Scientia Magna

Vol. 10 (2014), No. 1, 64-67

Some arithmetical properties of the Smarandache series

Qianli Yang
Department of Mathematics, Weinan Normal University, Weinan, China 714000

Abstract

The Smarandache function $S(n)$ is defined as the minimal positive integer m such that $n \mid m$!. The main purpose of this paper is to study the analyze converges questions for some series of the form $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}$, i.e., we proved the series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}$ diverges for any $\delta \leq 1$, and $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\epsilon S(n)}}$ converges for any $\epsilon>0$.

Keywords Smarandache function, smarandache series, converges.

§1. Introduction and results

For every positive integer n, let $S(n)$ be the minimal positive integer m such that $n \mid m$!, i.e.,

$$
S(n)=\min \{m: m \in \mathbb{N}, n \mid m!\}
$$

This function is known as Smarandache function ${ }^{[1]}$. Easily, one has $S(1)=1, S(2)=2, S(3)=$ $3, S(4)=4, S(5)=5, S(6)=3, S(7)=7, S(8)=4, S(9)=6, S(10)=5, \cdots$.

Use the standard factorization of $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{k}^{\alpha_{k}}, p_{1}<p_{2}<\cdots<p_{k}$, it's trivial to have

$$
S(n)=\max _{1 \leq i \leq k}\left\{S\left(p_{i}^{\alpha_{i}}\right)\right\}
$$

Many scholars have studied the properties of $S(n)$, for example, M. Farris and P. Mitchell ${ }^{[2]}$ show the boundary of $S\left(p^{\alpha}\right)$ as

$$
(p-1) \alpha+1 \leq S\left(p^{\alpha}\right) \leq(p-1)\left[\alpha+1+\log _{p} \alpha\right]+1
$$

$\mathrm{Z} . \mathrm{Xu}{ }^{[3]}$ noticed the following interesting relationship formula

$$
\pi(x)=-1+\sum_{n=2}^{[x]}\left[\frac{S(n)}{n}\right]
$$

by the fact that $S(p)=p$ for p prime and $S(n)<n$ except for the case $n=4$ and $n=p$, where $\pi(x)$ denotes the number of prime up to x, and $[x]$ the greatest integer less or equal to x. Those and many other interesting results on Smarandache function $S(n)$, readers may refer to [2]-[6].

[^0]Let p be a fixed prime and $n \in \mathbb{N}$, the primitive numbers of power p, denoted by $S_{p}(n)$, is defined by

$$
S_{p}(n)=\min \left\{m: m \in \mathbb{N}, p^{n} \mid m!\right\}=S\left(p^{n}\right)
$$

Z. $\mathrm{Xu}{ }^{[3]}$ obtained the identity between Riemann zeta function $\zeta(s)=\sum_{n=1}^{\infty} \frac{1}{n^{s}}, \sigma>1$ and an infinite series involving $S_{p}(n)$ as

$$
\sum_{n=1}^{\infty} \frac{1}{S_{p}^{s}(n)}=\frac{\zeta(s)}{p^{s}-1}
$$

and he also obtained some other asymptotic formulae for $S_{p}(n)$. F. Luca ${ }^{[4]}$ proved the series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{S(n)^{\delta}}}$ converges for all $\delta \geq 1$ and diverges for all $\delta<1$, and the series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\epsilon \log n}}$ converges for any $\varepsilon>0$.

In this note, we studied the analyze converges problems for the infinite series involving $S(n)$. That is, we shall prove the following conclusions:

Theorem 1.1. For any $\delta \leq 1$, the series

$$
\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}
$$

diverges.
Theorem 1.2. For any $\varepsilon>0$, the series

$$
\sum_{n=1}^{\infty} \frac{1}{S(n)^{\varepsilon S(n)}}
$$

converges.

§2. Some lemmas

To complete the proof of theorems, we need two Lemmas.
Lemma 2.1. Let p be any fixed prime. Then for any real number $x \geq 1$, we have the asymptotic formula:

$$
\sum_{\substack{n=1 \\ S_{p}(n) \leq x}}^{\infty} \frac{1}{S_{p}(n)}=\frac{1}{p-1}\left(\ln x+\gamma+\frac{p \ln p}{p-1}\right)+O\left(x^{-\frac{1}{2}}+\epsilon\right)
$$

where γ is the Euler constant, ϵ denotes any fixed positive numbers.
Proof. See Theorem 2 of [3].
Lemma 2.2. ${ }^{[7]}$ Let $\epsilon>0$ and $d(n)$ denotes the divisor function of positive integer n. Then

$$
d(n)=O\left(n^{\epsilon}\right) \leq C_{\epsilon} n^{\epsilon}
$$

where the o-constant C_{ϵ} depends on ϵ.
Proof. The proof follows [7] by writing $n=\prod_{p \mid n} p^{\alpha}$, the standard factorization of n. Then

$$
p^{\alpha \epsilon} \geq 2^{\alpha \epsilon}=e^{\alpha \epsilon \ln 2} \geq \alpha \epsilon \ln 2 \geq \frac{1}{2}(a+1) \epsilon \ln 2 .
$$

If $p^{\epsilon} \geq 2$, then $p^{\alpha \epsilon} \geq 2^{\alpha} \geq \alpha+1$. Therefore,

$$
\frac{d(n)}{n^{\epsilon}}=\prod_{p \mid n} \frac{\alpha+1}{p^{\alpha \epsilon}}=\prod_{\substack{p \mid n \\ p^{\epsilon}<2}} \frac{\alpha+1}{p^{\alpha \epsilon}} \prod_{\substack{p \mid n \\ p^{\epsilon} \geq 2}} \frac{\alpha+1}{p^{\alpha \epsilon}} \geq \prod_{\substack{p \mid n \\ p^{\epsilon}<2}} \frac{\alpha+1}{\frac{1}{2}(a+1) \epsilon \ln 2} \prod_{\substack{p \mid n \\ p^{\epsilon} \geq 2}} \frac{\alpha+1}{\alpha+1} .
$$

The last item in above inequality is $\prod_{\substack{p \mid n \\ p^{\epsilon}<2}} \frac{2}{\epsilon \ln 2}$, which is less than $\prod_{p^{\epsilon}<2} \frac{2}{\epsilon \ln 2}=C_{\epsilon}$, say, the o-constant C_{ϵ} depends on ϵ.

§3. Proof of theorems

Proof of Theorem 1.

We may treat the case $\delta=1$ first. By Lemma 1 and the notation $S_{p}(n)=S\left(p^{n}\right)$, we have

$$
\sum_{n=1}^{\infty} \frac{1}{S\left(p^{n}\right)}=\lim _{x \rightarrow+\infty} \sum_{\substack{n=1 \\ S_{p}(n) \leq x}}^{\infty} \frac{1}{S_{p}(n)}=\infty
$$

Obviously, for $\delta \leq 1, \sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}}$ diverges follows easily by the trivial inequality:

$$
\sum_{n=1}^{\infty} \frac{1}{S(n)^{\delta}} \geq \sum_{n=1}^{\infty} \frac{1}{S(n)} \geq \sum_{n=1}^{\infty} \frac{1}{S\left(p^{n}\right)}
$$

complete the proof.
Proof of Theorem 2.
It certainly suffices to assume that $\epsilon \leq 1$. We rewrite series $\sum_{n=1}^{\infty} \frac{1}{S(n)^{\varepsilon S(n)}}$ as

$$
\sum_{k=1}^{\infty} \frac{u(k)}{k^{\varepsilon k}}
$$

where $u(k)=\sharp\{n: S(n)=k\}$. For every positive integer n such that $S(n)=k$ is a divisor of k !, i.e. $u(k) \leq d(k$!). By Lemma 2 and the inequality bellow

$$
(k!)^{2}=\prod_{j=1}^{k} j(k+1-j)<\prod_{j=1}^{k}\left(\frac{k+1}{2}\right)^{2}=\left(\frac{k+1}{2}\right)^{2 k} .
$$

we have

$$
u(k) \leq d(k!) \leq C_{\epsilon}(k!)^{\epsilon}<C_{\epsilon}\left(\frac{k+1}{2}\right)^{\epsilon k}
$$

where C_{ϵ} means that the constant depending on ϵ.
Therefore, recalling that the properties of the sequence $\left(1+\frac{1}{k}\right)^{k}$, we have

$$
\sum_{k=1}^{\infty} \frac{u(k)}{k^{\varepsilon k}} \leq C_{\epsilon} \sum_{k=1}^{\infty} \frac{1}{k^{\varepsilon k}}\left(\frac{k+1}{2}\right)^{\epsilon k}=C_{\epsilon} \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}}\left(\frac{k+1}{k}\right)^{\epsilon k}<C_{1} \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}}
$$

for some constant C_{1}, it follows that series $\sum_{k=1}^{\infty} \frac{u(k)}{k^{\varepsilon k}}$ is bounded above by

$$
C_{1} \sum_{k=1}^{\infty} \frac{1}{2^{\varepsilon k}}=\frac{C_{1}}{2^{\varepsilon}-1},
$$

completing the proof.

References

[1] F. Smarandache, Only problem not solution, Xiquan Publishing House, Chicago, 1993.
[2] M. Farris and P. Mitchell, Bounding the Smarandache function, Smarandache Notation Journal, 13(2002), 37-42.
[3] Z. Xu, Some arithmetical properties of primitive numbers of power $p, \mathbf{2}(2006)$, No. 1, 9-12.
[4] F. Luca, The Smarandache harmonic series, NAW, 5(2000), No. 1, 150-151.
[5] Jozsef Sandor, On certain inequalities involving the Smarandache dunction, Scientia Magna, 2(2006), No. 3, 78-80.
[6] J. Fu, An equaltion involving the Smarandache function, Scientia Magna, 2(2006), No. 4, 83-86.
[7] L. K. Hua, Itroduction to number theory, Springer-Verlag, 1982.

[^0]: ${ }^{1}$ This work is supported by by the Science Foundation of Shanxi province (2013JM1016).

