On Mean Graphs

R.Vasuki
(Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India)
\section*{S.Arockiaraj}
(Mepco Schlenk Engineering College, Mepco Engineering College (PO)-626005, Sivakasi, Tamil Nadu, India)
E-mail: vasukisehar@yahoo.co.in, sarockiaraj_77@yahoo.com

Abstract: Let $G(V, E)$ be a graph with p vertices and q edges. For every assignment $f: V(G) \rightarrow\{0,1,2,3, \ldots, q\}$, an induced edge labeling $f^{*}: E(G) \rightarrow\{1,2,3, \ldots, q\}$ is defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u) \text { and } f(v) \text { are of the same parity } \\ \frac{f(u)+f(v)+1}{2} & \text { otherwise }\end{cases}
$$

for every edge $u v \in E(G)$. If $f^{*}(E)=\{1,2, \ldots, q\}$, then we say that f is a mean labeling of G. If a graph G admits a mean labeling, then G is called a mean graph. In this paper, we prove that the graphs double sided step ladder graph $2 S\left(T_{m}\right)$, Jelly fish graph $J(m, n)$ for $|m-n| \leq 2, P_{n}(+) N_{m},\left(P_{2} \cup k K_{1}\right)+N_{2}$ for $k \geq 1$, the triangular belt graph $T B(\alpha)$, $T B L(n, \alpha, k, \beta)$, the edge $m C_{n}-$ snake, $m \geq 1, n \geq 3$ and $S_{t}\left(B(m)_{(n)}\right)$ are mean graphs. Also we prove that the graph obtained by identifying an edge of two cycles C_{m} and C_{n} is a mean graph for $m, n \geq 3$.

Key Words: Smarandachely edge 2-labeling, mean graph, mean labeling, Jelly fish graph, triangular belt graph.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let $G(V, E)$ be a graph with p vertices and q edges. For notations and terminology we follow [1].

Path on n vertices is denoted by P_{n} and a cycle on n vertices is denoted by $C_{n} . K_{1, m}$ is called a star and it is denoted by S_{m}. The bistar $B_{m, n}$ is the graph obtained from K_{2} by identifying the center vertices of $K_{1, m}$ and $K_{1, n}$ at the end vertices of K_{2} respectively. $B_{m, m}$ is often denoted by $B(m)$. The join of two graphs G and H is the graph obtained from $G \cup H$ by joining each vertex of G with each vertex of H by means of an edge and it is denoted by $G+H$. The edge $m C_{n}-$ snake is a graph obtained from m copies of C_{n} by identifying the edge $v_{k+1} v_{k+2}$ in each copy of C_{n}, n is either $2 k+1$ or $2 k$ with the edge $v_{1} v_{2}$ in the successive

[^0]copy of C_{n}. The graph $P_{n} \times P_{2}$ is called a ladder. Let $P_{2 n}$ be a path of length $2 n-1$ with $2 n$ vertices $(1,1),(1,2), \ldots,(1,2 n)$ with $2 n-1$ edges $e_{1}, e_{2}, \ldots, e_{2 n-1}$ where e_{i} is the edge joining the vertices $(1, i)$ and $(1, i+1)$. On each edge e_{i}, for $i=1,2, \ldots, n$, we erect a ladder with $i+1$ steps including the edge e_{i} and on each edge e_{i}, for $i=n+1, n+2, \ldots, 2 n-1$, we erect a ladder with $2 n+1-i$ steps including the edge e_{i}. The resultant graph is called double sided step ladder graph and is denoted by $2 S\left(T_{m}\right)$, where $m=2 n$ denotes the number of vertices in the base.

A vertex labeling of G is an assignment $f: V(G) \rightarrow\{0,1,2, \ldots, q\}$. For a vertex labeling f, the induced edge labeling f^{*} is defined by

$$
f^{*}(u v)= \begin{cases}\frac{f(u)+f(v)}{2} & \text { if } f(u) \text { and } f(v) \text { are of the same parity } \\ \frac{f(u)+f(v)+1}{2} & \text { otherwise }\end{cases}
$$

A vertex labeling f is called a mean labeling of G if its induced edge labeling $f^{*}: E(G) \rightarrow$ $\{1,2, \ldots, q\}$ is a bijection, that is, $f^{*}(E)=\{1,2, \ldots, q\}$. If a graph G has a mean labeling, then we say that G is a mean graph. It is clear that a mean labeling is a Smarandachely edge 2-labeling of G.

A mean labeling of the Petersen graph is shown in Figure 1.

Figure 1

The concept of mean labeling was introduced and studied by S.Somasundaram and R.Ponraj [4]. Some new families of mean graphs are studied by S.K.Vaidya et al. [6], [7]. Further some more results on mean graphs are discussed in [2], [3], [5].

In this paper, we establish the meanness of the graphs double sided step ladder graph $2 S\left(T_{m}\right)$, Jelly fish graph $J(m, n)$ for $|m-n| \leq 2, P_{n}(+) N_{m},\left(P_{2} \cup k K_{1}\right)+N_{2}$ for $k \geq 1$, the triangular belt graph $T B(\alpha), T B L(n, \alpha, k, \beta)$, the edge $m C_{n}$-snake $m \geq 1, n \geq 3$ and $S_{t}\left(B(m)_{(n)}\right)$. Also we prove that the graph obtained by identifying an edge of two cycles C_{m} and C_{n} is a mean graph for $m, n \geq 3$.

§2. Mean Graphs

Theorem 2.1 The double sided step ladder graph $2 S\left(T_{m}\right)$ is a mean graph where $m=2 n$ denotes the number of vertices in the base.

Proof Let $P_{2 n}$ be a path of length $2 n-1$ with $2 n$ vertices $(1,1),(1,2), \cdots,(1,2 n)$ with $2 n-1$ edges, $e_{1}, e_{2}, \cdots, e_{2 n-1}$ where e_{i} is the edge joining the vertices $(1, i)$ and $(1, i+1)$. On each edge e_{i}, for $i=1,2, \cdots, n$, we erect a ladder with $i+1$ steps including the edge e_{i} and on each edge e_{i}, for $i=n+1, n+2, \cdots, 2 n-1$, we erect a ladder with $2 n+1-i$ steps including the edge e_{i}.

The double sided step ladder graph $2 S\left(T_{m}\right)$ has vertices denoted by $(1,1),(1,2), \ldots,(1,2 n)$, $(2,1),(2,2), \cdots,(2,2 n),(3,2),(3,3), \cdots,(3,2 n-1),(4,3),(4,4), \cdots,(4,2 n-2), \cdots,(n+1, n),(n+$ $1, n+1)$. In the ordered pair $(i, j), i$ denotes the row (counted from bottom to top) and j denotes the column (from left to right) in which the vertex occurs. Define $f: V\left(2 S\left(T_{m}\right)\right) \rightarrow$ $\{0,1,2, \ldots, q\}$ as follows:

$$
\begin{aligned}
& f(i, j)=(n+1-i)(2 n-2 i+3)+j-1, \quad 1 \leq j \leq 2 n, i=1,2 \\
& f(i, j)=(n+1-i)(2 n-2 i+3)+j+1-i, \quad i-1 \leq j \leq 2 n+2-i, 3 \leq i \leq n+1
\end{aligned}
$$

Then, f is a mean labeling for the double sided step ladder graph $2 S\left(T_{m}\right)$. Thus $2 S\left(T_{m}\right)$ is a mean graph.

For example, a mean labeling of $2 S\left(T_{10}\right)$ is shown in Figure 2.

Figure 2

For integers $m, n \geq 0$ we consider the graph $J(m, n)$ with vertex set $V(J(m, n))=$ $\{u, v, x, y\} \cup\left\{x_{1}, x_{2}, c \ldots, x_{m}\right\} \cup\left\{y_{1}, y_{2}, \cdots, y_{n}\right\}$ and edge set $E(J(m, n))=\{(u, x),(u, v),(u, y)$, $(v, x),(v, y)\} \cup\left\{\left(x_{i}, x\right): i=1,2, \cdots, m\right\} \cup\left\{\left(y_{i}, y\right): i=1,2, \cdots, n\right\}$. We will refer to $J(m, n)$ as a Jelly fish graph.

Theorem 2.2 A Jelly fish graph $J(m, n)$ is a mean graph for $m, n \geq 0$ and $|m-n| \leq 2$.

Proof The proof is divided into cases following.
Case $1 \quad m=n$.

Define a labeling $f: V(J(m, n)) \rightarrow\{0,1,2, \ldots, q=m+n+5\}$ as follows:

$$
\begin{aligned}
f(u) & =2, \quad f(y)=0 \\
f(v) & =m+n+4, \quad f(x)=m+n+5, \\
f\left(x_{i}\right) & =4+2(i-1), \quad 1 \leq i \leq m \\
f\left(y_{n+1-i}\right) & =3+2(i-1), \quad 1 \leq i \leq n
\end{aligned}
$$

Then f provides a mean labeling.
Case $2 m=n+1$ or $n+2$
Define $f: V(J(m, n)) \rightarrow\{0,1,2, \ldots, q=m+n+5\}$ as follows:

$$
\begin{aligned}
f(u) & =2, f(v)=2 n+4, f(y)=0, \\
f(x) & = \begin{cases}m+n+5 & \text { if } m=n+1 \\
m+n+4 & \text { if } m=n+2\end{cases} \\
f\left(x_{i}\right) & = \begin{cases}4+2(i-1), & 1 \leq i \leq n \\
2 n+5+2(i-(n+1)), & n+1 \leq i \leq m\end{cases} \\
f\left(y_{n+1-i}\right) & =3+2(i-1), \quad 1 \leq i \leq n .
\end{aligned}
$$

Then f gives a mean labeling. Thus $J(m, n)$ is a mean graph for $m, n \geq 0$ and $|m-n| \leq 2$.
For example, a mean labeling of $J(6,6)$ and $J(9,7)$ are shown in Figure 3.

Figure 3

Let $P_{n}(+) N_{m}$ be the graph with $p=n+m$ and $q=2 m+n-1 . V\left(P_{n}(+) N_{m}\right)=$ $\left\{v_{1}, v_{2}, \cdots, v_{n}, y_{1}, y_{2}, \cdots, y_{m}\right\}$, where $V\left(P_{n}\right)=\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}, V\left(N_{m}\right)=\left\{y_{1}, y_{2}, \cdots, y_{m}\right\}$ and

$$
E\left(P_{n}(+) N_{m}\right)=E\left(P_{n}\right) \bigcup\left\{\begin{array}{l}
\left(v_{1}, y_{1}\right),\left(v_{1}, y_{2}\right), \cdots,\left(v_{1}, y_{m}\right) \\
\left(v_{n}, y_{1}\right),\left(v_{n}, y_{2}\right), \cdots,\left(v_{n}, y_{m}\right)
\end{array}\right\}
$$

Theorem 2.3 $P_{n}(+) N_{m}$ is a mean graph for all $n, m \geq 1$.
Proof Let us define $f: V\left(P_{n}(+) N_{m}\right) \rightarrow\{1,2,3, \cdots, 2 m+n-1\}$ as follows:

$$
\begin{aligned}
f\left(y_{i}\right) & =2 i-1,1 \leq i \leq m \\
f\left(v_{1}\right) & =0 \\
f\left(v_{i}\right) & =2 m+1+2(i-2), \quad 2 \leq i \leq\left\lceil\frac{n+1}{2}\right\rceil \\
f\left(v_{n+1-i}\right) & =2 m+2+2(i-1), \quad 1 \leq i \leq\left\lfloor\frac{n-1}{2}\right\rfloor .
\end{aligned}
$$

Then, f gives a mean labeling. Thus $P_{n}(+) N_{m}$ is a mean graph for $n, m \geq 1$.
For example, a mean labeling of $P_{8}(+) N_{5}$ and $P_{7}(+) N_{6}$ are shown in Figure 4.

Figure 4

Theorem 2.4 For $k \geq 1$, the planar graph $\left(P_{2} \cup k K_{1}\right)+N_{2}$ is a mean graph.
Proof Let the vertex set of $P_{2} \cup k K_{1}$ be $\left\{z_{1}, z_{2}, x_{1}, x_{2}, \cdots, x_{k}\right\}$ and $V\left(N_{2}\right)=\left\{y_{1}, y_{2}\right\}$. We have $q=2 k+5$. Define a labeling $f: V\left(\left(P_{2} \cup k K_{1}\right)+N_{2}\right) \rightarrow\{1,2, \cdots, 2 k+5\}$ by

$$
\begin{aligned}
& f\left(y_{1}\right)=0, f\left(y_{2}\right)=2 k+5, \quad f\left(z_{1}\right)=2 \\
& f\left(z_{2}\right)=2 k+4 \\
& f\left(x_{i}\right)=4+2(i-1), \quad 1 \leq i \leq k
\end{aligned}
$$

Then, f is a mean labeling and hence $\left(P_{2} \cup k K_{1}\right)+N_{2}$ is a mean graph for $k \geq 1$.
For example, a mean labeling of $\left(P_{2} \cup 5 K_{1}\right)+N_{2}$ is shown in Figure 5.

Figure 5

Let $S=\{\uparrow, \downarrow\}$ be the symbol representing, the position of the block as given in Figure 6 .

Figure 6

Let α be a sequence of n symbols of $S, \alpha \in S^{n}$. We will construct a graph by tiling n blocks side by side with their positions indicated by α. We will denote the resulting graph by $T B(\alpha)$ and refer to it as a triangular belt.

For example, the triangular belts corresponding to sequences $\alpha_{1}=\{\downarrow \uparrow \uparrow\}, \alpha_{2}=\{\downarrow \downarrow \uparrow \downarrow\}$ respectively are shown in Figure 7.

Figure 7

Theorem 2.5 A triangular belt TB(α) is a mean graph for any α in S^{n} with the first and last block are being \downarrow for all $n \geq 1$.

Proof Let $u_{1}, u_{2}, \ldots, u_{n}, u_{n+1}$ be the top vertices of the belt and $v_{1}, v_{2}, \ldots, v_{n}, v_{n+1}$ be the bottom vertices of the belt. The graph $T B(\alpha)$ has $2 n+2$ vertices and $4 n+1$ edges. Define $f: V(T B(\alpha)) \rightarrow\{0,1,2, \ldots, q=4 n+1\}$ as follows :

$$
\begin{aligned}
f\left(u_{i}\right) & =4 i, \quad 1 \leq i \leq n \\
f\left(u_{n+1}\right) & =4 n+1 \\
f\left(v_{1}\right) & =0 \\
f\left(v_{i}\right) & =2+4(i-2), \quad 2 \leq i \leq n
\end{aligned}
$$

Then f gives a mean labeling. Thus $T B(\alpha)$ is a mean graph for all $n \geq 1$.
For example, a mean labeling of $T B(\alpha), T B(\beta)$ and $T B(\gamma)$ are shown in Figure 8.

Figure 8

Corollary 2.6 The graph P_{n}^{2} is a mean graph.
Proof The graph P_{n}^{2} is isomorphic to $T B(\downarrow, \downarrow, \downarrow, \ldots, \downarrow)$ or $T B(\uparrow, \uparrow, \uparrow, \ldots, \uparrow)$. Hence the result follows from Theorem 2.5.

We now consider a class of planar graphs that are formed by amalgamation of triangular belts. For each $n \geq 1$ and α in $S^{n} n$ blocks with the first and last block are \downarrow we take the triangular belt $T B(\alpha)$ and the triangular belt $T B(\beta), \beta$ in S^{k} where $k>0$.

We rotate $T B(\beta)$ by 90 degrees counter clockwise and amalgamate the last block with the first block of $T B(\alpha)$ by sharing an edge. The resulting graph is denoted by $T B L(n, \alpha, k, \beta)$, which has $2(n k+1)$ vertices, $3(n+k)+1$ edges with

$$
\begin{aligned}
V(T B L(n, \alpha, k, \beta))= & \left\{u_{1,1}, u_{1,2}, \cdots, u_{1, n+1}, u_{2,1}, u_{2,2},\right. \\
& \left.\cdots, u_{2, n+1}, v_{3,1}, v_{3,2}, \cdots, v_{3, k-1}, v_{4,1}, v_{4,2}, \cdots, v_{4, k-1}\right\} .
\end{aligned}
$$

Theorem 2.7 The graph $T B L(n, \alpha, k, \beta)$ is a mean graph for all α in S^{n} with the first and last block are \downarrow and β in S^{k} for all $k>0$.

Proof Define $f: V(T B L(n, \alpha, k, \beta)) \rightarrow\{0,1,2, \ldots, 3(n+k)+1\}$ as follows:

$$
\begin{aligned}
f\left(u_{1, i}\right) & =4 k+4 i, \quad 1 \leq i \leq n \\
f\left(u_{1, n+1}\right) & =4(n+k)+1 \\
f\left(u_{2,1}\right) & =4 k \\
f\left(u_{2, i}\right) & =4 k+2+4(i-2), \quad 2 \leq i \leq n+1 \\
f\left(v_{3, i}\right) & =4 i-4, \quad 1 \leq i \leq k \\
f\left(v_{4, i}\right) & =4 i-2, \quad 1 \leq i \leq k
\end{aligned}
$$

Then f provides a mean labeling and hence $T B L(n, \alpha, k, \beta)$ is a mean graph.
For example, a mean labeling of $T B L(4, \downarrow, \uparrow, \uparrow, \downarrow, 2, \uparrow, \uparrow)$ and $T B L(5, \downarrow, \uparrow, \downarrow, \uparrow, \downarrow, 3, \uparrow, \downarrow, \uparrow)$ is shown in Figure 9.

Figure 9

Theorem 2.8 The graph edge $m C_{n}-$ snake, $m \geq 1, n \geq 3$ has a mean labeling.
Proof Let $v_{1_{j}}, v_{2_{j}}, \ldots, v_{n_{j}}$ be the vertices and $e_{1_{j}}, e_{2_{j}}, \ldots, e_{n_{j}}$ be the edges of edge $m C_{n}$-snake for $1 \leq j \leq m$.

Case $1 \quad n$ is odd
Let $n=2 k+1$ for some $k \in Z^{+}$. Define a vertex labeling f of edge $m C_{n}-$ snake as follows:

$$
\begin{aligned}
f\left(v_{1_{1}}\right) & =0, f\left(v_{2_{1}}\right)=1 \\
f\left(v_{i_{1}}\right) & =2 i-2, \quad 3 \leq i \leq k+1 \\
f\left(v_{(k+1+i)_{1}}\right) & =n-2(i-1), \quad 1 \leq i \leq k \\
f\left(v_{1_{2}}\right) & =f\left(v_{(k+2)_{1}}\right), \quad f\left(v_{2_{2}}\right)=f\left(v_{\left.(k+1)_{1}\right)},\right. \\
f\left(v_{i_{2}}\right) & =n+4+2(i-3), \quad 3 \leq i \leq k+1 \\
f\left(v_{(k+1+i)_{2}}\right) & =2 n-2-2(i-1), \quad 1 \leq i \leq k-1 \\
f\left(v_{n_{2}}\right) & =n+2 \\
f\left(v_{i_{j}}\right) & =f\left(v_{i_{j-2}}\right)+2 n-2, \quad 3 \leq j \leq m, \quad 1 \leq i \leq n .
\end{aligned}
$$

Then f gives a mean labeling.
Case $2 n$ is even
Let $n=2 k$ for some $k \in Z^{+}$. Define a labeling f of edge $m C_{n}$-snake as follows:

$$
\begin{aligned}
f\left(v_{1_{1}}\right) & =0, f\left(v_{2_{1}}\right)=1 \\
f\left(v_{i_{1}}\right) & =2 i-2, \quad 3 \leq i \leq k+1 \\
f\left(v_{(k+1+i)_{1}}\right) & =n-1-2(i-1), \quad 1 \leq i \leq k-1 \\
f\left(v_{i_{j}}\right) & =f\left(v_{i_{j-1}}\right)+n-1, \quad 2 \leq j \leq m, \quad 1 \leq i \leq n
\end{aligned}
$$

Then f is a mean labeling. Thus the graph edge $m C_{n}-$ snake is a mean graph for $m \geq 1$ and $n \geq 3$.

For example, a mean labeling of edge $4 C_{7}$-snake and $5 C_{6}$-snake are shown in Figure 10 .

Figure 10

Theorem 2.9 Let G^{\prime} be a graph obtained by identifying an edge of two cycles C_{m} and C_{n}. Then G^{\prime} is a mean graph for $m, n \geq 3$.

Proof Let us assume that $m \leq n$.
Case $1 m$ is odd and n is odd

Let $m=2 k+1, k \geq 1$ and $n=2 l+1, l \geq 1$. The G^{\prime} has $m+n-2$ vertices and $m+n-1$ edges. We denote the vertices of G^{\prime} as follows:

Figure 11
Define $f: V\left(G^{\prime}\right) \rightarrow\{0,1,2,3, \ldots, q=m+n-1\}$ as follows:

$$
\begin{aligned}
& f\left(v_{1}\right)=0, \quad f\left(v_{i}\right)=2 i-1, \quad 2 \leq i \leq k+1 \\
& f\left(v_{i}\right)=m+3+2(i-k-2), \quad k+2 \leq i \leq k+l \\
& f\left(v_{i}\right)=m+n-1-2(i-k-l-1), \quad k+l+1 \leq i \leq k+2 l \\
& f\left(v_{i}\right)=m-1-2(i-k-2 l-1), \quad k+2 l+1 \leq i \leq 2 k+2 l
\end{aligned}
$$

Then f is a mean labeling.
Case $2 m$ is odd and n is even
Let $m=2 k+1, k \geq 1$ and $n=2 l, l \geq 2$. Define $f: V\left(G^{\prime}\right) \rightarrow\{0,1,2,3, \ldots, q=m+n-1\}$ as follows:

$$
\begin{aligned}
& f\left(v_{1}\right)=0, \quad f\left(v_{i}\right)=2 i-1, \quad 2 \leq i \leq k+1 \\
& f\left(v_{i}\right)=m+3+2(i-k-2), \quad k+2 \leq i \leq k+l \\
& f\left(v_{i}\right)=m+n-2-2(i-k-l-1), \quad k+l+1 \leq i \leq k+2 l-1 \\
& f\left(v_{i}\right)=m-1-2(i-k-2 l), \quad k+2 l \leq i \leq 2 k+2 l-1
\end{aligned}
$$

Then, f gives a mean labeling.
Case $3 m$ and n are even

Let $m=2 k, k \geq 2$ and $n=2 l, l \geq 2$. Define f on the vertex set of G^{\prime} as follows:

$$
\begin{aligned}
& f\left(v_{1}\right)=0, \quad f\left(v_{i}\right)=2 i-2, \quad 2 \leq i \leq k+1 \\
& f\left(v_{i}\right)=m+3+2(i-k-2), \quad k+2 \leq i \leq k+l \\
& f\left(v_{i}\right)=m+n-2-2(i-k-l-1), \quad k+l+1 \leq i \leq k+2 l-1 \\
& f\left(v_{i}\right)=m-1-2(i-k-2 l), \quad k+2 l \leq i \leq 2 k+2 l-2
\end{aligned}
$$

Then, f is a mean labeling. Thus G^{\prime} is a mean graph.
For example, a mean labeling of the graph G^{\prime} obtained by identifying an edge of C_{7} and C_{10} are shown in Figure 12.

Figure 12

Theorem 2.10 Let $\left\{u_{i} v_{i} w_{i} u_{i}: 1 \leq i \leq n\right\}$ be a collection of n disjoint triangles. Let G be the graph obtained by joining w_{i} to $u_{i+1}, 1 \leq i \leq n-1$ and joining u_{i} to u_{i+1} and $v_{i+1}, 1 \leq i \leq n-1$. Then G is a mean graph.

Proof The graph G has $3 n$ vertices and $6 n-3$ edges respectively. We denote the vertices of G as in Figure 13.

Figure 13

Define $f: V(G) \rightarrow\{0,1,2, \ldots, 6 n-3\}$ as follows:

$$
\begin{aligned}
& f\left(u_{i}\right)=6 i-4,1 \leq i \leq n \\
& f\left(v_{i}\right)=6 i-6,1 \leq i \leq n \\
& f\left(w_{i}\right)=6 i-3,1 \leq i \leq n
\end{aligned}
$$

Then f gives a mean labeling and hence G is a mean graph.
For example, a mean labeling of G when $n=6$ is shown Figure 14.

Figure 14

The graph obtained by attaching m pendant vertices to each vertex of a path of length $2 n-1$ is denoted by $B(m)_{(n)}$. Dividing each edge of $B(m)_{(n)}$ by t number of vertices, the resultant graph is denoted by $S_{t}\left(B(m)_{(n)}\right)$.

Theorem 2.11 The $S_{t}\left(B(m)_{(n)}\right)$ is a mean graph for all $m, n, t \geq 1$.
Proof Let $v_{1}, v_{2}, \ldots, v_{2 n}$ be the vertices of the path of length $2 n-1$ and $u_{i, 1}, u_{i, 2}, \ldots, u_{i, m}$ be the pendant vertices attached at $v_{i}, 1 \leq i \leq 2 n$ in the graph $B(m)_{(n)}$. Each edge $v_{i} v_{i+1}, 1 \leq$ $i \leq 2 n-1$, is subdivided by t vertices $x_{i, 1}, x_{i, 2}, \ldots, x_{i, t}$ and each pendant edge $v_{i} u_{i, j}, 1 \leq i \leq$ $2 n, 1 \leq j \leq m$ is subdivided by t vertices $y_{i, j, 1}, y_{i, j, 2}, \ldots, y_{i, j, t}$.

The vertices and their labels of $S_{t}\left(B(m)_{(1)}\right)$ are shown in Figure 15.

Figure 15

Define $f: V\left(S_{t}\left(B(m)_{(n)}\right)\right) \rightarrow\{0,1,2, \ldots,(t+1)(2 m n+2 n-1)\}$ as follows:

$$
\begin{gathered}
f\left(v_{i}\right)= \begin{cases}(t+1)(m+1)(i-1) & \text { if } i \text { is odd and } 1 \leq i \leq 2 n-1 \\
(t+1)[(m+1) i-1] & \text { if } i \text { is even and } 1 \leq i \leq 2 n-1\end{cases} \\
f\left(x_{i, k}\right)= \begin{cases}(t+1)[(m+1) i+m-1]+k & \text { if } i \text { is odd, } 1 \leq i \leq 2 n-1 \text { and } 1 \leq k \leq t \\
(t+1)[(m+1) i-1]+k & \text { if } i \text { is even, } 1 \leq i \leq 2 n-1 \text { and } 1 \leq k \leq t\end{cases} \\
f\left(y_{i, j, k}\right)= \begin{cases}(t+1)(m+1)(i-1) & \text { if } i \text { is odd, } \\
+(2 t+2)(j-1)+k, & 1 \leq i \leq 2 n, 1 \leq j \leq m \text { and } 1 \leq k \leq t \\
(t+1)[(m+1)(i-2)+1] & \text { if } i \text { is even, } \\
+(2 t+2)(j-1)+k, & 1 \leq i \leq 2 n, 1 \leq j \leq m \text { and } 1 \leq k \leq t\end{cases}
\end{gathered}
$$

and $f\left(u_{i, j}\right)= \begin{cases}(t+1)[(m+1)(i-1)+1] & \text { if } i \text { is odd, } \\ +(2 t+2)(j-1), & 1 \leq i \leq 2 n \text { and } 1 \leq j \leq m \\ (t+1)[(m+1)(i-2)+2] & \text { if } i \text { is even, } \\ +(2 t+2)(j-1), & 1 \leq i \leq 2 n \text { and } 1 \leq j \leq m .\end{cases}$
Then, f is a mean labeling. Thus $S_{t}\left(B(m)_{(n)}\right)$ is a mean graph.
For example, a mean labeling of $S_{3}\left(B(4)_{(2)}\right)$ is shown in Figure 16.

Figure 16

References

[1] F.Harary, Graph Theory, Addison-Wesley, Reading Mass., (1972).
[2] A.Nagarajan and R.Vasuki, On the meanness of arbitrary path super subdivision of paths, Australas. J. Combin., 51 (2011), 41-48.
[3] Selvam Avadayappan and R.Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1) (2009), 273-284.
[4] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
[5] R.Vasuki and A.Nagarajan, Meanness of the graphs $P_{a, b}$ and P_{a}^{b}, International Journal of Applied Mathematics, 22(4) (2009), 663-675.
[6] S.K.Vaidya and Lekha Bijukumar, Some new families of mean graphs, Journal of Mathematics Research, 2(3) (2010), 169-176.
[7] S.K.Vaidya and Lekha Bijukumar, Mean labeling for some new families of graphs, Journal of Pure and Applied Sciences, 18 (2010), 115-116.

[^0]: ${ }^{1}$ Received April 11, 2013, Accepted August 5, 2013.

