transversal theorem for triangles) Let D be on gyroside

BC, and l is a gyroline not through any vertex of a gyrotriangle ABC

such that l meets AB in M; AC in N , and AD in P , then

jAMjjAM j


jABjjABj

�

jACjjACj


jANjjAN j

�

jPNjjPN j


jPMjjPM j

�

jDBjjDBj


jDCjjDCj

= 1
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Proof. If we use a theorem 4 for gyroquadrilateral BCNM and gyro-

collinear pointsD;A; P , and A (See Figure 5) then the conclusion follows.

Theorem 5 If l is a gyroline not through any vertex of a n� gyrogon

A1A2:::An such that l meets A1A2 in M1; A2A3 in M2; :::; and AnA1 in

Mn, then

(4)

jM1A1jjM1A1j


jM1A2jjM1A2j

�

jM2A2jjM2A2j


jM2A3jjM2A3j

� ::: �

jMnAnjjMnAnj


jMnA1jjMnA1j

= 1

Proof. We use mathematical induction. For n = 3 the theorem is true

(see Theorem 3). Let�s suppose by induction upon k � 3 that the theorem

is true for any k � gyrogon with 3 � k � n� 1; and we need to prove it

is also true for k = n. Suppose a line l intersect the gyroline A2An into

the point M . We consider the n � gyrogon A1A2:::An and we split in a

3� gyrogon A1A2An and (n� 1)� gyrogon AnA2A3:::An�1 and we can

respectively apply the theorem 3 according to our previously hypothesis

7



of induction in each of them, and we respectively get:


jM1A1jjM1A1j


jM1A2jjM1A2j

�

jMA2jjMA2j


jMAnjjMAnj

�

jMnAnjjMnAnj


jMnA1jjMnA1j

= 1

and


jMAnjjMAnj


jMA2jjMA2j

�

jM2A2jjM2A2j


jM2A3jjM2A3j

�:::�

jMn�2An�2jjMn�2An�2j


jMn�2An�1jjMn�2An�1j

�

jMn�1An�1jjMn�1An�1j


jMn�1AnjjMn�1Anj

= 1

whence, by multiplying the last two equalities, we get


jM1A1jjM1A1j


jM1A2jjM1A2j

�

jM2A2jjM2A2j


jM2A3jjM2A3j

� ::: �

jMnAnjjMnAnj


jMnA1jjMnA1j

= 1:
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