Mean Labelings on Product Graphs

Teena Liza John and Mathew Varkey T.K

(Department of Mathematics, T.K.M College of Engineering, Kollam-5, Kerala, India)

E-mail: teen a vinu@gmail.com, mathewvarkeytk@gmail.com

Abstract: Let G be a (p,q) graph and let $f: V(G) \to \{0, 1, \dots, q\}$ be an injection. Then G is said to have a mean labeling if for each edge uv, there exists an induced injective map $f^*: E(G) \to \{1, 2, \dots, q\}$ defined by

$$f^*(uv) = \frac{f(u) + f(v)}{2} \text{ if } f(u) + f(v) \text{ is even, and}$$
$$= \frac{f(u) + f(v) + 1}{2} \text{ if } f(u) + f(v) \text{ is odd}$$

We extend this notion to Smarandachely near m-mean labeling if for each edge e = uv and an integer $m \ge 2$, the induced Smarandachely m-labeling f^* is defined by

$$f^*(e) = \left\lceil \frac{f(u) + f(v)}{m} \right\rceil.$$

A graph that admits a Smarandachely near mean *m*-labeling is called *Smarandachely near m*-mean graph. The graph G is said to be a near mean graph if the injective map $f: V(G) \rightarrow \{1, 2, \dots, q-1, q+1\}$ induces $f^*: E(G) \rightarrow \{1, 2, \dots, q\}$ which is also injective, defined as above. In this paper we investigate the direct product of paths for their meanness and the Cartesian product of P_n and K_4 for its near-meanness.

Key Words: Smarandachely near *m*-labeling, Smarandachely near m-mean graph, mean graph, near-mean graph, direct product, Cartesian product.

AMS(2010): 05C78

§1. Introduction

By a graph we mean a finite, undirected graph without loops or multiple edges. For all the terminology and notations in graph theory we follow [2] and [5] and for the terminology regarding labeling we follow [1]. The vertex set and edge set of a graph G are denoted by V(G) and E(G)respectively. The direct product of G and H is denoted by $G \times H$ and is defined as a graph with vertex set $V(G) \times V(H)$ and edge set

$$\{(g,h), (g',h')/gg' \in E(G) \text{ and } hh' \in E(H)\}.$$

The Cartesian product of G and H is denoted by $G \Box H$ and is defined as a graph with

¹Received October 1, 2013, Accepted September 2, 2014.

vertex set $V(G) \times V(H)$ and edge set $\{(g, h), (g', h')/\text{either } (g = g' \text{ and } h \text{ adj } h')$ or $(g \text{ adj } g' \text{ and } h = h')\}$. The concept of mean labeling was introduced in [6] and the notion of near-mean labeling was introduced in [3].

In [4], various product graphs are proved as near-mean graphs.

§2. Direct Product of Graphs

Definition 2.1 The direct product of G and H is the graph denoted by $G \times H$, whose vertex set is $V(G) \times V(H)$ and for which vertices (g,h) and (g',h') are adjacent precisely if $gg' \in E(G)$ and $hh' \in E(H)$. Thus

$$V(G \times H) = \{(g,h)/g \in V(G) \text{ and } h \in V(H)\}$$
$$E(G \times H) = \{(g,h)(g',h')/gg' \in E(G) \text{ and } hh' \in E(H)\}$$

Remark 2.1 $P_m \times P_n$ is a disconnected graph with two components. Direct product is both commutative and associative. The maps $(x_1, x_2) \mapsto (x_2, x_1)$ and $((x_1, x_2), x_3) \mapsto (x_1(x_2, x_3))$ give rise to the following isomorphisms

$$G_1 \times G_2 \cong G_2 \times G_1, \quad (G_1 \times G_2) \times G_3 \cong G_1 \times (G_2 \times G_3)$$

Theorem 2.1 $P_3 \times P_m$ is a mean graph when $m \ge 3$ and is odd.

Proof Let u_{ij} ; $i = 1, 2, 3; j = 1, 2, \dots, m$ be the vertices of $P_3 \times P_m$. Note that this graph has 3m vertices and 4(m-1) edges. Define $f: V(P_3 \times P_m) \to \{0, 1, \dots, q\}$ such that

$$f(u_{11}) = 0$$

$$f(u_{1j}) = \begin{cases} 2j-3 & ;j = 3, 5, \cdots, m \\ 2m & ;j = 2 \\ f(u_{1,j-2}) + j - k & ;j = 4, 6, \ldots, m-1; k = 1, 2, 3; 1, 2, 3; 1, 2, 3 \cdots \end{cases}$$

$$f(u_{2j}) = \begin{cases} 2(j-1) & ;j = 2, 4, \cdots, m-1 \\ 2(m-1) & ;j = 1 \\ f(u_{2,j-2}) + 4 & ;j = 3, 5, \cdots, m \end{cases}$$

$$f(u_{3j}) = \begin{cases} 2j-1 & ;j = 1, 3, \cdots, m \\ 2m+1 & ;j = 2 \\ f(u_{3,j-2}) + 4 & ;j = 4, 6 \cdots, m-1 \end{cases}$$

It can be easily verified that f is one one which induces the edge labels $f^*(E(P_3 \times P_m))$. Hence the theorem.

Example 2.1 The Fig.1 following shows the mean labeling of $P_3 \times P_7$.

Fig 1

Proof Let u_{ij} , $i = 1, 2, \dots, 5$ and $j = 1, 2, \dots, m$ be the vertices of $P_5 \times P_m$. Consider $f: V(P_5 \times P_m) \to \{0, 1, \dots, q\}$ which is defined as

$$f(u_{11}) = 0$$

$$f(u_{i1}) = i-2, \quad i = 3, 5$$

$$f(u_{ij}) = f(u_{i,j-2}) + 8, \quad i = 1, 3, 5; \quad j = 3, 5, \cdots, m$$

$$f(u_{i2}) = i, \quad i = 2, 4$$

$$f(u_{ik}) = f(u_{i,k-2}) + 8, \quad i = 2, 4; k = 4, 6, \cdots, m-1$$

And when i = 1, 3, 5, $f(u_{i2}) = f(u_{5,m}) + i$; when i = 2, 4, $f(u_{i1}) = f(u_{4,m-1}) + i - 1$; when $i = 1, 2, \dots, 5; l = 3, 4, \dots, m, f(u_{il}) = f(u_{i,l-2}) + 8$.

From the definition of labelings on $V(P_5 \times P_m)$, we can infer that the vertex labels are in an increasing sequence. That is the sequence such as:

For $j = 1, 3, \dots, m, \langle u_{1j} \rangle, \langle u_{3j} \rangle$ and $\langle u_{5j} \rangle$; for $j = 2, 4, \dots, m-1$, $\langle u_{2j} \rangle, \langle u_{4j} \rangle$ and for $k = 2, 4, \dots, m-1$, $\langle u_{1k} \rangle, \langle u_{3k} \rangle, \langle u_{5k} \rangle$; for $k = 1, 3, \dots, m$, $\langle u_{2k} \rangle$ and $\langle u_{4k} \rangle$, occur as an arithmetic progression.

Also we have

$$f(u_{11}) = 0, \quad f(u_{31}) = 1$$

$$f(u_{51}) = 3, \quad f(u_{22}) = 2$$

$$f(u_{42}) = 4$$

Hence f_p is one- one with $f_p^* = \{1, 2, \cdots, q\}.$

Remark 2.2 $P_n \times P_m$ are not mean graphs for all m. Since $P_2 \times P_m$ being a disjoint union of two P_m paths, it has 2(m-1) edges on 2m vertices. This implies that the number of edges is less than the number of vertices by 2. Hence we cannot label them with $\{0, 1, \dots, q\}$.

Conjecture 2.1 For m even $P_3 \times P_m$ and $P_5 \times P_m$ are not mean graphs.

§3. Cartesian Product of Graphs

Definition 3.1 Let G and H be graphs with $V(G) = V_1$ and $V(H) = V_2$. The cartesian product of G and H is the graph $G \Box H$ whose vertex set is $V_1 \times V_2$ such that two vertices u = (x, y) and v = (x', y') are adjacent if and only if either x = x' and y is adjacent to y' in H or y = y' and x is adjacent to x' in G. That is u adj v in $G \Box H$ whenever [x = x' and y adj y'] or [y = y'and x adj x'].

Definition 3.2 Let P_n be a path on n vertices and K_4 be the complete graph on 4 vertices. The cartesian product of P_n and K_4 is $P_n \Box K_4$ with 4n vertices and 10n - 4 edges.

Theorem 3.1 $P_n \Box K_4$ is a near mean graph.

Proof Let $G = P_n \Box K_4$ with $V(G) = \{u_{i1}, u_{i2}, u_{i3}, u_{i4}/i = 1, 2, \dots, n\}$. Define $f: V(G) \to \{0, 1, \dots, q-1, q+1\}$ such that

$$f(u_{11}) = 0, \quad f(u_{i1}) = 5(2i-1), \quad i = 2, 4, \dots, n$$

= 5(2i-2), $i \neq 1$, odd
$$f(u_{i2}) = 10(i-1) + 2$$

$$f(u_{i3}) = 5(2i-1) + (-1)^{i}2$$

$$f(u_{i4}) = \begin{cases} 5(2i-1) + 3, \quad i \text{ odd} \\ 5(2i-3) + 4 \quad i \text{ even} \end{cases}$$

The edge labels induced by f are as follows:

When i is even,

$$f^*(u_{i1}u_{i2}) = \frac{1}{2} \left[f(u_{i1}) + f(u_{i2}) + 1 \right]$$
$$= \frac{1}{2} \left[5(2i-1) + 5(2i-2) + 2 + 1 \right]$$
$$= 10i - 6, \quad i = 2, 4, \dots, n$$

When i is odd,

$$f^*(u_{i1}u_{i2}) = \frac{f(u_{i1}) + f(u_{i2})}{2}$$

= $\frac{5(2i-2) + 5(2i-2) + 2}{2}$
= $5(2i-2) + 1, \quad i = 1, 3, 5, ...$

Hence the edges $u_{i1}u_{i2}$ carry labels $1, 14, 21, \dots, 10(n-1)+1$ if *n* is odd or $1, 14, 21, \dots, 10n-6$

if n is even.

$$f^*(u_{i1}, u_{i+1,1}) = \frac{f(u_{i1}) + f(u_{i+1,1}) + 1}{2}, \quad i = 1, 2, \cdots, n-1$$

(since $f(u_{i1})$ and $f(u_{i+1,1})$ are of opposite parity)
$$= \frac{1}{2}[5(2i-1) + 5(2(i+1)-2) + 1]$$

$$= 10i - 2$$

Hence the edges $u_{i1}, u_{i+1,1}$ have labels as $8, 18, 28, \cdots, 10n - 12$.

$$f^*(u_{i2}, u_{i+1,2}) = \frac{f(u_{i2}) + f(u_{i+1,2})}{2}$$

(since $f(u_{i2}), f(u_{i+1,2})$ are of same parity)
 $= 10i - 3, i = 1, 2, \cdots, (n-1)$

The edges $u_{i2}, u_{i+1,2}$ have $7, 17, 27, \dots, 10n - 13$ as labels.

$$f^*(u_{i3}, u_{i+1,3}) = \frac{f(u_{i3}) + f(u_{i+1,3})}{2}$$

= 10*i*, *i* = 1, 2, \dots, (*n*-1)

Therefore, $u_{i3}u_{i+1,3}$ assume labels $10, 20, 30, \dots, 10(n-1)$,

$$f^*(u_{i4}, u_{i+1,4}) = \frac{f(u_{i4}) + f(u_{i+1,4}) + 1}{2}$$

(since both vertex labels are of opposite parity)
$$= \frac{1}{2}[5(2i-1) + 3 + 5(2i-1) + 4 + 1]$$

$$= 10i - 1$$

or
$$= \frac{1}{2}[5(2i-3) + 4 + 5(2i+1) + 3 + 1] = 10i - 1$$

Therefore $u_{i4}u_{i+1,4}$ have labels as $9, 19, \dots, 10n - 11$.

When i is odd,

$$f^*(u_{i2}, u_{i4}) = \frac{f(u_{i2}) + f(u_{i4})}{2}$$

= $\frac{5(2i-2) + 2 + 5(2i-1) + 3}{2}$
= $10i - 5$

When i is even,

$$f^*(u_{i2}u_{i4}) = \frac{f(u_{i2}) + f(u_{i4}) + 1}{2}$$

= $\frac{10(i-1) + 2 + 5(2i-3) + 4 + 1}{2}$
= $10i - 9$

Hence $5, 11, 25, \dots 10n - 9$ if n is even or $5, 11, 25, \dots, 10n - 5$ if n is odd, correspond to the edges $u_{i2}u_{i4}$

$$f^*(u_{i2}, u_{i3}) = \frac{f(u_{i2}) + f(u_{i3}) + 1}{2} = 10i - 6 + (-1)^i$$

So the edges $u_{i2}u_{i3}$ have labels $3, 15, 23, \cdots, 10n - 6 + (-1)^n$.

$$f^*(u_{i3}, u_{i4}) = \frac{f(u_{i3}) + f(u_{i4})}{2} = 10i - 7 \text{ if } i \text{ is even, or}$$
$$= \frac{f(u_{i3}) + f(u_{i4}) + 1}{2} = 10i - 4 \text{ if } i \text{ is odd}$$

So the values taken by $u_{i3}u_{i4}$ are $6, 13, 26, \dots 10n - 7$ if n is even or $6, 13, \dots, 10n - 4$ if n is odd.

If i is odd,

$$f^*(u_{i1}, u_{i3}) = \frac{f(u_{i1}) + f(u_{i3}) + 1}{2} = 10i - 8$$

If i is even,

$$f^*(u_{i1}, u_{i3}) = \frac{f(u_{i1}) + f(u_{i3})}{2} = 10i - 4$$

If i is odd,

$$f^*(u_{i1}, u_{i4}) = \frac{f(u_{i1}) + f(u_{i4})}{2} = 10i - 6$$

If i is even,

$$f^*(u_{i1}, u_{i4}) = \frac{f(u_{i1}) + f(u_{i4})}{2} = 10i - 8$$

Hence the edge values of $u_{i1}u_{ij}$ are $1, 2, 4, \dots, 10n - 8, 10n - 6, 10n - 4$ if n is even, or $1, 2, \dots, 10n - 9, 10n - 8, 10n - 6$ if n is odd. Hence the theorem.

Example 3.1 The Fig.2 following shows the near mean labeling of $P_4 \Box K_4$.

Fig 2

References

- [1] J.A.Gallian, The Electronic Journal of Combinatorics, 19 (2012), # DS6.
- [2] F.Harary, Graph Theory, Addison Wesley Publishing Company Inc. USA 1969.
- [3] A.Nagarajan, A.Nellai Murugan and S.Navaneetha Krishnan, On near mean graphs, *International J. Math. Combin.*, Vol.4 (2010) 94-99
- [4] A.Nagarajan, A.Nellai Murugan and A.Subramanian, Near meanness on product graphs, Scientia Magna, Vol.6, No.3(2010), 40-49.
- [5] Richard Hammack, Wilfried Imrich and Sandi Klavzar, Hand Book on Product Graphs(2nd edition), CRC Press, Taylor and Francis Group LLC, US, 2011.
- [6] S.Somasundaram and R.Ponraj, Mean labelings of graphs, National Academy Science Letter, 26 (2003) 210-213.