Mean Labelings on Product Graphs

Teena Liza John and Mathew Varkey T.K

(Department of Mathematics, T.K.M College of Engineering, Kollam-5, Kerala, India)
E-mail: teenavinu@gmail.com, mathewvarkeytk@gmail.com

$$
\begin{aligned}
& \text { Abstract: Let } G \text { be a }(p, q) \text { graph and let } f: V(G) \rightarrow\{0,1, \cdots, q\} \text { be an injection. Then } \\
& G \text { is said to have a mean labeling if for each edge } u v \text {, there exists an induced injective map } \\
& f^{*}: E(G) \rightarrow\{1,2, \cdots, q\} \text { defined by } \\
& \qquad \begin{aligned}
f^{*}(u v) & =\frac{f(u)+f(v)}{2} \text { if } f(u)+f(v) \text { is even, and } \\
= & \frac{f(u)+f(v)+1}{2} \text { if } f(u)+f(v) \text { is odd }
\end{aligned}
\end{aligned}
$$

We extend this notion to Smarandachely near m-mean labeling if for each edge $e=u v$ and an integer $m \geq 2$, the induced Smarandachely m-labeling f^{*} is defined by

$$
f^{*}(e)=\left\lceil\frac{f(u)+f(v)}{m}\right\rceil .
$$

A graph that admits a Smarandachely near mean m-labeling is called Smarandachely near m-mean graph. The graph G is said to be a near mean graph if the injective map $f: V(G) \rightarrow$ $\{1,2, \cdots, q-1, q+1\}$ induces $f^{*}: E(G) \rightarrow\{1,2, \cdots, q\}$ which is also injective, defined as above. In this paper we investigate the direct product of paths for their meanness and the Cartesian product of P_{n} and K_{4} for its near-meanness.

Key Words: Smarandachely near m-labeling, Smarandachely near m-mean graph, mean graph, near-mean graph, direct product, Cartesian product.

AMS(2010): 05C78

§1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. For all the terminology and notations in graph theory we follow [2] and [5] and for the terminology regarding labeling we follow [1]. The vertex set and edge set of a graph G are denoted by $V(G)$ and $E(G)$ respectively. The direct product of G and H is denoted by $G \times H$ and is defined as a graph with vertex set $V(G) \times V(H)$ and edge set

$$
\left\{(g, h),\left(g^{\prime}, h^{\prime}\right) / g g^{\prime} \in E(G) \text { and } h h^{\prime} \in E(H)\right\}
$$

The Cartesian product of G and H is denoted by $G \square H$ and is defined as a graph with

[^0]vertex set $V(G) \times V(H)$ and edge set $\left\{(g, h),\left(g^{\prime}, h^{\prime}\right) /\right.$ either $\left(g=g^{\prime}\right.$ and h adj $\left.h^{\prime}\right)$ or (g adj g^{\prime} and $\left.\left.h=h^{\prime}\right)\right\}$. The concept of mean labeling was introduced in [6] and the notion of near-mean labeling was introduced in [3].

In [4], various product graphs are proved as near-mean graphs.

§2. Direct Product of Graphs

Definition 2.1 The direct product of G and H is the graph denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$ and for which vertices (g, h) and $\left(g^{\prime}, h^{\prime}\right)$ are adjacent precisely if $g g^{\prime} \in E(G)$ and $h h^{\prime} \in E(H)$. Thus

$$
\begin{aligned}
V(G \times H) & =\{(g, h) / g \in V(G) \text { and } h \in V(H)\} \\
E(G \times H) & =\left\{(g, h)\left(g^{\prime}, h^{\prime}\right) / g g^{\prime} \in E(G) \text { and } h h^{\prime} \in E(H)\right\}
\end{aligned}
$$

Remark 2.1 $P_{m} \times P_{n}$ is a disconnected graph with two components. Direct product is both commutative and associative. The maps $\left(x_{1}, x_{2}\right) \mapsto\left(x_{2}, x_{1}\right)$ and $\left(\left(x_{1}, x_{2}\right), x_{3}\right) \mapsto\left(x_{1}\left(x_{2}, x_{3}\right)\right)$ give rise to the following isomorphisms

$$
G_{1} \times G_{2} \cong G_{2} \times G_{1}, \quad\left(G_{1} \times G_{2}\right) \times G_{3} \cong G_{1} \times\left(G_{2} \times G_{3}\right)
$$

Theorem $2.1 \quad P_{3} \times P_{m}$ is a mean graph when $m \geqslant 3$ and is odd.
Proof Let $u_{i j} ; i=1,2,3 ; j=1,2, \cdots, m$ be the vertices of $P_{3} \times P_{m}$. Note that this graph has $3 m$ vertices and $4(m-1)$ edges. Define $f: V\left(P_{3} \times P_{m}\right) \rightarrow\{0,1, \cdots, q\}$ such that

$$
\begin{aligned}
& f\left(u_{11}\right)=0 \\
& f\left(u_{1 j}\right)= \begin{cases}2 j-3 & ; j=3,5, \cdots, m \\
2 m & ; j=2 \\
f\left(u_{1, j-2}\right)+j-k & ; j=4,6, \ldots, m-1 ; k=1,2,3 ; 1,2,3 ; 1,2,3 \cdots\end{cases} \\
& f\left(u_{2 j}\right)= \begin{cases}2(j-1) & ; j=2,4, \cdots, m-1 \\
2(m-1) & ; j=1 \\
f\left(u_{2, j-2}\right)+4 & ; j=3,5, \cdots, m\end{cases} \\
& f\left(u_{3 j}\right)= \begin{cases}2 j-1 & ; j=1,3, \cdots, m \\
2 m+1 & ; j=2 \\
f\left(u_{3, j-2}\right)+4 & ; j=4,6 \cdots, m-1\end{cases}
\end{aligned}
$$

It can be easily verified that f is one one which induces the edge labels $f^{*}\left(E\left(P_{3} \times P_{m}\right)\right)$. Hence the theorem.

Example 2.1 The Fig. 1 following shows the mean labeling of $P_{3} \times P_{7}$.

Fig 1

Theorem $2.2 P_{5} \times P_{m}$ admits mean labeling when $m \geqslant 7$ and is odd.
Proof Let $u_{i j}, i=1,2, \cdots, 5$ and $j=1,2, \cdots, m$ be the vertices of $P_{5} \times P_{m}$. Consider $f: V\left(P_{5} \times P_{m}\right) \rightarrow\{0,1, \cdots, q\}$ which is defined as

$$
\begin{aligned}
f\left(u_{11}\right) & =0 \\
f\left(u_{i 1}\right) & =i-2, \quad i=3,5 \\
f\left(u_{i j}\right) & =f\left(u_{i, j-2}\right)+8, \quad i=1,3,5 ; \quad j=3,5, \cdots, m \\
f\left(u_{i 2}\right) & =i, \quad i=2,4 \\
f\left(u_{i k}\right) & =f\left(u_{i, k-2}\right)+8, \quad i=2,4 ; k=4,6, \cdots, m-1
\end{aligned}
$$

And when $i=1,3,5, f\left(u_{i 2}\right)=f\left(u_{5, m}\right)+i$; when $i=2,4, f\left(u_{i 1}\right)=f\left(u_{4, m-1}\right)+i-1$; when $i=1,2, \cdots, 5 ; l=3,4, \cdots, m, f\left(u_{i l}\right)=f\left(u_{i, l-2}\right)+8$.

From the definition of labelings on $V\left(P_{5} \times P_{m}\right)$, we can infer that the vertex labels are in an increasing sequence. That is the sequence such as:

For $j=1,3, \cdots, m,\left\langle u_{1 j}\right\rangle,\left\langle u_{3 j}\right\rangle$ and $\left\langle u_{5 j}\right\rangle$; for $j=2,4, \cdots, m-1, \quad\left\langle u_{2 j}\right\rangle,\left\langle u_{4 j}\right\rangle$ and for $k=2,4, \cdots, m-1, \quad\left\langle u_{1 k}\right\rangle,\left\langle u_{3 k}\right\rangle,\left\langle u_{5 k}\right\rangle$; for $k=1,3, \cdots, m, \quad\left\langle u_{2 k}\right\rangle$ and $\left\langle u_{4 k}\right\rangle$, occur as an arithmetic progression.

Also we have

$$
\begin{aligned}
& f\left(u_{11}\right)=0, \quad f\left(u_{31}\right)=1 \\
& f\left(u_{51}\right)=3, \quad f\left(u_{22}\right)=2 \\
& f\left(u_{42}\right)=4
\end{aligned}
$$

Hence f_{p} is one- one with $f_{p}^{*}=\{1,2, \cdots, q\}$.
Remark $2.2 P_{n} \times P_{m}$ are not mean graphs for all m. Since $P_{2} \times P_{m}$ being a disjoint union of two P_{m} paths, it has $2(m-1)$ edges on $2 m$ vertices. This implies that the number of edges is less than the number of vertices by 2 . Hence we cannot label them with $\{0,1, \cdots, q\}$.

Conjecture 2.1 For m even $P_{3} \times P_{m}$ and $P_{5} \times P_{m}$ are not mean graphs.

§3. Cartesian Product of Graphs

Definition 3.1 Let G and H be graphs with $V(G)=V_{1}$ and $V(H)=V_{2}$. The cartesian product of G and H is the graph $G \square H$ whose vertex set is $V_{1} \times V_{2}$ such that two vertices $u=(x, y)$ and $v=\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if either $x=x^{\prime}$ and y is adjacent to y^{\prime} in H or $y=y^{\prime}$ and x is adjacent to x^{\prime} in G. That is u adj v in $G \square H$ whenever $\left[x=x^{\prime}\right.$ and y adj $\left.y^{\prime}\right]$ or $\left[y=y^{\prime}\right.$ and x adj $\left.x^{\prime}\right]$.

Definition 3.2 Let P_{n} be a path on n vertices and K_{4} be the complete graph on 4 vertices. The cartesian product of P_{n} and K_{4} is $P_{n} \square K_{4}$ with $4 n$ vertices and $10 n-4$ edges.

Theorem 3.1 $P_{n} \square K_{4}$ is a near mean graph.

Proof Let $G=P_{n} \square K_{4}$ with $V(G)=\left\{u_{i 1}, u_{i 2}, u_{i 3}, u_{i 4} / i=1,2, \cdots, n\right\}$. Define $f: V(G) \rightarrow$ $\{0,1, \cdots, q-1, q+1\}$ such that

$$
\begin{aligned}
f\left(u_{11}\right) & =0, \quad f\left(u_{i 1}\right)=5(2 i-1), i=2,4, \ldots, n \\
& =5(2 i-2), i \neq 1, \text { odd } \\
f\left(u_{i 2}\right) & =10(i-1)+2 \\
f\left(u_{i 3}\right) & =5(2 i-1)+(-1)^{i} 2 \\
f\left(u_{i 4}\right) & =\left\{\begin{array}{l}
5(2 i-1)+3, i \text { odd } \\
5(2 i-3)+4 i \text { even }
\end{array}\right.
\end{aligned}
$$

The edge labels induced by f are as follows:
When i is even,

$$
\begin{aligned}
f^{*}\left(u_{i 1} u_{i 2}\right) & =\frac{1}{2}\left[f\left(u_{i 1}\right)+f\left(u_{i 2}\right)+1\right] \\
& =\frac{1}{2}[5(2 i-1)+5(2 i-2)+2+1] \\
& =10 i-6, \quad i=2,4, \ldots, n
\end{aligned}
$$

When i is odd,

$$
\begin{aligned}
f^{*}\left(u_{i 1} u_{i 2}\right) & =\frac{f\left(u_{i 1}\right)+f\left(u_{i 2}\right)}{2} \\
& =\frac{5(2 i-2)+5(2 i-2)+2}{2} \\
& =5(2 i-2)+1, \quad i=1,3,5, \ldots
\end{aligned}
$$

Hence the edges $u_{i 1} u_{i 2}$ carry labels $1,14,21, \cdots, 10(n-1)+1$ if n is odd or $1,14,21, \cdots, 10 n-6$
if n is even.

$$
\begin{aligned}
f^{*}\left(u_{i 1}, u_{i+1,1}\right)= & \frac{f\left(u_{i 1}\right)+f\left(u_{i+1,1}\right)+1}{2}, \quad i=1,2, \cdots, n-1 \\
& \left(\text { since } f\left(u_{i 1}\right) \text { and } f\left(u_{i+1,1}\right) \text { are of opposite parity }\right) \\
= & \frac{1}{2}[5(2 i-1)+5(2(i+1)-2)+1] \\
= & 10 i-2
\end{aligned}
$$

Hence the edges $u_{i 1}, u_{i+1,1}$ have labels as $8,18,28, \cdots, 10 n-12$.

$$
\begin{aligned}
f^{*}\left(u_{i 2}, u_{i+1,2}\right)= & \frac{f\left(u_{i 2}\right)+f\left(u_{i+1,2}\right)}{2} \\
& \left(\text { since } f\left(u_{i 2}\right), f\left(u_{i+1,2}\right)\right. \text { are of same parity) } \\
= & 10 i-3, i=1,2, \cdots,(n-1)
\end{aligned}
$$

The edges $u_{i 2}, u_{i+1,2}$ have $7,17,27, \cdots, 10 n-13$ as labels.

$$
\begin{aligned}
f^{*}\left(u_{i 3}, u_{i+1,3}\right) & =\frac{f\left(u_{i 3}\right)+f\left(u_{i+1,3}\right)}{2} \\
& =10 i, i=1,2, \cdots,(n-1)
\end{aligned}
$$

Therefore, $u_{i 3} u_{i+1,3}$ assume labels $10,20,30, \cdots, 10(n-1)$,

$$
\begin{aligned}
f^{*}\left(u_{i 4}, u_{i+1,4}\right)= & \frac{f\left(u_{i 4}\right)+f\left(u_{i+1,4}\right)+1}{2} \\
& (\text { since both vertex labels are of opposite parity) } \\
= & \frac{1}{2}[5(2 i-1)+3+5(2 i-1)+4+1] \\
= & 10 i-1 \\
\text { or }= & \frac{1}{2}[5(2 i-3)+4+5(2 i+1)+3+1]=10 i-1
\end{aligned}
$$

Therefore $u_{i 4} u_{i+1,4}$ have labels as $9,19, \cdots, 10 n-11$.
When i is odd,

$$
\begin{aligned}
f^{*}\left(u_{i 2}, u_{i 4}\right) & =\frac{f\left(u_{i 2}\right)+f\left(u_{i 4}\right)}{2} \\
& =\frac{5(2 i-2)+2+5(2 i-1)+3}{2} \\
& =10 i-5
\end{aligned}
$$

When i is even,

$$
\begin{aligned}
f^{*}\left(u_{i 2} u_{i 4}\right) & =\frac{f\left(u_{i 2}\right)+f\left(u_{i 4}\right)+1}{2} \\
& =\frac{10(i-1)+2+5(2 i-3)+4+1}{2} \\
& =10 i-9
\end{aligned}
$$

Hence $5,11,25, \cdots 10 n-9$ if n is even or $5,11,25, \cdots, 10 n-5$ if n is odd, correspond to the edges $u_{i 2} u_{i 4}$

$$
f^{*}\left(u_{i 2}, u_{i 3}\right)=\frac{f\left(u_{i 2}\right)+f\left(u_{i 3}\right)+1}{2}=10 i-6+(-1)^{i}
$$

So the edges $u_{i 2} u_{i 3}$ have labels $3,15,23, \cdots, 10 n-6+(-1)^{n}$.

$$
\begin{aligned}
f^{*}\left(u_{i 3}, u_{i 4}\right) & =\frac{f\left(u_{i 3}\right)+f\left(u_{i 4}\right)}{2}=10 i-7 \text { if } i \text { is even, or } \\
& =\frac{f\left(u_{i 3}\right)+f\left(u_{i 4}\right)+1}{2}=10 i-4 \text { if } i \text { is odd }
\end{aligned}
$$

So the values taken by $u_{i 3} u_{i 4}$ are $6,13,26, \cdots 10 n-7$ if n is even or $6,13, \cdots, 10 n-4$ if n is odd.

If i is odd,

$$
f^{*}\left(u_{i 1}, u_{i 3}\right)=\frac{f\left(u_{i 1}\right)+f\left(u_{i 3}\right)+1}{2}=10 i-8
$$

If i is even,

$$
f^{*}\left(u_{i 1}, u_{i 3}\right)=\frac{f\left(u_{i 1}\right)+f\left(u_{i 3}\right)}{2}=10 i-4
$$

If i is odd,

$$
f^{*}\left(u_{i 1}, u_{i 4}\right)=\frac{f\left(u_{i 1}\right)+f\left(u_{i 4}\right)}{2}=10 i-6
$$

If i is even,

$$
f^{*}\left(u_{i 1}, u_{i 4}\right)=\frac{f\left(u_{i 1}\right)+f\left(u_{i 4}\right)}{2}=10 i-8
$$

Hence the edge values of $u_{i 1} u_{i j}$ are $1,2,4, \cdots, 10 n-8,10 n-6,10 n-4$ if n is even, or $1,2, \cdots, 10 n-9,10 n-8,10 n-6$ if n is odd. Hence the theorem.

Example 3.1 The Fig. 2 following shows the near mean labeling of $P_{4} \square K_{4}$.

Fig 2

References

[1] J.A.Gallian, The Electronic Journal of Combinatorics, 19 (2012), \# DS6.
[2] F.Harary, Graph Theory, Addison Wesley Publishing Company Inc. USA 1969.
[3] A.Nagarajan, A.Nellai Murugan and S.Navaneetha Krishnan, On near mean graphs, International J. Math. Combin., Vol. 4 (2010) 94-99
[4] A.Nagarajan, A.Nellai Murugan and A.Subramanian, Near meanness on product graphs, Scientia Magna, Vol.6, No.3(2010), 40-49.
[5] Richard Hammack, Wilfried Imrich and Sandi Klavzar, Hand Book on Product Graphs(2 ${ }^{\text {nd }}$ edition), CRC Press, Taylor and Francis Group LLC, US, 2011.
[6] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science Letter, 26 (2003) 210-213.

[^0]: ${ }^{1}$ Received October 1, 2013, Accepted September 2, 2014.

