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INTRODUCTION 

 
 A Smarandache structure on a set A means a weak 
structure W on A such that there exists a proper subset 
B of A which is embedded with a strong structure S. In 
[10], W.B. Vasantha Kandasamy studied the concept of 
Smarandache groupoids, subgroupoids, ideal of 
groupoids, semi-normal subgroupoids, Smarandache 
Bol groupoids and strong Bol groupoids and obtained 
many interesting results about them. Smarandache 
semi-groups are very important for the study of 
congruences and it was studied by R. Padilla [9].  
 As it is well known, BCK/ BCI-algebras are two 
classes of algebras of logic. They were introduced by 
Imai and Iseki [3, 4, 8]. BCI-algebras are 
generalizations of BCK-algebra. Most of algebras 
related to the t-norm based logic, such as MTL-
algebras, BL-algebras, hoop, MV-algebras and Boolean 
algebras et al., are extensions of BCK-algebras.  
 In 1983, Hu and Li [6, 7] introduced the notion of a 
BCH-algebra, which is a generalization of the notions 
of BCK and BCI-algebras and studied by many 
researchers [1, 2, 6]. 
It will be very interesting to study the Smarandache 
structure in these algebraic structures. In [5], Y. B. Jun 
discussed the Smarandache structure in BCI-algebras. 
 In this paper we introduce the notion of 
Smarandache BCH-algebra and we deal with 
Smarandache ideal structures in Smarandache BCH-
algebras. We introduce the notion of Smarandache 
(fresh, clean and fantastic) ideal in a BCH-algebra and 
then we obtain some related results which have been 
mentioned in the abstract. 

PRELIMINARIES 
 
 An algebra (X;*, 0) of type (2, 0) is called a BCH-
algebra if it satisfies the following axioms: for every 
x,y,z∈X, [6].  
 
(I1) x x 0∗ = , 
 
(I2) x y 0 and y x 0 imply x y∗ = ∗ = = , 
 
(I3) (x y) z (x z) y∗ ∗ = ∗ ∗ , 

 
 In a BCH-algebra X, the following holds for all x, 
y∈X 
 
(J1) x 0 x∗ =  , 

 
(J2) (x (x y)) y 0∗ ∗ ∗ = , 

 
(J3) 0 (x y) (0 x) (0 y),∗ ∗ = ∗ ∗ ∗  

 
(J4) 0 (0 (0 x)) 0 x∗ ∗ ∗ = ∗ ,  
 
(J5) x y implies 0 x 0 y≤ ∗ = ∗ . 

 
 An algebra (X,*, 0) is called a BCK-algebra if it 
satisfies the following conditions for every x, y, z ∈X  
 
(a1) ((x y) (x z)) (z y) 0∗ ∗ ∗ ∗ ∗ = , 
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(a2) (x (x y)) y 0∗ ∗ ∗ = , 
  
(a3) x 0 x∗ = , 
 
(a4) x y 0 and y x 0 imply x y∗ = ∗ = = , 
 
(a5) 0 x 0∗ = . 
 
 In any BCH/BCK-algebra X we can define a 
partial order ≤ by putting x≤y if and only if x*y = 0. 
  

SMARANDACHE BCH-ALGEBRAS 
 
Definition 1: A Smarandache BCH-algebra is defined 
to be a BCH-algebra X in which there exists a proper 
subset Q of X such that 
 
(s1) 0 Q and Q 2∈ ≥ ,  

 
(s2) Q is a BCK-algebra under the operation of X.  
 
Example 2: Let X= {0, 1, 2, 3, 4}. The following table 
shows the BCH-algebra structure on X 
 
* 0 1 2 3 4 

0 0 0 0 0 4 

1 1 0 0 1 4 

2 2 2 0 0 4 

3 3 3 3 0 4 

4 4 4 4 4 0 

 
 Consider Q = {1, 2, 3}, thus Q is a BCK-algebra 
which is properly contained in X. Then (X,*,0) is a 
Smarandache BCH-algebra. 
 In what follows, let X and Q denote a Smarandache 
BCH-algebra and a BCK-algebra which is properly 
contained in X, respectively. 
 
Definition 3: A nonempty subset I of X is called a 
Smarandache ideal of X related to Q (or briefly, Q-
Smarandache ideal of X) if it satisfies: 
  
(c1) 0 I∈  , 

(c2) ( x Q)( y I)(x y I x I)∀ ∈ ∀ ∈ ∗ ∈ ⇒ ∈ . 

 
Example 4: Let X be a Smarandache BCH-algebra of 
above example. It is easily checked that I = {0, 2} is a 
Smarandache ideal of X. 

 
 If I is  a Smarandache ideal of X related to every 
BCK-algebra contained in X, we simply say that I is a 
Smarandache ideal of X. 
 
Proposition 5: Any ideal of X is a Q-Smarandache 
ideal of X. 
 By the following example we show that the 
converse of above proposition is not correct in general. 
 
Example   6:   Let X={0,a,b,c,d,e,f,g,h,i,j,k,l,m,n}. The 
following    table    shows   the  BCH-algebra   structure 
on  X. 
 
* 0 a b c d e f g h i j k l m n 

0 0 0 0 0 0 0 0 0 h h h h l l n 

a a 0 a 0 a 0 a 0 h h h h m l n 

b b b 0 0 f f f f i h k k l l n 

c c b a 0 g f g f i h k k m l n 

d d d 0 0 0 0 d d j h h j l l n 

e e e a 0 a 0 e d j h h j m l n 

f f f 0 0 0 0 0 0 k h h h l l n 

g g f a 0 a 0 a 0 k h h h a l n 

h h h h h h h h h 0 0 0 0 n n l 

i i i h h k k k k b 0 f f n n l 

j j j h h h h j j d 0 0 d n n l 

k k k h h h h h h f 0 0 0 n n l 

l l l l l l l l l n n n n 0 0 h 

m m l m l m l m l n n n n a 0 h 

n n n n n n n n n l l h l h h 0 

 
 Consider Q= {0, a}, thus Q is a BCK-algebra. Then 
X is a Smarandache BCH-algebra. It is clear that I = {0, 
a, b} is  a Q-Smarandache ideal, which is not an ideal, 
since d*b = 0 ∈I and b∈I, but d∉I. 
 
Proposition 7: If Q satisfies Q*X⊂Q, then every Q-
Smarandache ideal of X satisfies in the following 
implication 
 
          ( x,y I)( z Q)((z y) x 0 z I)∀ ∈ ∀ ∈ ∗ ∗ = ⇒ ∈  (1) 
 
Proof: Assume that Q*X⊂Q and let I be a Q-
Smarandache ideal of X. Suppose that (z*y)*x=0, for 
all x,y∈I and z∈Q, then (z*y)∈Q by assumption and 
(z*y)*x∈I then z*y∈I by (c2) since y∈I, it follows that 
z∈I. This completes the proof.  
 
Theorem  8:   Let  Q1  and  Q2  are BCK-algebras 
which  are  properly  contained  in  X  and  Q1⊆Q2. 
Then every Q2-Smarandache ideal is a Q1-Smarandache 
ideal.  
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 The following example shows that the converse of 
above theorem is not true in general. 
 
Example 9: Let X= {0, a, b, c, d, e}. The following 
table shows the BCH-algebra structure on X. 
 
* 0 a b c d e 

0 0 0 0 0 d d 

a a 0 0 a d d 

b b b 0 b d d 

c c c c 0 d d 

d d d d d 0 0 

e e d d e a 0 

 
 Note that the subsets Q1 = {0, b} and Q2 = {0, a, b, 
c} are BCK-algebra which are properly contained in X. 
Then X is a Smarandache BCH-algebra. It is easily 
checked that I= {0, b, c} is a Q1-Smarandache ideal of 
X and it is not a Q2-Smarandache ideal of X, since 
a b 0 I a n d b I,but a I∗ = ∈ ∈ ∉  
 
Definition 10: A nonempty subset I of X is called a 
Smarandache fresh ideal of X related to Q (or briefly, 
Q-Smarandache fresh ideal of X) if it satisfies the 
condition (c1) and 
 

(c3) x,y,z Q((x y) z I,y z I x z I)∀ ∈ ∗ ∗ ∈ ∗ ∈ ⇒ ∗ ∈  

 
Example 11: Let X= {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X. 
 
* 0 1 2 3 

0 0 0 2 2 

1 1 0 2 2 

2 2 2 0 0 

3 3 2 1 0 

 
 Note that Q= {0, 1} is a BCK-algebra which is 
properly contained in X. Then X is a Smarandache 
BCH-algebra. It is easily checked that I= {0, 1} is a Q-
Smarandache fresh ideal of X.  
 
Theorem 12: Let Q1 and Q2 are BCK-algebras which 
are properly contained in X and Q1 ⊆ Q2. Then every 
Q2-Smarandache fresh ideal of X is a Q1-Smarandache 
fresh ideal of X.  
       The following example shows that the converse of 
above theorem is not true in general. 
 
Example 13: Let X= {0, 1, 2, 3, 4, 5}. The following 
table shows the BCH-algebra structure on X. 

 
* 0 1 2 3 4 5 
0 0 0 0 0 4 4 
1 1 0 0 1 4 4 
2 2 2 0 2 4 4 
3 3 3 3 0 4 4 
4 4 4 4 4 0 0 
5 5 4 4 5 1 0 

 
 Note that Q1 = {0, 1} and Q2 = {0, 1, 2, 3} are 
BCK-algebra which are properly contained in X. Then 
X is a Smarandache BCH-algebra. It is easily checked 
that a subset I= {0, 2, 3} is a Q1-Smarandache fresh 
ideal of X and is not a Q2-Smarandache fresh ideal of 
X. Since (1*2)*3 = 0∈I and 2*3 =2∈I but 1*3 =1∉I 
 
Proposition 14: If I is  a Q-Smarandache fresh ideal of 
X, then 
 

( x,y Q)((x y) y I x y I)∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∈  
 
Proof: Assume that (x*y)*y∈I for all x,y∈Q Since 
y*y=0∈I. By (I1) and (c1), it follows from (c3) that 
x*y∈I. This is the desired result.  
 
Theorem 15: Every Q-Smarandache fresh ideal which 
is contained in Q is a Q-Smarandache ideal. 
 
Proof: Let I be a Q-Smarandache fresh ideal of X 
which is contained in Q. Let x∈Q and y∈I be such that 
x*y∈I. Then (x*y)*0=x*y∈I and y*0=y∈I. Since x∈Q 
and y∈I⊂Q it follow from (c3) and (I3) that x=x*0∈I 
so that I is a Q-Smarandache ideal of X. 
  
      The following example shows that the converse of 
above theorem is not true in general. 
 
Example 16: Let X= {0, a, b, c, d, e}. The following 
table shows the BCH-algebra structure on X. 
 
* 0 a b c d e 
0 0 0 0 0 0 e 
a a 0 0 0 a e 
b b a 0 a b e 
c c c c 0 d d 
d d d d d 0 e 
e e e e e e 0 

 
 Note that Q= {0, a, b, c, d} is a BCK-algebra 
which is properly contained in X. Then X is a 
Smarandache  BCH-algebra.  It  is  easily  checked  that 
a  subset I= {0, d} is a Q-Smarandache ideal of X 
which is not a Q-Smarandache fresh ideal. Since 
(b*a)*c=0∈I and 
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a c 0 I, butb c a I∗ = ∈ ∗ = ∉  

 
 We provide conditions for a Q-Smarandache ideal 
to be a Q-Smarandache fresh ideal. 
 
Theorem 17: If I is a Q-Smarandache ideal of X such 
that  
 
       ( x,y,z Q)((x y) z I (x z) (y z) I∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∗ ∗ ∈  (2) 
 
Then I is a Q-Smarandache fresh ideal of X. 
 
Proof: Assume that (x*y)*z∈I and y*z∈I, for all 
z,y,z∈Q. Then (x*z)*(y*z) ∈I by (2) and so x*z∈I by 
(c2). Therefore I is a Q-Smarandache fresh ideal of X. 
 
Proposition 18: If I is a Q-Smarandache fresh ideal of 
X which is contained in Q, then  
 
     ( x,y Q)( z I)(((x y) y) z I x y I)∀ ∈ ∀ ∈ ∗ ∗ ∗ ∈ ⇒ ∗ ∈  (3) 

 
Proof: Assume that ((x*y)*)*z∈I for all x,y∈Q and 
z∈I. If I is a Q-Smarandache fresh ideal of X, which is 
contained in Q, then I is a Q-Smarandache ideal of X. 
Using (c2), we know that (x*y)*y∈I by Proposition 14, 
we get that x*y∈I. 
 
Theorem 19: Let I and J are Q-Smarandache ideal of X 
and I⊂J. If I is a Q-Smarandache fresh ideal of X and I 
satisfies in following condition 
 

( x,y,z Q) ((x y) z) I (x z) (y z) I∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∗ ∗ ∈  
 
Then J is a Q-Smarandache fresh ideal of X. 
 
Proof: Let (x*y)*z∈J for all x, y, z∈Q. Using (I1) and 
(I3), we have ((x*((x*y)*z)) *y)*z= ((x*y)*z)*((x*y) 
*z) =0∈I. Since I is a Q-Smarandache fresh ideal of X 
and by hypothesis we get that  
 
((x*z)*(y*z)*((x*y)*z) = ((x*((x*y)*z))*z)*(y*z)∈I⊂J   
 
So we get that (x*y)*(y*z) ∈J. This proves that J is a 
Q-Smarandache fresh ideal of X. 
 

SMARANDACHE CLEAN IDEALS 
 
Definition 1: A nonempty subset I of X is called a 
Smarandache clean ideal of X related to Q (or briefly, 
Q-Smarandache clean ideal of X) if it satisfies the 
condition (c1) and  
 

(c4) ( x,y Q)( z I) ((x (y x)) z I x I)∀ ∈ ∀ ∈ ∗ ∗ ∗ ∈ ⇒ ∈  

 
Example 2: Let X= {0, a, b, c, d, e}. The following 
table shows the BCH-algebra structure on X. 
 
* 0 a b c d e 

0 0 0 0 0 0 e 

a a 0 0 0 0 e 

b b a 0 a 0 e 

c c c c 0 0 e 

d d d d d 0 e 

e e e e e e 0 

 
 Note that Q= {0, a, b, c, d} is a BCK-algebra 
which is properly contained in X. Then X is a 
Smarandache BCH-algebra.  It is easily checked that I= 
{0, a, b, c} is a Q-Smarandache clean ideal of X. 
 
Theorem 3: Every Q-Smarandache clean ideal of X is 
a Q-Smarandache ideal of X. 
 
Proof: Let I be a Q-Smarandache clean ideal of X. Let 
x∈Q and z∈I be such that x*z∈I. Taking y=x in (c4), 
we have 
 

(x (x x)) z (x 0) z x z I∗ ∗ ∗ = ∗ ∗ = ∗ ∈  
 
and so x∈I. Hence I is a Q-Smarandache ideal of X.  
  
     The following example shows that converse of 
above theorem is not correct in general. 
 
Example 4: Let X= {0, 1, 2, 3, 4} with the following 
table shows the BCH-algebra structure on X. 
 
* 0 1 2 3 4 

0 0 0 0 0 0 

1 1 0 1 0 1 

2 2 2 0 2 0 

3 3 1 3 0 3 

4 4 4 4 4 0 

 
It is easily checked that a subset I= {0, 2} is a Q-
Smarandache ideal of X, but it is not a Q-Smarandache 
clean ideal of X, since  
 

(3 (3 4)) 2 (3 3) 2 0 2 0 I, but 3 I∗ ∗ ∗ = ∗ ∗ = ∗ = ∈ ∉  
 
Remark 5: If Q is an implicative BCK-algebra, that is, 
Q satisfies the condition: 
 

( x,y Q)(x x (y x))∀ ∈ = ∗ ∗  
 Then every Q-Smarandache ideal is a Q-
Smarandache clean ideal. 
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      The following example shows that every Q-
Smarandache fresh ideal is not a Q-Smarandache clean 
ideal and also every Q-Smarandache clean ideal is not a 
Q-Smarandache fresh ideal. 
 
Example 6: Let X= {0, 1, 2, 3}. The following table 
shows the BCH-algebra structure on X. 
 
* 0 1 2 3 
0 0 0 0 0 
1 1 0 3 3 
2 2 0 0 2 
3 3 0 0 0 

 
 Note that Q= {0, 1, 2, 3} is BCK-algebra which is 
properly contained in X.  Then X is a Smarandache 
BCH-algebra.   It   is   easily   checked   that   a subset 
I1 = {0, 3} is a Q-Smarandache clean ideal of X, but it 
is not a Q-Smarandache fresh ideal of X. Since 
(2*3)*2=0∈I and 3*2=0∈I, but 2*3=2∉I. 
 
Example 7: Let X= {0, 1, 2, 3, 4} with the following 
table shows the BCH-algebra structure on X. 
 
* 0 1 2 3 4 

0 0 0 0 0 0 

1 1 0 1 0 1 

2 2 2 0 2 0 

3 3 1 3 0 3 

4 4 4 2 4 0 

 
it is easily checked that a subset I={0,2,4} is a Q-
Smarandache fresh ideal, but is not a Q-Smarandache 
clean ideal of X, since (1*(3*1))*1=0, but 1∉I. 
 
Proposition 8: Every Q-Smarandache clean ideal I of 
X satisfies the following implication: 
 
           x,y Q , y (y x) I x (x y) I∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∗ ∈  (4) 

 
Proof: Let I be a Q-Smarandache clean ideal of X. 
Then I is a Q-Smarandache ideal of X (Theorem 3). 
Assume that y*(y*x) ∈I, for all x, y ∈Q. Since 
((x*(x*y))*(y*(x*(x*y))))*(y*(y*x)) =0∈I it follows 
from (J1) and (c2) that  
((x*(x*y))*(y*(x*(x*y))))*0=(x*(x*y))*(y*(x*(x*y)))
∈I. So we get that (x*(x*y))∈I. 
 
Theorem 9: Let I be a Q-Smarandache fresh ideal of X 
which is contained in Q. If I satisfy the following 
condition: 
 
               ( x,y Q)(x (y x)) I x I∀ ∈ ∗ ∗ ∈ ⇒ ∈  (5) 

 
and if x≤y implies that a*z≤y*z, then I is a Q-
Smarandache clean ideal of X. 
 
Proof: Let x, y∈Q and z∈I be such that (x*(y*x))*z∈I. 
If I is  a Q-Smarandache fresh ideal which is contained 
in Q, then I is a Q-Smarandache ideal. Thus x*(y*x)∈I 
by (c2). Since 
 

((y (y x)) (y x)) (x (y x)) 0 I∗ ∗ ∗ ∗ ∗ ∗ ∗ = ∈  
 
it follows from (c2) that (y*(y*x))*(y*x)∈I by 
Proposition 14, we get that y*(y*x)∈I. Hence by (5), 
x*(x*y) ∈I on the other hand, note that 
 

((x y) z) (x (y x)) 0 I∗ ∗ ∗ ∗ ∗ = ∈  
 
Then (x*y)*z∈I and so x*y∈I. Therefore x∈I. 
 
Theorem 10: Let I be a Q-Smarandache ideal of X. 
Then I is a Q-Smarandache clean ideal of X if and only 
if I satisfies the following condition: 
 
               ( x,y Q)(x (y x) I x I)∀ ∈ ∗ ∗ ∈ ⇒ ∈  (6) 
 
Proof: Suppose that (x*(y*x))*z∈I, for all x,y∈Q and 
z∈I. Then x*(y*x)∈I by (c2) and so by (6) x∈I.  
 Conversely, assume that I is a Q-Smarandache 
clean ideal of X and x,y∈Q be such that x*(y*x)∈I. 
Since 0∈I, it follows from (J1) that (x*(y*x))*0= 
x*(y*x)∈I, so from (c4) we get that x∈I. 
 

SMARANDACHE FANTASTIC IDEALS 
 
Definition 1: A nonempty subset I of X is called a 
Smaradache fatastic ideal of X related to Q (or brifly, 
Q-Smarandache fatastic ideal of X) if it satisfies the 
condition (c1) and 
 

(c5)( x,y Q)( z I)(x y) z I x (y (y x)) I∀ ∈ ∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∗ ∗ ∈  
 
 In the following example we show the relationship 
between the Q-Smarandache fantastic ideal of X and 
other types of Q-Smarandache ideals which defined 
before. 
 
Example 2: Let X= {0, 1, 2, 3, 4, 5}. The following 
table shows the BCH-algebra structure on X. 
 
* 0 1 2 3 4 5 
0 0 0 0 0 0 5 
1 1 0 1 0 1 5 
2 2 2 0 2 0 5 
3 3 1 3 0 3 5 
4 4 4 4 4 0 5 
5 5 5 5 5 5 0 



World Appl. Sci. J., 7 (Special Issue for Applied Math): 77-83, 2009 

 82 

 
Note that Q= {0, 1, 2, 3, 4} is a BCK-algebra which is 
properly contained in X. Then X is a Smarandache 
BCH-algebra. It is easily checked that a subset I1={0,2} 
and I2={0,2,4} are Q-Smarandache fantastic ideal of X, 
but it is not a Q-Smarandache fresh ideal of X. 
I3={0,1,3} is a Q-Smarandache fresh ideal, but is not a 
Q-Smarandache fantastic ideal, since (2*4)*3=0∈I3 and 
2*(4*(4*2))=2∉I3. 
 Also I1= {0,2} is a Q-Smarandach fatastic ideal of 
X, but it is not a Q-Smarandache clean ideal, since 
(1*(3*1))*0=0= (1*1)*0 = 0∈I1, but 1∉I1. 
 
Theorem 3: Let Q1 and Q2 are BCK-algebras which 
are properly contained in X and Q1⊆ Q2. Then every 
Q2-Smarandache fantastic ideal is a Q1-Smarandache 
fantastic ideal.  
 The following example shows that converse of 
above theorem is not correct in general. 
 
Example 4: Let X= {0, 1, 2, 3, 4, 5}. The following 
table shows the BCH-algebra structure on X. 
 
* 0 1 2 3 4 5 
0 0 0 0 0 0 5 
1 1 0 1 0 1 5 
2 2 2 0 2 0 5 
3 3 1 3 0 3 5 
4 4 4 4 4 0 5 
5 5 5 5 5 5 0 

 
 Note that Q1={0,2,4} and Q2={0,1,2,3,4} are BCK-
algebra which are properly contained in X and Q1⊆ Q2. 
Then I= {0, 1, 3} is a Q1-Smarandache fantastic ideal of 
X, but is not a Q2-Smarandache fantastic ideal of X.  
 
Theorem 5: Every Q-Smarandache fantastic ideal of X 
is a Q-Smarandache ideal of X. 
 
Proof: Let I be a Q-Smarandache fantastic ideal of X. 
Assume that x*z∈Q, for all x∈Q and z∈I. Using (J1), 
we get that (x*0)*z=x*z∈I. Since x∈Q and Q is a 
BCK-algebra,  it  follows  from  (a5), (J1) and (c5) that 
x = x*(0*(0*x))∈I, so that I is a Q-Smarandache ideal 
of X. 
  
Theorem 6: Let I be a Q-Smarandache ideal of X. 
Then I is a Q-Smarandache fantastic ideal of X if and 
only if I satisfies the following condition: 
 

( x,y Q)(x y I x (y (y x)) I∀ ∈ ∗ ∈ ⇒ ∗ ∗ ∗ ∈  
 

Proof: Suppose that I satisfies in (7), (x*y)*z∈I, for all 
x,y∈Q and z∈I. Then x*y∈I by (c2) and so 
x*(y*(y*x))∈I. 

 
 Conversely, assume that I is a Q-Smarandache 
fantastic ideal of X and let x,y∈Q be such that x*y∈I. 
Using (J1), we have (x*y)*0= x*y∈I and 0∈I. It 
follows from (c5) that x*(y*(y*x))∈I  
 
Theorem 7: Let I and J are Q-Smarandache ideals of X 
and I⊂J⊂Q. If I is a Q-Smarandache fantastic ideal of 
X and I satisfied in following condition 
 

( x,y,z Q)((x y) z) I (x z) (y z) I∀ ∈ ∗ ∗ ∈ ⇒ ∗ ∗ ∗ ∈  
 
Then J is a Q-Smarandache fantastic ideal of X. 
 
Proof: Assume that x*y∈J, for all x,y∈Q. Since 
 

(x (x y)) y (x y) (x y) 0 I∗ ∗ ∗ = ∗ ∗ ∗ = ∈  
 
It follows from (I3) and (7) that  
 

(x (y (y (x (x y))))) (x y)∗ ∗ ∗ ∗ ∗ ∗ ∗ =  
(x (x y)) (y (y (x (x y)))) I J∗ ∗ ∗ ∗ ∗ ∗ ∗ ∈ ⊂  

 
 So from (c2), x*(y*(y*(x*(x*y) ∈J. Since x,y∈Q 
and Q is a BCK-algebra, we conclude that 
(x*(y*(y*x)))*(x*(y*(y*(x*(x*y)))))=0∈J by using 
(a1). It follows that x*(y*(y*x)) ∈J. Hence J is  a Q-
Smarandache fantastic ideal of X. 
 
Theorem 8: Let I be a Q-Smarandache fresh ideal and 
Q-Smarandache fantastic ideal of X. Also  
 

x,y,z Q, (x y) x z y z∀ ∈ ≤ ⇒ ∗ ≤ ∗  
 
Then I is a Q-Smarandache clean ideal of X. 
 
Proof: Suppose that I is both a Q-Smarandache fresh 
ideal and Q-Smarandache fantastic ideal. Let x,y∈Q be 
such that x*(y*x)∈I. Since  
 

((y (y x)) (y x)) (x (y x)) 0 I∗ ∗ ∗ ∗ ∗ ∗ ∗ = ∈  
 
 We get that (y*(y*x))*(y*x)∈I by (c2). Since I is a 
Q-Smarandache fresh ideal, it follows from Proposition 
14 that y*(y*x)∈I, then x*y∈I, on the other hand we 
have (x*y)*(y*(y*x))=0∈I. Since I is a Q-Smarandache 
fantastic ideal, we obtain (x*(y*(y*x)∈I by (7) and so 
x∈I. Therefore I is a Q –Smarandache clean ideal of X.  
 

CONCLUSION 
 
 Smarandache structure occurs as a weak structure 
in   any   structure.   In   the   present   paper,   we   have  
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introduced the concept of Smarandache BCH-algebras 
and investigated some of their useful properties. In our 
opinion, these definition and main result can be 
similarly extended to some other algebraic systems 
such as BL-algebra, lattices and Lie algebras.  
      It is our hope that this work would other 
foundations for further study of the theory of BCH-
algebras. Our obtained results can be perhaps applied in 
engineering, soft computing or even in medical 
diagnosis . 
 In our future study of Smarandache structure of 
BCH-algebras, may be the following topics should be 
considered: 
 
• To consider the structure of quotient of 

Smarandache BCH-algebras; 
• To get more results in Smarandache BCH-algebras 

and application; 
• To define fuzzy structure on Smarandache BCH-

algebras. 
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