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Abstract The Smarandache function S(n) is defined as the minimal positive integer m such

that n|m!. The main purpose of this paper is to study the analyze converges questions for

some series of the form
∞∑

n=1

1
S(n)δ

, i.e., we proved the series
∞∑

n=1

1
S(n)δ

diverges for any δ ≤ 1,

and
∞∑

n=1

1

S(n)εS(n) converges for any ε > 0.
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§1. Introduction and results

For every positive integer n, let S(n) be the minimal positive integer m such that n|m!,

i.e.,

S(n) = min{m : m ∈ N, n|m!}.

This function is known as Smarandache function [1]. Easily, one has S(1) = 1, S(2) = 2, S(3) =

3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, · · · .
Use the standard factorization of n = pα1

1 pα2
2 · · · p

αk
k , p1 < p2 < · · · < pk, it’s trivial to

have

S(n) = max
1≤i≤k

{S(pαii )}.

Many scholars have studied the properties of S(n), for example, M. Farris and P. Mitchell
[2] show the boundary of S(pα) as

(p− 1)α+ 1 ≤ S(pα) ≤ (p− 1)[α+ 1 + logp α] + 1.

Z. Xu [3] noticed the following interesting relationship formula

π(x) = −1 +

[x]∑
n=2

[
S(n)

n

]
,

by the fact that S(p) = p for p prime and S(n) < n except for the case n = 4 and n = p, where

π(x) denotes the number of prime up to x, and [x] the greatest integer less or equal to x. Those

and many other interesting results on Smarandache function S(n), readers may refer to [2]-[6].
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Let p be a fixed prime and n ∈ N, the primitive numbers of power p, denoted by Sp(n), is

defined by

Sp(n) = min{m : m ∈ N, pn|m!} = S(pn).

Z. Xu [3] obtained the identity between Riemann zeta function ζ(s) =
∞∑
n=1

1
ns , σ > 1 and an

infinite series involving Sp(n) as
∞∑
n=1

1

Ssp(n)
=

ζ(s)

ps − 1
,

and he also obtained some other asymptotic formulae for Sp(n). F. Luca [4] proved the series
∞∑
n=1

1

S(n)S(n)δ
converges for all δ ≥ 1 and diverges for all δ < 1, and the series

∞∑
n=1

1
S(n)ε logn

converges for any ε > 0.

In this note, we studied the analyze converges problems for the infinite series involving

S(n). That is, we shall prove the following conclusions:

Theorem 1.1. For any δ ≤ 1, the series

∞∑
n=1

1

S(n)δ

diverges.

Theorem 1.2. For any ε > 0, the series

∞∑
n=1

1

S(n)εS(n)

converges.

§2. Some lemmas

To complete the proof of theorems, we need two Lemmas.

Lemma 2.1. Let p be any fixed prime. Then for any real number x ≥ 1, we have the

asymptotic formula:

∞∑
n=1

Sp(n)≤x

1

Sp(n)
=

1

p− 1

(
lnx+ γ +

p ln p

p− 1

)
+O(x−

1
2 + ε),

where γ is the Euler constant, ε denotes any fixed positive numbers.

Proof. See Theorem 2 of [3].

Lemma 2.2.[7] Let ε > 0 and d(n) denotes the divisor function of positive integer n.

Then

d(n) = O(nε) ≤ Cεnε,

where the o-constant Cε depends on ε.

Proof. The proof follows [7] by writing n =
∏
p|n

pα, the standard factorization of n. Then

pαε ≥ 2αε = eαε ln 2 ≥ αε ln 2 ≥ 1

2
(a+ 1)ε ln 2.
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If pε ≥ 2, then pαε ≥ 2α ≥ α+ 1. Therefore,

d(n)

nε
=
∏
p|n

α+ 1

pαε
=
∏
p|n
pε<2

α+ 1

pαε

∏
p|n
pε≥2

α+ 1

pαε
≥
∏
p|n
pε<2

α+ 1
1
2 (a+ 1)ε ln 2

∏
p|n
pε≥2

α+ 1

α+ 1
.

The last item in above inequality is
∏
p|n
pε<2

2
ε ln 2 , which is less than

∏
pε<2

2
ε ln 2 = Cε, say, the

o-constant Cε depends on ε.

§3. Proof of theorems

Proof of Theorem 1.

We may treat the case δ = 1 first. By Lemma 1 and the notation Sp(n) = S(pn), we have

∞∑
n=1

1

S(pn)
= lim
x→+∞

∞∑
n=1

Sp(n)≤x

1

Sp(n)
=∞.

Obviously, for δ ≤ 1,
∞∑
n=1

1
S(n)δ

diverges follows easily by the trivial inequality:

∞∑
n=1

1

S(n)δ
≥
∞∑
n=1

1

S(n)
≥
∞∑
n=1

1

S(pn)
,

complete the proof.

Proof of Theorem 2.

It certainly suffices to assume that ε ≤ 1. We rewrite series
∞∑
n=1

1
S(n)εS(n) as

∞∑
k=1

u(k)

kεk
,

where u(k) = ]{n : S(n) = k}. For every positive integer n such that S(n) = k is a divisor of

k!, i.e. u(k) ≤ d(k!). By Lemma 2 and the inequality bellow

(k!)2 =

k∏
j=1

j(k + 1− j) <
k∏
j=1

(
k + 1

2

)2

=

(
k + 1

2

)2k

.

we have

u(k) ≤ d(k!) ≤ Cε(k!)ε < Cε

(
k + 1

2

)εk
.

where Cε means that the constant depending on ε.

Therefore, recalling that the properties of the sequence
(
1 + 1

k

)k
, we have

∞∑
k=1

u(k)

kεk
≤ Cε

∞∑
k=1

1

kεk

(
k + 1

2

)εk
= Cε

∞∑
k=1

1

2εk

(
k + 1

k

)εk
< C1

∞∑
k=1

1

2εk
,
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for some constant C1, it follows that series
∞∑
k=1

u(k)
kεk

is bounded above by

C1

∞∑
k=1

1

2εk
=

C1

2ε − 1
,

completing the proof.
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