On Mean Graphs

R.Vasuki

(Department of Mathematics, Dr. Sivanthi Aditanar College of Engineering, Tiruchendur-628 215, Tamil Nadu, India)

S.Arockiaraj

(Mepco Schlenk Engineering College, Mepco Engineering College (PO)-626005, Sivakasi, Tamil Nadu, India)

 $E\text{-mail: vasukisehar@yahoo.co.in, sarockiaraj_77@yahoo.com}$

Abstract: Let G(V, E) be a graph with p vertices and q edges. For every assignment $f : V(G) \to \{0, 1, 2, 3, \ldots, q\}$, an induced edge labeling $f^* : E(G) \to \{1, 2, 3, \ldots, q\}$ is defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) \text{ and } f(v) \text{ are of the same parity} \\ \frac{f(u) + f(v) + 1}{2} & \text{otherwise} \end{cases}$$

for every edge $uv \in E(G)$. If $f^*(E) = \{1, 2, ..., q\}$, then we say that f is a mean labeling of G. If a graph G admits a mean labeling, then G is called a mean graph. In this paper, we prove that the graphs double sided step ladder graph $2S(T_m)$, Jelly fish graph J(m, n)for $|m - n| \leq 2$, $P_n(+)N_m$, $(P_2 \cup kK_1) + N_2$ for $k \geq 1$, the triangular belt graph $TB(\alpha)$, $TBL(n, \alpha, k, \beta)$, the edge mC_n - snake, $m \geq 1, n \geq 3$ and $S_t(B(m)_{(n)})$ are mean graphs. Also we prove that the graph obtained by identifying an edge of two cycles C_m and C_n is a mean graph for $m, n \geq 3$.

Key Words: Smarandachely edge 2-labeling, mean graph, mean labeling, Jelly fish graph, triangular belt graph.

AMS(2010): 05C78

§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected, simple graph. Let G(V, E) be a graph with p vertices and q edges. For notations and terminology we follow [1].

Path on *n* vertices is denoted by P_n and a cycle on *n* vertices is denoted by C_n . $K_{1,m}$ is called a star and it is denoted by S_m . The bistar $B_{m,n}$ is the graph obtained from K_2 by identifying the center vertices of $K_{1,m}$ and $K_{1,n}$ at the end vertices of K_2 respectively. $B_{m,m}$ is often denoted by B(m). The join of two graphs G and H is the graph obtained from $G \cup H$ by joining each vertex of G with each vertex of H by means of an edge and it is denoted by G + H. The edge mC_n – snake is a graph obtained from m copies of C_n by identifying the edge $v_{k+1}v_{k+2}$ in each copy of C_n , n is either 2k + 1 or 2k with the edge v_1v_2 in the successive

¹Received April 11, 2013, Accepted August 5, 2013.

On Mean Graphs

copy of C_n . The graph $P_n \times P_2$ is called a ladder. Let P_{2n} be a path of length 2n - 1 with 2n vertices $(1, 1), (1, 2), \ldots, (1, 2n)$ with 2n - 1 edges $e_1, e_2, \ldots, e_{2n-1}$ where e_i is the edge joining the vertices (1, i) and (1, i + 1). On each edge e_i , for $i = 1, 2, \ldots, n$, we erect a ladder with i + 1 steps including the edge e_i and on each edge e_i , for $i = n + 1, n + 2, \ldots, 2n - 1$, we erect a ladder with 2n + 1 - i steps including the edge e_i . The resultant graph is called double sided step ladder graph and is denoted by $2S(T_m)$, where m = 2n denotes the number of vertices in the base.

A vertex labeling of G is an assignment $f: V(G) \to \{0, 1, 2, ..., q\}$. For a vertex labeling f, the induced edge labeling f^* is defined by

$$f^*(uv) = \begin{cases} \frac{f(u) + f(v)}{2} & \text{if } f(u) \text{ and } f(v) \text{ are of the same parity} \\ \frac{f(u) + f(v) + 1}{2} & \text{otherwise} \end{cases}$$

A vertex labeling f is called a mean labeling of G if its induced edge labeling $f^* : E(G) \to \{1, 2, \ldots, q\}$ is a bijection, that is, $f^*(E) = \{1, 2, \ldots, q\}$. If a graph G has a mean labeling, then we say that G is a mean graph. It is clear that a mean labeling is a Smarandachely edge 2-labeling of G.

A mean labeling of the Petersen graph is shown in Figure 1.

Figure 1

The concept of mean labeling was introduced and studied by S.Somasundaram and R.Ponraj [4]. Some new families of mean graphs are studied by S.K.Vaidya et al. [6], [7]. Further some more results on mean graphs are discussed in [2], [3], [5].

In this paper, we establish the meanness of the graphs double sided step ladder graph $2S(T_m)$, Jelly fish graph J(m,n) for $|m-n| \leq 2$, $P_n(+)N_m$, $(P_2 \cup kK_1) + N_2$ for $k \geq 1$, the triangular belt graph $TB(\alpha)$, $TBL(n, \alpha, k, \beta)$, the edge mC_n -snake $m \geq 1, n \geq 3$ and $S_t(B(m)_{(n)})$. Also we prove that the graph obtained by identifying an edge of two cycles C_m and C_n is a mean graph for $m, n \geq 3$.

§2. Mean Graphs

Theorem 2.1 The double sided step ladder graph $2S(T_m)$ is a mean graph where m = 2n denotes the number of vertices in the base.

Proof Let P_{2n} be a path of length 2n - 1 with 2n vertices $(1, 1), (1, 2), \dots, (1, 2n)$ with 2n - 1 edges, $e_1, e_2, \dots, e_{2n-1}$ where e_i is the edge joining the vertices (1, i) and (1, i + 1). On each edge e_i , for $i = 1, 2, \dots, n$, we erect a ladder with i + 1 steps including the edge e_i and on each edge e_i , for $i = n + 1, n + 2, \dots, 2n - 1$, we erect a ladder with 2n + 1 - i steps including the edge e_i .

The double sided step ladder graph $2S(T_m)$ has vertices denoted by $(1, 1), (1, 2), \ldots, (1, 2n), (2, 1), (2, 2), \cdots, (2, 2n), (3, 2), (3, 3), \cdots, (3, 2n-1), (4, 3), (4, 4), \cdots, (4, 2n-2), \cdots, (n+1, n), (n+1, n+1)$. In the ordered pair (i, j), i denotes the row (counted from bottom to top) and j denotes the column (from left to right) in which the vertex occurs. Define $f : V(2S(T_m)) \rightarrow \{0, 1, 2, \ldots, q\}$ as follows:

$$\begin{split} f(i,j) &= (n+1-i)(2n-2i+3) + j - 1, \quad 1 \leq j \leq 2n, i = 1, 2 \\ f(i,j) &= (n+1-i)(2n-2i+3) + j + 1 - i, \quad i-1 \leq j \leq 2n+2 - i, 3 \leq i \leq n+1. \end{split}$$

Then, f is a mean labeling for the double sided step ladder graph $2S(T_m)$. Thus $2S(T_m)$ is a mean graph.

For example, a mean labeling of $2S(T_{10})$ is shown in Figure 2.

For integers $m, n \ge 0$ we consider the graph J(m, n) with vertex set $V(J(m, n)) = \{u, v, x, y\} \cup \{x_1, x_2, \dots, x_m\} \cup \{y_1, y_2, \dots, y_n\}$ and edge set $E(J(m, n)) = \{(u, x), (u, v), (u, y), (v, x), (v, y)\} \cup \{(x_i, x) : i = 1, 2, \dots, m\} \cup \{(y_i, y) : i = 1, 2, \dots, n\}$. We will refer to J(m, n) as a Jelly fish graph.

Theorem 2.2 A Jelly fish graph J(m, n) is a mean graph for $m, n \ge 0$ and $|m - n| \le 2$.

Proof The proof is divided into cases following.

Case 1 m = n.

Define a labeling $f:V(J(m,n)) \to \{0,1,2,\ldots,q=m+n+5\}$ as follows:

$$f(u) = 2, \ f(y) = 0,$$

$$f(v) = m + n + 4, \ f(x) = m + n + 5,$$

$$f(x_i) = 4 + 2(i - 1), \quad 1 \le i \le m$$

$$f(y_{n+1-i}) = 3 + 2(i - 1), \quad 1 \le i \le n$$

Then f provides a mean labeling.

Case 2
$$m = n + 1$$
 or $n + 2$

Define $f: V(J(m, n)) \rightarrow \{0, 1, 2, \dots, q = m + n + 5\}$ as follows:

$$f(u) = 2, \ f(v) = 2n + 4, \ f(y) = 0,$$

$$f(x) = \begin{cases} m + n + 5 & \text{if } m = n + 1 \\ m + n + 4 & \text{if } m = n + 2 \end{cases}$$

$$f(x_i) = \begin{cases} 4 + 2(i - 1), & 1 \le i \le n \\ 2n + 5 + 2(i - (n + 1)), & n + 1 \le i \le m \end{cases}$$

$$f(y_{n+1-i}) = 3 + 2(i - 1), \quad 1 \le i \le n.$$

Then f gives a mean labeling. Thus J(m,n) is a mean graph for $m,n\geq 0$ and $|m-n|\leq 2$. \Box

For example, a mean labeling of J(6,6) and J(9,7) are shown in Figure 3.

Let $P_n(+)N_m$ be the graph with p = n + m and q = 2m + n - 1. $V(P_n(+)N_m) = \{v_1, v_2, \dots, v_n, y_1, y_2, \dots, y_m\}$, where $V(P_n) = \{v_1, v_2, \dots, v_n\}$, $V(N_m) = \{y_1, y_2, \dots, y_m\}$ and

$$E(P_n(+)N_m) = E(P_n) \bigcup \begin{cases} (v_1, y_1), (v_1, y_2), \cdots, (v_1, y_m), \\ (v_n, y_1), (v_n, y_2), \cdots, (v_n, y_m). \end{cases}$$

Theorem 2.3 $P_n(+)N_m$ is a mean graph for all $n, m \ge 1$.

Proof Let us define $f: V(P_n(+)N_m) \rightarrow \{1, 2, 3, \cdots, 2m + n - 1\}$ as follows:

$$f(y_i) = 2i - 1, \ 1 \le i \le m,$$

$$f(v_1) = 0,$$

$$f(v_i) = 2m + 1 + 2(i - 2), \ 2 \le i \le \left\lceil \frac{n + 1}{2} \right\rceil$$

$$f(v_{n+1-i}) = 2m + 2 + 2(i - 1), \ 1 \le i \le \left\lfloor \frac{n - 1}{2} \right\rfloor.$$

Then, f gives a mean labeling. Thus $P_n(+)N_m$ is a mean graph for $n, m \ge 1$.

For example, a mean labeling of $P_8(+)N_5$ and $P_7(+)N_6$ are shown in Figure 4.

Theorem 2.4 For $k \ge 1$, the planar graph $(P_2 \cup kK_1) + N_2$ is a mean graph.

Proof Let the vertex set of $P_2 \cup kK_1$ be $\{z_1, z_2, x_1, x_2, \cdots, x_k\}$ and $V(N_2) = \{y_1, y_2\}$. We have q = 2k + 5. Define a labeling $f : V((P_2 \cup kK_1) + N_2) \to \{1, 2, \cdots, 2k + 5\}$ by

$$f(y_1) = 0, \ f(y_2) = 2k + 5, \ f(z_1) = 2$$
$$f(z_2) = 2k + 4$$
$$f(x_i) = 4 + 2(i - 1), \quad 1 \le i \le k$$

Then, f is a mean labeling and hence $(P_2 \cup kK_1) + N_2$ is a mean graph for $k \ge 1$.

For example, a mean labeling of $(P_2 \cup 5K_1) + N_2$ is shown in Figure 5.

Figure 5

Let $S = \{\uparrow, \downarrow\}$ be the symbol representing, the position of the block as given in Figure 6.

Let α be a sequence of n symbols of $S, \alpha \in S^n$. We will construct a graph by tiling n blocks side by side with their positions indicated by α . We will denote the resulting graph by $TB(\alpha)$ and refer to it as a triangular belt.

For example, the triangular belts corresponding to sequences $\alpha_1 = \{\downarrow\uparrow\uparrow\}, \alpha_2 = \{\downarrow\downarrow\uparrow\downarrow\}$ respectively are shown in Figure 7.

Figure 7

Theorem 2.5 A triangular belt $TB(\alpha)$ is a mean graph for any α in S^n with the first and last block are being \downarrow for all $n \ge 1$.

Proof Let $u_1, u_2, \ldots, u_n, u_{n+1}$ be the top vertices of the belt and $v_1, v_2, \ldots, v_n, v_{n+1}$ be the bottom vertices of the belt. The graph $TB(\alpha)$ has 2n+2 vertices and 4n+1 edges. Define $f: V(TB(\alpha)) \to \{0, 1, 2, \ldots, q = 4n+1\}$ as follows:

$$f(u_i) = 4i, \quad 1 \le i \le n$$

$$f(u_{n+1}) = 4n + 1$$

$$f(v_1) = 0$$

$$f(v_i) = 2 + 4(i-2), \quad 2 \le i \le n$$

Then f gives a mean labeling. Thus $TB(\alpha)$ is a mean graph for all $n \ge 1$.

For example, a mean labeling of $TB(\alpha)$, $TB(\beta)$ and $TB(\gamma)$ are shown in Figure 8.

Corollary 2.6 The graph P_n^2 is a mean graph.

Proof The graph P_n^2 is isomorphic to $TB(\downarrow, \downarrow, \downarrow, \ldots, \downarrow)$ or $TB(\uparrow, \uparrow, \uparrow, \ldots, \uparrow)$. Hence the result follows from Theorem 2.5.

We now consider a class of planar graphs that are formed by amalgamation of triangular belts. For each $n \ge 1$ and α in S^n n blocks with the first and last block are \downarrow we take the triangular belt $TB(\alpha)$ and the triangular belt $TB(\beta)$, β in S^k where k > 0.

We rotate $TB(\beta)$ by 90 degrees counter clockwise and amalgamate the last block with the first block of $TB(\alpha)$ by sharing an edge. The resulting graph is denoted by $TBL(n, \alpha, k, \beta)$, which has 2(nk+1) vertices, 3(n+k)+1 edges with

$$V(TBL(n,\alpha,k,\beta)) = \{u_{1,1}, u_{1,2}, \cdots, u_{1,n+1}, u_{2,1}, u_{2,2}, \dots, u_{2,n+1}, v_{3,1}, v_{3,2}, \cdots, v_{3,k-1}, v_{4,1}, v_{4,2}, \cdots, v_{4,k-1}\}.$$

Theorem 2.7 The graph $TBL(n, \alpha, k, \beta)$ is a mean graph for all α in S^n with the first and last block are \downarrow and β in S^k for all k > 0.

Proof Define $f: V(TBL(n, \alpha, k, \beta)) \rightarrow \{0, 1, 2, \dots, 3(n+k)+1\}$ as follows:

$$f(u_{1,i}) = 4k + 4i, \quad 1 \le i \le n$$

$$f(u_{1,n+1}) = 4(n+k) + 1$$

$$f(u_{2,1}) = 4k$$

$$f(u_{2,i}) = 4k + 2 + 4(i-2), \quad 2 \le i \le n+1$$

$$f(v_{3,i}) = 4i - 4, \quad 1 \le i \le k$$

$$f(v_{4,i}) = 4i - 2, \quad 1 \le i \le k$$

Then f provides a mean labeling and hence $TBL(n, \alpha, k, \beta)$ is a mean graph.

For example, a mean labeling of $TBL(4, \downarrow, \uparrow, \uparrow, \downarrow, 2, \uparrow, \uparrow)$ and $TBL(5, \downarrow, \uparrow, \downarrow, \uparrow, \downarrow, 3, \uparrow, \downarrow, \uparrow)$ is shown in Figure 9.

Theorem 2.8 The graph edge mC_n -snake, $m \ge 1, n \ge 3$ has a mean labeling.

Proof Let $v_{1_j}, v_{2_j}, \ldots, v_{n_j}$ be the vertices and $e_{1_j}, e_{2_j}, \ldots, e_{n_j}$ be the edges of edge mC_n -snake for $1 \leq j \leq m$.

Case 1 n is odd

Let n = 2k + 1 for some $k \in Z^+$. Define a vertex labeling f of edge mC_n -snake as follows:

$$\begin{split} f(v_{1_1}) &= 0, \ f(v_{2_1}) = 1 \\ f(v_{i_1}) &= 2i-2, \quad 3 \leq i \leq k+1 \\ f(v_{(k+1+i)_1}) &= n-2(i-1), \quad 1 \leq i \leq k \\ f(v_{1_2}) &= f(v_{(k+2)_1}), \ f(v_{2_2}) = f(v_{(k+1)_1}), \\ f(v_{i_2}) &= n+4+2(i-3), \quad 3 \leq i \leq k+1 \\ f(v_{(k+1+i)_2}) &= 2n-2-2(i-1), \quad 1 \leq i \leq k-1 \\ f(v_{n_2}) &= n+2 \\ f(v_{i_j}) &= f(v_{i_{j-2}}) + 2n-2, \quad 3 \leq j \leq m, \quad 1 \leq i \leq n. \end{split}$$

Then f gives a mean labeling.

Case 2 n is even

Let n = 2k for some $k \in \mathbb{Z}^+$. Define a labeling f of edge mC_n -snake as follows:

$$\begin{split} f(v_{1_1}) &= 0, \ f(v_{2_1}) = 1, \\ f(v_{i_1}) &= 2i-2, \quad 3 \leq i \leq k+1 \\ f(v_{(k+1+i)_1}) &= n-1-2(i-1), \quad 1 \leq i \leq k-1 \\ f(v_{i_j}) &= f(v_{i_{j-1}}) + n-1, \quad 2 \leq j \leq m, \quad 1 \leq i \leq n \end{split}$$

Then f is a mean labeling. Thus the graph edge mC_n -snake is a mean graph for $m \ge 1$ and $n \ge 3$.

For example, a mean labeling of edge $4C_7$ -snake and $5C_6$ -snake are shown in Figure 10.

Figure 10

Theorem 2.9 Let G' be a graph obtained by identifying an edge of two cycles C_m and C_n . Then G' is a mean graph for $m, n \ge 3$.

Proof Let us assume that $m \leq n$.

Case 1 m is odd and n is odd

Let m = 2k + 1, $k \ge 1$ and n = 2l + 1, $l \ge 1$. The G' has m + n - 2 vertices and m + n - 1 edges. We denote the vertices of G' as follows:

Figure 11

Define $f: V(G') \to \{0, 1, 2, 3, \dots, q = m + n - 1\}$ as follows:

$$\begin{aligned} f(v_1) &= 0, \ f(v_i) = 2i - 1, \quad 2 \le i \le k + 1 \\ f(v_i) &= m + 3 + 2(i - k - 2), \quad k + 2 \le i \le k + l \\ f(v_i) &= m + n - 1 - 2(i - k - l - 1), \quad k + l + 1 \le i \le k + 2l \\ f(v_i) &= m - 1 - 2(i - k - 2l - 1), \quad k + 2l + 1 \le i \le 2k + 2l \end{aligned}$$

Then f is a mean labeling.

Case 2 m is odd and n is even

Let $m = 2k + 1, k \ge 1$ and $n = 2l, l \ge 2$. Define $f : V(G') \to \{0, 1, 2, 3, \dots, q = m + n - 1\}$ as follows:

$$\begin{aligned} f(v_1) &= 0, \ f(v_i) = 2i - 1, \quad 2 \leq i \leq k + 1 \\ f(v_i) &= m + 3 + 2(i - k - 2), \quad k + 2 \leq i \leq k + l \\ f(v_i) &= m + n - 2 - 2(i - k - l - 1), \quad k + l + 1 \leq i \leq k + 2l - 1 \\ f(v_i) &= m - 1 - 2(i - k - 2l), \quad k + 2l \leq i \leq 2k + 2l - 1 \end{aligned}$$

Then, f gives a mean labeling.

Case 3 m and n are even

Let $m = 2k, k \ge 2$ and $n = 2l, l \ge 2$. Define f on the vertex set of G' as follows:

$$f(v_1) = 0, \ f(v_i) = 2i - 2, \quad 2 \le i \le k + 1$$

$$f(v_i) = m + 3 + 2(i - k - 2), \quad k + 2 \le i \le k + l$$

$$f(v_i) = m + n - 2 - 2(i - k - l - 1), \quad k + l + 1 \le i \le k + 2l - 1$$

$$f(v_i) = m - 1 - 2(i - k - 2l), \quad k + 2l \le i \le 2k + 2l - 2$$

Then, f is a mean labeling. Thus G' is a mean graph.

For example, a mean labeling of the graph G' obtained by identifying an edge of C_7 and C_{10} are shown in Figure 12.

Figure 12

Theorem 2.10 Let $\{u_i v_i w_i u_i : 1 \le i \le n\}$ be a collection of n disjoint triangles. Let G be the graph obtained by joining w_i to $u_{i+1}, 1 \le i \le n-1$ and joining u_i to u_{i+1} and $v_{i+1}, 1 \le i \le n-1$. Then G is a mean graph.

Proof The graph G has 3n vertices and 6n - 3 edges respectively. We denote the vertices of G as in Figure 13.

Figure 13

Define $f: V(G) \to \{0, 1, 2, \dots, 6n - 3\}$ as follows:

$$f(u_i) = 6i - 4, 1 \le i \le n$$

$$f(v_i) = 6i - 6, 1 \le i \le n$$

$$f(w_i) = 6i - 3, 1 \le i \le n.$$

Then f gives a mean labeling and hence G is a mean graph.

For example, a mean labeling of G when n = 6 is shown Figure 14.

Figure 14

The graph obtained by attaching m pendant vertices to each vertex of a path of length 2n - 1 is denoted by $B(m)_{(n)}$. Dividing each edge of $B(m)_{(n)}$ by t number of vertices, the resultant graph is denoted by $S_t(B(m)_{(n)})$.

Theorem 2.11 The $S_t(B(m)_{(n)})$ is a mean graph for all $m, n, t \ge 1$.

Proof Let v_1, v_2, \ldots, v_{2n} be the vertices of the path of length 2n - 1 and $u_{i,1}, u_{i,2}, \ldots, u_{i,m}$ be the pendant vertices attached at $v_i, 1 \le i \le 2n$ in the graph $B(m)_{(n)}$. Each edge $v_i v_{i+1}, 1 \le i \le 2n - 1$, is subdivided by t vertices $x_{i,1}, x_{i,2}, \ldots, x_{i,t}$ and each pendant edge $v_i u_{i,j}, 1 \le i \le 2n, 1 \le j \le m$ is subdivided by t vertices $y_{i,j,1}, y_{i,j,2}, \ldots, y_{i,j,t}$.

The vertices and their labels of $S_t(B(m)_{(1)})$ are shown in Figure 15.

Define $f: V(S_t(B(m)_{(n)})) \to \{0, 1, 2, \dots, (t+1)(2mn+2n-1)\}$ as follows:

$$\begin{split} f(v_i) &= \begin{cases} &(t+1)(m+1)(i-1) \quad \text{if } i \text{ is odd and } 1 \leq i \leq 2n-1 \\ &(t+1)[(m+1)i-1] \quad \text{if } i \text{ is even and } 1 \leq i \leq 2n-1 \end{cases} \\ f(x_{i,k}) &= \begin{cases} &(t+1)[(m+1)i+m-1]+k \quad \text{if } i \text{ is odd}, \ 1 \leq i \leq 2n-1 \text{ and } 1 \leq k \leq t \\ &(t+1)[(m+1)i-1]+k \qquad \text{if } i \text{ is even}, \ 1 \leq i \leq 2n-1 \text{ and } 1 \leq k \leq t \end{cases} \\ f(y_{i,j,k}) &= \begin{cases} &(t+1)(m+1)(i-1) & \text{if } i \text{ is odd}, \\ &+(2t+2)(j-1)+k, & 1 \leq i \leq 2n, 1 \leq j \leq m \text{ and } 1 \leq k \leq t \\ &(t+1)[(m+1)(i-2)+1] & \text{if } i \text{ is even}, \\ &+(2t+2)(j-1)+k, & 1 \leq i \leq 2n, 1 \leq j \leq m \text{ and } 1 \leq k \leq t \end{cases} \end{split}$$

and
$$f(u_{i,j}) = \begin{cases} (t+1)[(m+1)(i-1)+1] & \text{if } i \text{ is odd,} \\ +(2t+2)(j-1), & 1 \le i \le 2n \text{ and } 1 \le j \le m \\ (t+1)[(m+1)(i-2)+2] & \text{if } i \text{ is even,} \\ +(2t+2)(j-1), & 1 \le i \le 2n \text{ and } 1 \le j \le m. \end{cases}$$

Then, f is a mean labeling. Thus $S_t(B(m)_{(n)})$ is a mean graph.

For example, a mean labeling of $S_3(B(4)_{(2)})$ is shown in Figure 16.

References

- [1] F.Harary, *Graph Theory*, Addison-Wesley, Reading Mass., (1972).
- [2] A.Nagarajan and R.Vasuki, On the meanness of arbitrary path super subdivision of paths, Australas. J. Combin., 51 (2011), 41–48.
- [3] Selvam Avadayappan and R.Vasuki, Some results on mean graphs, Ultra Scientist of Physical Sciences, 21(1) (2009), 273–284.
- [4] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science letter, 26 (2003), 210-213.
- [5] R.Vasuki and A.Nagarajan, Meanness of the graphs $P_{a,b}$ and P_a^b , International Journal of Applied Mathematics, **22**(4) (2009), 663–675.
- [6] S.K.Vaidya and Lekha Bijukumar, Some new families of mean graphs, Journal of Mathematics Research, 2(3) (2010), 169–176.
- [7] S.K.Vaidya and Lekha Bijukumar, Mean labeling for some new families of graphs, *Journal of Pure and Applied Sciences*, 18 (2010), 115–116.