Scientia Magna

Vol. 4 (2008), No. 1, 86-89

On the mean value of the Pseudo-Smarandache-Squarefree function

Xuhui Fan ${ }^{\dagger \ddagger}$ and Chengliang Tian ${ }^{\dagger}$
\dagger Department of Mathematics, Northwest University, Xi'an, Shaanxi, 710069
\ddagger Foundation Department, Engineering College of Armed Police Force, Xi’an, Shaanxi, 710086

Abstract

For any positive integer n, the Pseudo Smarandache Squarefree function $Z_{w}(n)$ is defined as $Z_{w}(n)=\min \left\{m: n \mid m^{n}, m \in N\right\}$, and the function $Z(n)$ is defined as $Z(n)=$ $\min \left\{m: n \leq \frac{m(m+1)}{2}, m \in N\right\}$. The main purpose of this paper is using the elementary methods to study the mean value properties of the function $Z_{w}(Z(n))$, and give a sharper mean value formula for it.

Keywords Pseudo-Smarandache-Squarefree function $Z_{w}(n)$, function $Z(n)$, mean value, asymptotic formula.

§1. Introduction and result

For any positive integer n, the Pseudo-Smarandache-Squarefree function $Z_{w}(n)$ is defined as the smallest positive integer m such that $n \mid m^{n}$. That is,

$$
Z_{w}(n)=\min \left\{m: n \mid m^{n}, m \in N\right\} .
$$

For example $Z_{w}(1)=1, Z_{w}(2)=2, Z_{w}(3)=3, Z_{w}(4)=2, Z_{w}(5)=5, Z_{w}(6)=6$, $Z_{w}(7)=7, Z_{w}(8)=2, Z_{w}(9)=3, Z_{w}(10)=10, \cdots$. About the elementary properties of $Z_{w}(n)$, some authors had studied it, and obtained some interesting results. For example, Felice Russo [1] obtained some elementary properties of $Z_{w}(n)$ as follows:

Property 1. The function $Z_{w}(n)$ is multiplicative. That is, if $\operatorname{GCD}(m, n)=1$, then $Z_{w}(m \cdot n)=Z_{w}(m) \cdot Z_{w}(n)$.

Property 2. $Z_{w}(n)=n$ if and only if n is a squarefree number.
The main purpose of this paper is using the elementary method to study the mean value properties of $Z_{w}(Z(n))$, and give a sharper asymptotic formula for it, where $Z(n)$ is defined as $Z(n)=\min \left\{m: n \leq \frac{m(m+1)}{2}, m \in N\right\}$. That is, we shall prove the following conclusion:

Theorem. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{n \leq x} Z_{w}(Z(n))=\left(1+\prod_{p}\left(1+\frac{1}{p\left(p^{2}-1\right)}\right)\right) \cdot \frac{4 \sqrt{2}}{\pi^{2}} \cdot x^{\frac{3}{2}}+O\left(x^{\frac{5}{4}}\right)
$$

where \prod_{p} denotes the product over all primes.

§2. Some lemmas

To complete the proof of the theorem, we need the following several lemmas.
Lemma 1. For any real number $x \geq 2$, we have the asymptotic formula

$$
\begin{equation*}
\sum_{m \leq x} \mu^{2}(m)=\frac{6}{\pi^{2}} x+O(\sqrt{x}) \tag{1}
\end{equation*}
$$

Proof. See reference [2].
Lemma 2. For any real number $x \geq 2$, we have the asymptotic formula

$$
\sum_{\substack{m \leq x \\ m \in A}} m^{2}=\frac{2}{\pi^{2}} x^{3}+O\left(x^{\frac{5}{2}}\right)
$$

where A denotes the set of all square-free integers.
Proof. By the Abel's summation formula (See Theorem 4.2 of [3]) and Lemma 1, we have

$$
\begin{aligned}
\sum_{\substack{m \leq x \\
m \in A}} m^{2} & =\sum_{m \leq x} m^{2} \mu^{2}(m)=x^{2} \cdot\left(\frac{6}{\pi^{2}} x+O(\sqrt{x})\right)-2 \int_{1}^{x} t\left(\frac{6}{\pi^{2}} t+O(\sqrt{t})\right) \mathrm{d} t \\
& =\frac{6}{\pi^{2}} x^{3}+O\left(x^{\frac{5}{2}}\right)-\frac{4}{\pi^{2}} x^{3}=\frac{2}{\pi^{2}} x^{3}+O\left(x^{\frac{5}{2}}\right)
\end{aligned}
$$

This proves Lemma 2.
Lemma 3. For any real number $x \geq 2$ and $s>1$, we have the inequality

$$
\sum_{\substack{m \leq x \\ m \in B}} \frac{Z_{w}(m)}{m^{s}}<\prod_{p}\left(1+\frac{1}{p^{s-1}\left(p^{s}-1\right)}\right) .
$$

Specially, if $s>\frac{3}{2}$, then we have the asymptotic formula

$$
\sum_{\substack{m \leq x \\ m \in B}} \frac{Z_{w}(m)}{m^{s}}=\prod_{p}\left(1+\frac{1}{p^{s-1}\left(p^{s}-1\right)}\right)+O\left(x^{\frac{3}{2}-s}\right)
$$

where B denotes the set of all square-full integers.
Proof. First we define the arithmetical function $a(m)$ as follows:

$$
a(m)= \begin{cases}1 & \text { if } m \in B \\ 0 & \text { otherwise }\end{cases}
$$

From Property 1 and the definition of $a(m)$ we know that the function $Z_{w}(m)$ and $a(m)$ are multiplicative. If $s>1$, then by the Euler product formula (See Theorem 11.7 of [3]) we have

$$
\begin{aligned}
\sum_{\substack{m \leq x \\
m \in B}} \frac{Z_{w}(m)}{m^{s}}<\sum_{\substack{m=1 \\
m \in B}}^{\infty} \frac{Z_{w}(m)}{m^{s}} & =\sum_{m=1}^{\infty} \frac{Z_{w}(m)}{m^{s}} a(m) \\
& =\prod_{p}\left(1+\frac{p}{p^{2 s}}+\frac{p}{p^{3 s}}+\cdots\right) \\
& =\prod_{p}\left(1+\frac{1}{p^{s-1}\left(p^{s}-1\right)}\right)
\end{aligned}
$$

Note that if $m \in B$, then $Z_{w}(m) \leq \sqrt{m}$. Hence, if $s>\frac{3}{2}$, then we have

$$
\begin{aligned}
\sum_{\substack{m \leq x \\
m \in B}} \frac{Z_{w}(m)}{m^{s}} & =\sum_{\substack{m=1 \\
m \in B}}^{\infty} \frac{Z_{w}(m)}{m^{s}}-\sum_{\substack{m>x \\
m \in B}} \frac{Z_{w}(m)}{m^{s}} \\
& =\sum_{\substack{m=1 \\
m \in B}}^{\infty} \frac{Z_{w}(m)}{m^{s}}+O\left(\sum_{m>x} \frac{1}{m^{s-\frac{1}{2}}}\right) \\
& =\prod_{p}\left(1+\frac{1}{p^{s-1}\left(p^{s}-1\right)}\right)+O\left(x^{\frac{3}{2}-s}\right)
\end{aligned}
$$

This proves Lemma 3.

§3. Proof of the theorem

In this section, we shall use the elementary method to complete the proof of the theorem.
Note that if $\frac{(m-1) m}{2}+1 \leq n \leq \frac{m(m+1)}{2}$, then $Z(n)=m$. That is, the equation $Z(n)=m$ has m solutions as follows:

$$
n=\frac{(m-1) m}{2}+1, \frac{(m-1) m}{2}+2, \cdots, \frac{m(m+1)}{2}
$$

Since $n \leq x$, from the definition of $Z(n)$ we know that if $Z(n)=m$, then $1 \leq m \leq$ $\frac{\sqrt{8 x+1}-1}{2}$.

Note that $Z_{w}(n) \leq n$, we have

$$
\begin{align*}
\sum_{n \leq x} Z_{w}(Z(n)) & =\sum_{\substack{n \leq x \\
Z(n)=m}} Z_{w}(m)=\sum_{m \leq \frac{\sqrt{8 x+1}-1}{2}} m \cdot Z_{w}(m)+O(x) \\
& =\sum_{m \leq \sqrt{2 x}} m \cdot Z_{w}(m)+O(x) . \tag{2}
\end{align*}
$$

We separate all integer m in the interval $[1, \sqrt{2 x}]$ into three subsets A, B, and C as follows: A: the set of all square-free integers; B: the set of all square-full integers; C: the set of all positive integer m such that $m \in[1, \sqrt{2 x}] / A \bigcup B$.

Note that (2), we have

$$
\begin{equation*}
\sum_{n \leq x} Z_{w}(Z(n))=\sum_{\substack{m \leq \sqrt{2 x} \\ m \in A}} m \cdot Z_{w}(m)+\sum_{\substack{m \leq \sqrt{2 x} \\ m \in B}} m \cdot Z_{w}(m)+\sum_{\substack{m \leq \sqrt{2 x} \\ m \in C}} m \cdot Z_{w}(m)+O(x) \tag{3}
\end{equation*}
$$

From Property 2 and Lemma 2 we know that if $m \in A$, then we have

$$
\begin{equation*}
\sum_{\substack{m \leq \sqrt{2 x} \\ m \in A}} m \cdot Z_{w}(m)=\sum_{\substack{m \leq \sqrt{2 x} \\ m \in A}} m^{2}=\frac{4 \sqrt{2}}{\pi^{2}} x^{\frac{3}{2}}+O\left(x^{\frac{5}{4}}\right) . \tag{4}
\end{equation*}
$$

It is clear that if $m \in B$, then $Z_{w}(m) \leq \sqrt{m}$. Hence

$$
\begin{equation*}
\sum_{\substack{m \leq \sqrt{2 x} \\ m \in B}} m \cdot Z_{w}(m) \ll \sum_{\substack{m \leq \sqrt{2 x} \\ m \in B}} m^{\frac{3}{2}} \ll x^{\frac{5}{4}} . \tag{5}
\end{equation*}
$$

If $m \in C$, then we write m as $m=q \cdot n$, where q is a square-free integer and n is a square-full integer. From Property 1, Property 2, Lemma 2 and Lemma 3 we have

$$
\begin{align*}
\sum_{\substack{m \leq \sqrt{2 x} \\
m \in C}} m \cdot Z_{w}(m) & =\sum_{n \leq \sqrt{2 x}} n Z_{w}(n) a(n) \sum_{\substack{ \\
q \leq \sqrt{2 x} \\
n}} q^{2} \mu^{2}(q) \\
& =\sum_{n \leq \sqrt{2 x}} n Z_{w}(n) a(n)\left(\frac{4 \sqrt{2}}{\pi^{2}} \cdot \frac{x^{\frac{3}{2}}}{n^{3}}+O\left(\frac{x^{\frac{5}{4}}}{n^{\frac{5}{2}}}\right)\right) \\
& =\frac{4 \sqrt{2}}{\pi^{2}} x^{\frac{3}{2}} \sum_{n \leq \sqrt{2 x}} \frac{Z_{w}(n) a(n)}{n^{2}}+O\left(x^{\frac{5}{4}} \sum_{n \leq \sqrt{2 x}} \frac{Z_{w}(n) a(n)}{n^{\frac{3}{2}}}\right) \\
& =\frac{4 \sqrt{2}}{\pi^{2}} \prod_{p}\left(1+\frac{1}{p\left(p^{2}-1\right)}\right) x^{\frac{3}{2}}+O\left(x^{\frac{5}{4}}\right) \tag{6}
\end{align*}
$$

Combining (3), (4), (5) and (6), we may immediately deduce the asymptotic formula

$$
\sum_{n \leq x} Z_{w}(Z(n))=\left(1+\prod_{p}\left(1+\frac{1}{p\left(p^{2}-1\right)}\right) \cdot \frac{4 \sqrt{2}}{\pi^{2}} \cdot x^{\frac{3}{2}}+O\left(x^{\frac{5}{4}}\right)\right.
$$

This completes the proof of Theorem.

References

[1] Felice Russo, A set of new Smarandache functions, sequences and conjectures in number theory, Lupton USA, American Research Press, 2000.
[2] D.S.Mitrinovic, Handbook of Number Theory, Boston London, Kluwer Academic Publishers, 1996.
[3] Tom M Apostol, Introduction to Analytic Number Theory, New York, Spinger-Verlag, 1976.
[4] Pan Chengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.

