On The Smarandache Semigroups

حول أشباه زمر سمار انش
sajda Kadhum Mohammed lecturer
Dep.of Math. , College Of Education for Girls, Al-Kufa University

Abstract

: We discusse in this paper a Smarandache semigroups, a Smarandache normal subgroups and a Smarandache lagrange semigroup.We prove some results about it and prove that the Smarandache semigroup $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ with multiplication modulo p^{n} where p is a prime has the subgroup of order $\mathrm{p}^{\mathrm{n}}-\mathrm{p}^{\mathrm{n}-1}$ and we prove that if p is an odd prime then $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ is a Smarandache weakly Lagrange semigruop and if p is an even prime then $\mathrm{Z}_{\mathrm{p}^{n}}$ is a Smarandache Lagrange semigruop

الخلاصة: ناقشنا في هذا البحث أثباه زمر سمار انش ,زمر سمار انشش الناظميةو أشبا ه زمر لاكر انج سمار انش حيث بر هنـا مجموعة من النتائج المتعلقة بها .كمـا أثبتـا أن شبه الزمرة مجمو عة جزئية تكون زمرة ذات رتبة pon-p زمـرة لاكـرانج سـمار انـش بضــف أمـا إذا كانتت p عـد أولـي زوجـي فـن شبه الزمـرة أعـلاه نكـون شبه زمـرة لاكـرانج

1.Introduction :

Padilla Raul introduced the notion of Smarandache semigroups[1], in the year 1998 in the paper entitled Smarandache Algebraic Structures .since groups are prefect structures under a single closed associative binary operation ,it has become infeasible to define Smarandache groups. Smarandache semigroups are the analog in the Smarandache ideologies of the groups where Smarandache semigroup is defined to be the semigroup A such that a proper subset of A is a group (with respect to the same binary operation).

In this paper we prove some results in a Smarandache normal subgroups[1],[2], a Smarandache lagrange semigroups[1],[2], a Smarandache direct product semigroups[2], a Smarandache strong internal direct product semigeoups[2], the S-semigroup homomorphism[1],[2] and prove research problems in the references about the semigroup $\mathrm{Z}_{\mathrm{p}^{n}}$ we solve then using Mathlab programming to check our results in this open problems .

2.Definitions and Notations:

Definition 2.1:The Smarandache semigroup (S-semigroup) is defined to be a semigroup A such that a proper subset of A is a group (with respect to the same binary operation),[2].
Example 2.1: Let $\mathrm{z}_{12}=\{0,1, \ldots, 11\}$ be the semigroup under multiplication module 12.Clearly the set $\mathrm{A}=\{1,11\} \subset \mathrm{z}_{12}$ is a group under multiplication modulo 12 ,so z_{12} is the Smarandache semigroup,[2] .
Definition 2.2: Let S be a S-semigroup.Let A be a proper subset of S which is a group under the operation of S .We say S is a Smarandache normal subgroup of the S -semigroup if $\mathrm{xA} \subseteq \mathrm{A}$ and $\mathrm{Ax} \subseteq \mathrm{A}$ or $\mathrm{xA}=\{0\}$ and $\mathrm{Ax}=\{0\} \forall \mathrm{x} \in \mathrm{S}$ and if 0 is an element in S then we have $\mathrm{xA}=\{0\}$ and $A x=\{0\},[2]$.

Journal of Kerbala University, Vol. 8 No. 3 Scientific . 2010

Definition 2.3: Let S be a S -semigroup we say the proper subset $\mathrm{M} \subset \mathrm{S}$ is the maximal subgroup of S that is N if a subgroup such that $\mathrm{M} \subset \mathrm{N}$ then $\mathrm{M}=\mathrm{N}$ is the only possibility,[2].
Definition 2.4: Let S be a S-semigroup.If S has only one maximal subgroup we call $S a$ Smarandache maximal semigroup,[2] .
Example 2.2: Let $\mathrm{z}_{7}=\{0,1, \ldots, 6\}$ be the S -semigroup under multiplication module 7,the only maximal semigroup of z_{7} is $\mathrm{G}=\{1,2, \ldots, 6\} \subset \mathrm{z}_{7}$ so z_{7} is a Smarandache maximal semigroup ,[2].
Definition 2.5: Let S_{1}, \ldots, S_{n} be n S-semigroup, $S=S_{1} \times S_{2} \times \ldots \times S_{n}=\left\{\left(s_{1}, S_{2}, \ldots, s_{n}\right): s_{i} \in S_{i}\right.$ for $\mathrm{i}=1, \ldots, \mathrm{n}\}$ is called the Smarandache direct product of the S-semigroups $\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}}$ if S is a Smarandache maximal semigroup, and G is got from the S_{1}, \ldots, S_{n} as $G=G_{1} \times G_{2} \times \ldots \times G_{n}$ where each G_{i} is the maximal subgroup of the S -semigroup S_{i} for $\mathrm{i}=1, \ldots, \mathrm{n},[2]$.
Definition 2.6: Let S be a S-semigroup.If $S=B \cdot A_{1} \bullet \ldots A_{n}$ where B is a S-semigroup and $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are maximal subgroup of S then we say S is a Smarandache strong internal direct product,[2].
Definition 2.7: A homomorphism φ from a semigroup (S, .) to a semigroup ($\mathrm{S}^{\prime},{ }^{*}$) is a mapping φ from the set S into the set S such that $\varphi(\mathrm{x} . \mathrm{y})=\varphi(\mathrm{x})^{*} \varphi(\mathrm{y})$ for every $\mathrm{x}, \mathrm{y} \in \mathrm{S}$.If φ is also a surjective mapping then φ is called a homomorphism from S onto S . In case the mapping φ above is injective, it is called a one to one homomorphism .An isomorphism from S to S is a homomorphism which is both surjective and injective,[3].
Definition 2.8: Let S and S^{\prime} be any two S -semigroups .A map φ from S to S is said to be $a S$ semigroup homomorphism if φ restricted to a subgroup $A \subset S \rightarrow A^{\prime} \subset S^{\prime}$ is a group homomorphism .The S-semigroup homomorphism is an isomorphism if $\varphi: \mathrm{A} \rightarrow \mathrm{A}^{\prime}$ is one to one and onto . Similarly,one can define S-semigroup automorphism on S,[2].
Definition 2.9: Let S be a finite S-semigroup .We say S is a Smarandache non-Lagrange semigroup if the order of none of the subgroups of S divides the order of the S-semigroup,[2].
Definition 2.10: Let S be a finite S-semigroup.If the order of every subgroups of S divides the order of the S-semigroup S then we say S is a Smarandache Lagrange semigroup ,[2].
Definition 2.11: Let S be a finite S-semigroup.If there exist at least one subgroup A that is a proper subset $(A \subset S)$ having the same operation of S whose order divides the order of S then we say that S is a Smarandache weakly Lagrange semigroup ,[2].
Definition 2.12: Two integers a and b , not both of which are zero, are said to be relatively prime whenever g.c.d.(a,b)=1,[4].
Definition 2.13: For $\mathrm{n} \geq 1$, let $\varphi(n)$ denotes the number of positive integer not exceeding n that is relatively prime to $\mathrm{n},[4]$.
Definition 2.14: Let ($\mathrm{G},,^{*}$) be a finite group and p a prime .A subgroup $\left(\mathrm{P},{ }^{*}\right)$ of $\left(\mathrm{G},,^{*}\right)$ is said to be a Sylow p-subgroup if $\left(\mathrm{P},,^{*}\right)$ is a p-group and is not properly contained in any other p -subgroup of $(G, *)$ for the same prime number $p,[5]$.
Theorem 2.1: If p is a prime and $\mathrm{k}>0$, then

$$
\varphi\left(\mathrm{p}^{\mathrm{k}}\right)=\mathrm{p}^{\mathrm{k}}-\mathrm{p}^{\mathrm{k}-1},[4] .
$$

Theorem (Euler) 2.2: If n is a positive integer and g.c.d.(a, n$)=1$ then

$$
\mathrm{a}^{\varphi(\mathrm{n})} \equiv 1 \bmod \mathrm{n},[4] .
$$

Theorem 2.3: If n is a positive integer then $a x \equiv 1 \bmod n h a s$ a unique solution iff g.c.d. $(\mathrm{a}, \mathrm{n})=1,[6]$.

Theorem 2.4: Let $\mathrm{a}, \mathrm{b}, \mathrm{n} \in \mathrm{Z}, \mathrm{n}>0$.If g.c.d. $(\mathrm{a}, \mathrm{n})=1$ then the congruence $\mathrm{az} \equiv \mathrm{b} \bmod \mathrm{n}$ has a unique solution z ; moreover, any integer z is a solution iff $\mathrm{z} \equiv \mathrm{z} \bmod \mathrm{n},[7]$.
Theorem (Sylow)2.5: Let ($\mathrm{G}, *$) be a finite group of order $\mathrm{p}^{\mathrm{k}} \mathrm{q}$, where p is a prime not dividing q Then $(\mathrm{G}, *)$ has a Sylow p-subgroup of order p^{k},[5].

3.A Smarandache normal subgroups:

Proposition 3.1: Let S be a S-semigroup and A is a proper subgroup of S which is a Smarandache normal subgroup ,if B is another subgroup of S have the same identity element as in A then B is not a Smarandache normal subgroup.

Proof: Let A, B be a Smarandache normal subgroups of S with the identity element e. Let x $\in A \subset S$ so $0 \neq x$ since A is a group and $x=x . e \in B$ since B is a Smarandache normal subgroup so $A \subset B$, by similar way $B \subset A$ so $A=B$ and this contradiction with our hypotheses, so B is not a Smarandache normal subgroup

Remark: In particular case if $\mathrm{B} \subset \mathrm{A}$ clear that those subgroups have the same identity element so all subgroups of S which are subsets from a Smarandache normal subgroup of S will be not a Smarandache normal subgroup.

Proposition 3.2: Let S be S-semigroup with zero element (0) and A is a Smarandache normal subgroup of S such that the identity element in S such as in A then $A=S /\{0\}$ and A is a maximal subgroup of S.

Proof: For every $0 \neq x \in S, x=x . e \in A$ since A is a Smarandache normal subgroup of S and $x . e \neq 0$ where $x . e=0$ iff $x=0$ since e is the identity element of S and A, so $S /\{0\} \subset A$ and since A is a group of S so $A \subset S /\{0\}$ therefore
$A=S /\{0\}$ and by the definition of a maximal subgroup of S then A is a maximal subgroup of S
Proposition 3.3: Let S be a S-semigroup without zero element then every proper subgroup of S have the same identity element as in S is not a Smarandache normal subgroup of S.

Proof: Suppose that A is a Smarandache normal subgroup of S and e is the identity element of S and A .
Let $x \in S, x=x . e \in A$ since A is a Smarandache normal subgroup of S, where $x . e \neq 0$ since $0 \notin S$ and e is the identity element of S, so $S \subset A$ therefore $A=S$ and this is contradiction,
so A is not a Smarandache normal subgroup of S
proposition 3.4: Let $S=S_{1} \times S_{2} \times \ldots \times S_{n}$ is a Smarandache direct product of the S-semigroup S_{1}, \ldots, S_{n} where no one of S_{i} has zero element and let $G=G_{1} \times G_{2} \times \ldots \times G_{n}$ is the maximal subgroup of S where each G_{i} is a maximal subgroup of S_{i} and a Smarandache normal subgroup of S_{i} with identity element different from the identity element of S_{i} then G is a Smarandache normal subgroup of $\mathrm{S}, \mathrm{i}=1, \ldots, \mathrm{n}$.
proof: Let $S=S_{1} \times S_{2} \times \ldots \times S_{n}$ is Smarandache direct product of the S - semigroup S_{1}, \ldots, S_{n}, $G=G_{1} \times G_{2} \times \ldots \times G_{n}$ is a maximal subgroup of S where each G_{i} is a maximal subgroup of S_{i} and a Smarandache normal subgroup of S_{i} with identity elements different from the identity element of S_{i} , $\mathrm{i}=1, \ldots, \mathrm{n}$.
Let $x \in S, y \in G$
$\mathrm{xy}=\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right) \quad$ where $\mathrm{g}_{\mathrm{i}} \in \mathrm{G}_{\mathrm{i}}$ and $\mathrm{x}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$.
So $\mathrm{xy}=\left(\mathrm{x}_{1} \mathrm{~g}_{1}, \ldots, \mathrm{x}_{\mathrm{n}} \mathrm{g}_{\mathrm{n}}\right) \in \mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{\mathrm{n}}=\mathrm{G}$

Journal of Kerbala University, Vol. 8 No. 3 Scientific . 2010

since G_{i} is a Smarandache normal subgroup of S_{i} and no one of $x_{i} g_{i}=0$ because that S_{i} has no zero element , $\mathrm{i}=1, \ldots, \mathrm{n}$, so $\mathrm{xG} \subseteq \mathrm{G}$,
by similar way $\mathrm{Gx} \subseteq \mathrm{G}$ so G is a Smarandache normal subgroup of S
Remark: It is important to know that the condition in above proposition where S_{i} dosn't have the same identity elements of G_{i} where if S_{i} has the same identity element of G_{i} we have $G_{i}=S_{i}$ by proposition 3.3 and this contradiction, also it is important to note that each S_{i} must not have zero element since, for example if S_{2} has zero element so $\mathrm{x}=\left(\mathrm{x}_{1}, 0, \ldots, \mathrm{x}_{\mathrm{n}}\right) \in \mathrm{S}$
let $\mathrm{y}=\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{n}}\right) \in \mathrm{G}$ where $\mathrm{g}_{\mathrm{i}} \in \mathrm{G}_{\mathrm{i}}$ and $\mathrm{x}_{\mathrm{i}} \in \mathrm{S}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$. but $\mathrm{xy}==\left(\mathrm{x}_{1} \mathrm{~g}_{1}, 0, \ldots, x_{n} g_{n}\right) \notin \mathrm{G}_{1} \times \mathrm{G}_{2} \times \ldots \times \mathrm{G}_{\mathrm{n}}=\mathrm{G}$, since $0 \notin \mathrm{G}_{2}$ where G_{2} is a group .
proposition 3.5: Let S and S be the S-semigroups and let $\mathrm{f}: \mathrm{S} \longrightarrow \mathrm{S}$ ' be a homomorphism from S onto S^{\prime}, if f is a Smarandache onto homomorphism from A to A where $A \subset S$ is a group , $A^{\prime} \subset S^{\prime}$ is a group and A is a Smarandache normal subgroup of S then A ' is a Smarandache normal subgroup of S^{\prime}.
proof: Let $\mathrm{f}: \mathrm{S} \longrightarrow \mathrm{S}^{\prime}$ is a Smarandache onto homomorphism from A to A^{\prime} so $\mathrm{f}(\mathrm{A})=\mathrm{A}^{\prime}$.
Let $\mathrm{f}: \mathrm{S} \longrightarrow \mathrm{S}$ is the onto homomorphism on the semigroup S ,
let $y \in S$ and $a \in f(A)$,
so $\exists x \in S$ such that $f(x)=y$,
since f is a Smarandache onto homomorphism from A to A'
$\exists \mathrm{a} \in \mathrm{A}$ such that $\mathrm{f}(\mathrm{a})=\mathrm{a}^{\prime}$,
$y . a=f(x) . f(a)=f(x . a)$, now since A is a Smarandache normal subgroup of S then
either $x . a \in A$ so $f(x . a) \in f(A)$ so $y . a^{\prime} \in f(A)$ and by similar way $a . y \in f(A)$
or $x . a=0$ if S has zero element (0) so $y . a^{\prime}=f(x . a)=f(0)=0^{\prime}$ where $f(0)=0^{\prime}$ is the zero element of S^{\prime} if S has 0 as a zero element. Since for all $y \in S \quad \exists x \in S$ such that $f(x)=y$ so if S has (0) then $\mathrm{f}(\mathrm{x}) . \mathrm{f}(0)=\mathrm{f}(\mathrm{x} .0)=\mathrm{f}(0)=\mathrm{f}(0) . \mathrm{f}(\mathrm{x}) \forall \mathrm{y} \in \mathrm{S}^{\prime}$, so $\mathrm{f}(\mathrm{A})=\mathrm{A}$ is a Smarandache normal subgroup of S^{\prime}
proposition 3.6: Let S and S^{\prime} be the S-semigroups.Let $f: S \longrightarrow S^{\prime}$ be an isomorphism from S to S , if f is a Smarandache onto homomorphism from A to A where $\mathrm{A} \subset \mathrm{S}$ is a group, $\mathrm{A} \subset \mathrm{S}$ is a group and A^{\prime} is a Smarandache normal subgroup of S^{\prime} then $f^{-1}\left(A^{\prime}\right)$ is a Smarandache normal subgroup of S.
proof: Let $\mathrm{f}: \mathrm{S} \longrightarrow \mathrm{S}^{\prime}$ is an isomorphism so $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{A}^{\prime}$ is a one to one .
let f is a Smarandache onto homomorphism from A to A,
so $f(A)=A^{\prime}$ and $f^{-1}(f(A))=A$.
Let $a \in A$ and $x \in S$,
since A is a Smarandache normal subgroup of S then either $f(x) . f(a) \in A$
so $\mathrm{f}(\mathrm{x} . \mathrm{a}) \in \mathrm{A}$ therefore $\mathrm{x} . \mathrm{a} \in \mathrm{A}$, by similar way $\mathrm{a} . \mathrm{x} \in \mathrm{A}$,
or $f(x) \cdot f(a)=f(0)=0$ if S has zero element (0),
so $f(x . a)=f(0)$ then $x . a=0$ where $f(0)=0^{\prime}$ is the zero element of S^{\prime} if S has 0 as a zero element, by similar way a. $x=0$ also $x .0=0 . x=0$ for each $x \in S$ if S has zero element (0) therefore $f^{-1}\left(A^{\prime}\right)$ is a
Smarandache normal subgroup of S
proposition 3.7: Let S be a Smarandache strong internal direct product semigroup where $\mathrm{S}=\mathrm{B}$ $\cdot \mathrm{A}_{1} \cdot \ldots \cdot \mathrm{~A}_{\mathrm{n}}$ such that $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}}$ are the maximal subgroups of S and B is the S -semigroup, if

1- $A_{i}, i=1, . ., n$; is a Smarandache normal subgroup of S commutative with each other .
2- If S has identity element it must be different from the identity elements of A_{i} which is also different from one to another , $\mathrm{i}=1, \ldots, \mathrm{n}$.

Journal of Kerbala University , Vol. 8 No. 3 Scientific . 2010

3- S has zero
Then $G=A_{1} \bullet \ldots \cdot A_{n}=S /\{0\}$ and G is a Smarandache normal subgroup of S.
Proof: Since A_{1}, \ldots, A_{n} are the maximal subgroup of S which are commutative with each other so $\mathrm{G}=\mathrm{A}_{1} \cdot \ldots \cdot \mathrm{~A}_{\mathrm{n}}$ is a group.
Let $0 \neq x \in S$, $x=b \cdot x_{1} \ldots \cdot x_{n}$ where $x_{i} \in A_{i}$ and $b \in B$ such that B is the S-semigroup, $i=1, \ldots, n$, so $x \in G$ since A_{i} is a Smarandache normal subgroup of $S, i=1, \ldots, n$, where if $b \cdot x_{i}=0$ for some i, then $x=0$ contradiction .
So $\forall 0 \neq \mathrm{x} \in \mathrm{S}$ we have $\mathrm{x} \in \mathrm{G}$ therefore $\mathrm{S} /\{0\} \subset \mathrm{G}$ so $\mathrm{S} /\{0\}=\mathrm{G}$.
To prove G is a Smarandache normal subgroup of S .
Let $x \in S$ and $y \in G$ such that $x=b \cdot x_{1} \ldots \cdot x_{n}$ and $y=x_{1} \bullet \ldots \cdot x_{n}$, where $x_{i}, x_{i} \in A_{i}$ and $b \in B$.
since A_{1}, \ldots, A_{n} are commutative with each other
so $\mathrm{x} \cdot \mathrm{y}=\mathrm{b} \cdot \mathrm{x}_{1} \ldots \cdot \mathrm{x}_{\mathrm{n}} \cdot \mathrm{x}_{1} \ldots \cdot \mathrm{x}_{\mathrm{n}}=\mathrm{b} \cdot \mathrm{x}_{1} \cdot \ldots \cdot \mathrm{x}_{\mathrm{n}}$, where $\mathrm{x}_{\mathrm{i}}=\mathrm{x}_{\mathrm{i}} \cdot \mathrm{x}_{\mathrm{i}}, \mathrm{i}=1, \ldots, \mathrm{n}$.
Now since A_{i} a Smarandache normal subgroup of S so either
$x \cdot y \in G$ if $b \cdot x_{i}^{\prime \prime} \in A_{i}$ for some i or $x \cdot y=0$ if $b \cdot x_{i}=0$ for some I, also $x \cdot 0=0 \cdot x=0 \forall x \in S$.
So G is a Smarandache normal subgroup of $S \square$
Remark: It is important to know that the condition in above proposition where A_{i} does not have the same identity because in such case we will have contradiction by proposition 3.1, also it is important the condition that S must have not the same identity as in A_{i} and S has zero element since if S has the same identity as in A_{i} and does not have zero element we have contradiction with proposition 3.3.

4-The S-semigroup ($\mathrm{Z}_{\mathrm{p}^{n}}, \mathrm{p}^{\mathrm{n}}$)

Proposition 4.1: Let $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ be the semigruop (p is a prime , $\mathrm{n}>1$) under multiplication modulo p^{n} ,then $Z_{p^{n}}$ has subset of order $\mathrm{p}^{\mathrm{n}}-\mathrm{p}^{\mathrm{n}-1}$ which is a subgroup under multiplication modulo p^{n}.

Proof: Let $\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}, . \mathrm{p}^{\mathrm{n}}\right)$ be the semigroup under multiplication modulo p^{n}, p is a prim, $\mathrm{n}>1$.
The order of $Z_{p^{n}}$ is p^{n}, now , to compose a subset of $Z_{p^{n}}$ without zero element in it we must cancel zero element because that $0 . \mathrm{x}=\mathrm{x} .0=0 \quad \forall \mathrm{x} \in \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}},[6]$,
and all elements give us zero element if multiplication modulo p^{n} with each other. Since among the first positive integer ,those which are divisible by p are
$\mathrm{P}, 2 \mathrm{p}, 3 \mathrm{p}, \ldots, \mathrm{kp}$, where k is the largest integer such that $\mathrm{kp} \leq \mathrm{p}^{\mathrm{n}}$,if $\mathrm{k}=\mathrm{p}^{\mathrm{n}-1}$ then
$\mathrm{kp}=\mathrm{p}^{\mathrm{n}-1} \mathrm{p}=\mathrm{p}^{\mathrm{n}}=0$ since we multiplication modulo p^{n} so the number of those elements is $\mathrm{p}^{\mathrm{n}-1}$.We must cancel all those elements of $Z_{p^{n}}$ since
$\operatorname{tp} \mathrm{p}^{\mathrm{n}-1}=0$ where $\mathrm{t} \leq \mathrm{k}, 1 \leq \mathrm{t}$ and $\mathrm{t} \in \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$,
$\mathrm{tp}^{2} \mathrm{p}^{\mathrm{n}-2}=0$ where $\mathrm{t} \leq \mathrm{k}, 1 \leq \mathrm{t}$ and $\mathrm{t} \in \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$,
and so on,
$\operatorname{tp}^{\mathrm{n}} \mathrm{p}=0$ where $\mathrm{t} \leq \mathrm{k}, 1 \leq \mathrm{t}$. and $\mathrm{t} \in \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$,
therefore $\mathrm{p}^{\mathrm{n}}-\mathrm{p}^{\mathrm{n}-1}$ is the number of the reminder element of $\mathrm{Z}_{\mathrm{p}^{n}}$, which are relatively prime with p^{n} where $\mathrm{p}^{\mathrm{n}}-\mathrm{p}^{\mathrm{n}-1}=\varphi\left(\mathrm{p}^{\mathrm{n}}\right),[3]$.
Now let H is the set of those elements ,i.e,
$\mathrm{H}=\{1, \ldots, \mathrm{p}-1, \mathrm{p}+1, \ldots, 2 \mathrm{p}-1,2 \mathrm{p}+1, \ldots, \mathrm{kp}-1\}$ so H is a group of order $p^{n}-p^{n-1}$, to prove this,

Journal of Kerbala University , Vol. 8 No. 3 Scientific . 2010

if $\mathrm{x}, \mathrm{y} \in \mathrm{H} \subset \mathrm{Z}_{\mathrm{p}^{n}}$ then $\mathrm{xy} \in \mathrm{Z}_{\mathrm{p}^{n}}$
and since $x y$ didn't divisible by p because that x, y didn't divisible by p,since H contains each element of $Z_{p^{n}}$ which didn't divisible by p so $x y \in H$,
it is clear that H is associative under multiplication modulo p^{n} and the identity element of H is 1,now to prove that all $x \in H$ has inverse element ,
let $\mathrm{x}, \mathrm{y} \in \mathrm{H}$ then $\mathrm{yx}=\mathrm{xy} \equiv 1 \bmod \mathrm{p}^{\mathrm{n}}$ has a unique solution modulo p^{n}
iff g.c.d $\left(\mathrm{x}, \mathrm{p}^{\mathrm{n}}\right)=1$,[5], so x has y as inverse .In fact y may be obtained direct from

$$
\mathrm{y} \equiv \mathrm{x}^{\varphi\left(\mathrm{p}^{\mathrm{n}}\right)-1} \bmod \mathrm{p}^{\mathrm{n}}
$$

Since an application of Euler's theorem leads immediately to

$$
\mathrm{xy} \equiv \mathrm{x}^{\varphi\left(\mathrm{p}^{\mathrm{n}}\right)} \equiv 1 \bmod \mathrm{p}^{\mathrm{n}} .
$$

so $\left(\mathrm{H}, . \mathrm{p}^{\mathrm{n}}\right)$ is a group \square
One can check that by using Mathlap programming after determine the value of n and p so we can present all examples about this subject.

Proposition 4.2: Let $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ be the semigruop (p is a prime, $\mathrm{n}>1$) under multiplication modulo p^{n}, p is an odd prime then $Z_{p^{n}}$ is a Smarandache weakly Lagrange semigroup.
Proof: Let $\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}, \mathrm{p}^{\mathrm{n}}\right)$ be the semigroup under multiplication modulo $\mathrm{p}^{\mathrm{n}}, \mathrm{p}$ is an odd prime, $\mathrm{n}>1$. By proposition 4.1, $Z_{p^{n}}$ has the subgroup H of order $p^{n}-p^{n-1}, O\left(Z_{p^{n}}\right)=p^{n}$ and $o(H)=p^{n}-p^{n-1}=p^{n-1}(p-$ 1), $O\left(Z_{p^{n}}\right)$ didn't divisible by $o(H)$ since $\quad \frac{p^{n}}{p^{n}-p^{n-1}}=\frac{p}{p-1}$,
also $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ has a subgroup of order 2 which is $\left\{1, \mathrm{p}^{\mathrm{n}-1}\right\}$ and $\mathrm{O}\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}\right)$ didn't divisible by 2 since p is an odd prime ,but by Sylow theorem in group theory,[5], H has K
as a p- Sylow subgroup of order $\mathrm{p}^{\mathrm{n}-1}$ where $\mathrm{p}-1$ didn't divisible by p , since K is a subgroup of $\mathrm{H} \subset \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ so K is a subgroup of $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ and

$$
\frac{\mathrm{o}\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}\right)}{\mathrm{o}(\mathrm{~K})}=\frac{\mathrm{p}^{\mathrm{n}}}{\mathrm{p}^{\mathrm{n}-1}}=\mathrm{p} \text {,so by definition 2.11, } \mathrm{Z}_{\mathrm{p}^{\mathrm{n}}} \text { is a Smarandache Weakly Lagrange semigroup } \square
$$

Example 4.1: Let $\mathrm{Z}_{3^{3}}=\{0,1, \ldots, 26\}$ be a S - semigroup under multiplication modulo 27 , it is clear that the order of $Z_{3^{3}}$ is 27 .

Journal of Kerbala University, Vol. 8 No. 3 Scientific . 2010
Now by proposition 4.1 it has H_{1} as a subgroup of order $3^{3}-3^{2}=18$ where
$\mathrm{H}_{1}=\{1,2,4,5,7,8,10,11,13,14,16,17,19,20,22,23,25,26\}$ and the table of H_{1} is given by

.27	1	2	4	5	7	8	10	11	13	14	16	17	19	20	22	23	25	26
1	1	2	4	5	7	8	10	11	13	14	16	17	19	20	22	23	25	26
2	2	4	8	10	14	16	20	22	26	1	5	7	11	13	17	19	23	25
4	4	8	16	20	1	5	13	17	25	2	10	14	22	26	7	11	19	23
5	5	10	20	25	8	13	23	1	11	16	26	4	14	19	2	7	17	22
7	7	14	1	8	22	2	16	23	10	17	4	11	25	5	19	26	13	20
8	8	16	5	13	2	10	26	7	23	4	20	1	17	25	14	22	11	19
10	10	20	13	23	16	26	19	2	22	5	25	8	1	11	4	14	7	17
11	11	22	17	1	23	7	2	13	8	19	14	25	20	4	26	10	5	16
13	13	26	25	11	10	23	22	8	7	20	19	5	4	17	16	2	1	14
14	14	1	2	16	17	4	5	19	20	7	8	22	23	10	11	25	26	13
16	16	5	10	26	4	20	25	14	19	8	13	2	7	23	1	17	22	11
17	17	7	14	4	11	1	8	25	5	22	2	19	26	16	23	13	20	10
19	19	11	22	14	25	17	1	20	4	23	7	26	10	2	13	5	16	8
20	20	13	26	19	5	25	11	4	17	10	23	16	2	22	8	1	14	7
22	22	17	7	2	19	14	4	26	16	11	1	23	13	8	25	20	10	5
23	23	19	11	7	26	22	14	10	2	25	17	13	5	1	20	16	8	4
25	25	23	19	17	13	11	7	5	1	26	22	20	16	14	10	8	4	2
26	26	25	23	22	20	19	17	16	14	13	11	10	8	7	5	4	2	1

and 27 didn't divisible by $18, \mathrm{Z}_{3^{3}}$ has H_{2} as a subgroup of order 2 where
$\mathrm{H}_{2}=\{1,26\}$ and the table of H_{2} is given by

.27	1	26
1	1	26
26	26	1

and 27 didn't divisible by 2 but $\mathrm{Z}_{3^{3}}$ has H_{3} as a subgroup of order 9 where H_{3} is a subset of Z_{27} and satisfy the definition of the group and 27 divisible by 9 where $H_{3}=\{1,4,7,10,13,16,19,22,25\}$ and the table of H_{3} is given by

.27	1	4	7	10	13	16	19	22	25
1	1	4	7	10	13	16	19	22	25
4	4	16	1	13	25	10	22	7	19
7	7	1	22	16	10	4	25	19	13
10	10	13	16	19	22	25	1	4	7
13	13	25	10	22	7	19	4	16	1
16	16	10	4	25	19	13	7	1	22
19	19	22	25	1	4	7	10	13	16
22	22	7	19	4	16	1	13	25	10
25	25	19	13	7	1	22	16	10	4

So $Z_{3^{3}}$ is Smarandache weakly Lagrange semigroup
Proposition 4.3:Let $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ be the semigruop (p is a prime, $\mathrm{n}>1$) under multiplication modulo $\mathrm{p}^{\mathrm{n}}, \mathrm{p}$ is an even prime then $Z_{p^{n}}$ is a Smarandache Lagrange semigroup.

Proof: Let $\left(\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}, \mathrm{p}^{\mathrm{n}}\right)$ be the semigroup under multiplication modulo p^{n}, p is an even prime, $\mathrm{n}>1$. By proposition 4.1, $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ has the subgroup H of order $\mathrm{p}^{\mathrm{n}}-\mathrm{p}^{\mathrm{n}-1}$,
$O\left(Z_{p^{n}}\right)=p^{n}$, since p is an even so $p=2$ and $\frac{p^{n}}{p^{n}-p^{n-1}}=\frac{p}{p-1}=p$.
So $Z_{p^{n}}$ divisible by $o(H)$,also every other subgroups of $Z_{p^{n}}$ must be a subgroup of H since as we see in proposition 4.1 H contains all elements which are not zero and the multiplication of one with each other not zero so any other subgroup of $\mathrm{Z}_{\mathrm{p}^{\mathrm{n}}}$ must be subset of H , by Lagrange theorem in the group theory,[8][9], the order of H divisible by the order of those subgroups.
So p^{n} divisible by the order of all subgroups of $Z_{p^{n}}$ so and by definition of a Smarandache
Lagrange semigroup $Z_{p^{n}}$ is a Smarandache Lagrange semigroup, where $p=2 \square$
Example 4.2: Let $\mathrm{Z}_{2^{5}}=\mathrm{Z}_{32}=\{0,1, \ldots, 31\}$ be the S -semigroup of order 32 under multiplication modulo $32, \mathrm{Z}_{32}$ have the following subgroups:
Three subgroup of order 2 which are $\{1,15\},\{1,17\},\{1,31\}$ and the table of those subgroups as following:

.32	1	15
1	1	15
15	15	1

.32	1	17
1	1	17
17	17	1

.32	1	31
1	1	31
31	31	1

It is clear that each one of them is a subset of Z_{32} and satisfy the definition of the group so it is a subgroup of Z_{32}.
Two subgroups of order 4 which are $\{1,7,17,23\},\{1,9,17,25\},\{1,15,17,31\}$ and the table of those subgroups as following:

.32	1	7	17	23
1	1	7	17	23
7	7	17	23	1
17	17	23	1	7
23	23	1	7	17

.32	1	9	17	25
1	1	9	17	25
9	9	17	25	1
17	17	25	1	9
25	25	1	9	17

.32	1	15	17	31
1	1	15	17	31
15	15	1	31	17
17	17	31	1	15
31	31	17	15	1

Two subgroups of order 8 which are $\{1,3,9,11,17,19,25,27\}$,
$\{1,5,9,13,17,21,25,29\}$ and the table of those subgroups as following:

.32	1	5	9	13	17	21	25	29
1	1	5	9	13	17	21	25	29

5	5	25	13	1	21	9	29	17
9	9	13	17	21	25	29	1	5
13	13	1	21	9	29	17	5	25
17	17	21	25	29	1	5	9	13
21	21	9	29	17	5	25	13	1
25	25	29	1	5	9	13	17	21
29	29	17	5	25	13	1	21	9

.32	1	3	9	11	17	19	25	27
1	1	3	9	11	17	19	25	27
3	3	9	27	1	19	25	11	17
9	9	27	17	3	25	11	1	19
11	11	1	3	25	27	17	19	9
17	17	19	25	27	1	3	9	11
19	19	25	11	17	3	9	27	1
25	25	11	1	19	9	27	17	3
27	27	17	19	9	11	1	3	25

It is clear that each one of them is a subset of Z_{32} and satisfy the definition of the group so it is a subgroup of Z_{32}.
Also by proposition 4.1 has H as the subgroup of order 16 where
$\mathrm{H}=\{1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31\}$ and the table of H is given by the following table :

.32	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
1	1	3	5	7	9	11	13	15	17	19	21	23	25	27	29	31
3	3	9	15	21	27	1	7	13	19	25	31	5	11	17	23	29
5	5	15	25	3	13	23	1	11	21	31	9	19	29	7	17	27
7	7	21	3	17	31	13	27	9	23	5	19	1	15	29	11	25
9	9	27	13	31	17	3	21	7	25	11	29	15	1	19	5	23
11	11	1	23	13	3	25	15	5	27	17	7	29	19	9	31	21
13	13	7	1	27	21	15	9	3	29	23	17	11	5	31	25	19
15	15	13	11	9	7	5	3	1	31	29	27	25	23	21	19	17
17	17	19	21	23	25	27	29	31	1	3	5	7	9	11	13	15
19	19	25	31	5	11	17	23	29	3	9	15	21	27	1	7	13
21	21	31	9	19	29	7	17	27	5	15	25	3	13	23	1	11
23	23	5	19	1	15	29	11	25	7	21	3	17	31	13	27	9
25	25	11	29	15	1	19	5	23	9	27	13	31	17	3	21	7
27	27	17	7	29	19	9	31	21	11	1	23	13	3	25	15	5
29	29	23	17	11	5	31	25	19	13	7	1	27	21	15	9	3
31	31	29	27	25	23	21	19	17	15	13	11	9	7	5	3	1

We note that the order of all those subgroups of Z_{32} divides the order of Z_{32} so it is Lagrange semigroup .

Journal of Kerbala University , Vol. 8 No. 3 Scientific . 2010

References:

[1]. Raul, Padilla,"Smarandache Algebraic Structures ",Bull of Pure and Applied Sciences,Delhi,vol.17E,No1,119-121,1998.
[2]. Vasantha , W.B., Kandasamy,"Smarandache Semigroups"
,American Research Press Rehoboth,NM 87322,USA,internet address http://www.gallup.unm.edu/~smarandache/eBooks-otherformats.htm ,2003.
[3]. Gerard ,Lallement ,"Semigroup and Combinatorial Applications" ,John Wiley And Sons,New York ,U.S.A.,1979 .
[4]. David M.Burton ,"Elementary Number Theory", WM.Brown Publishers Dubque,Iowa.
[5]. David M.Burton ,"Introduction To Modern Abstract Algebra" ,Addison-Wesley Publishing Company ,U.S.A., 1967.
[6]. Shoup ,V., "A Computational Introduction to Number Theory and Algebra " ,Cambridge University Press, internet address
www. Cambridge. org.sa/9780521851541, 2005.
[7]. Baker,A. ,"Algebra and Number Theory ",University of Glasgow, internet address http//www.maths.gla.ac.uk/~ajb,2003.
[8]. Herstein , I.N. , "Topics in Algebra ",John Wiley and Sons ,1976.
[9]. John ,B.Fraleigh, "A First course in Abstract Algebra", Addison Wesley ,1967.

