Scientia Magna Vol. 3 (2007), No. 2, 109-112

Mean value of F. Smarandache LCM function

Jian Ge

Xi'an University of Finance and Economics, Xi'an, Shaanxi, P.R.China

Received March 29, 2007

Abstract For any positive integer n, the famous Smarandache function S(n) defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n) = \min\{m : n \mid m!, n \in N\}$. The Smarandache LCM function SL(n) the smallest positive integer k such that $n \mid [1, 2, \dots, k]$, where $[1, 2, \dots, k]$ denotes the least common multiple of $1, 2, \dots, k$. The main purpose of this paper is using the elementary methods to study the mean value properties of $(SL(n) - S(n))^2$, and give a sharper asymptotic formula for it.

Keywords Smarandache function, Smarandache LCM function, mean value, asymptotic formula.

§1. Introduction and result

For any positive integer n, the famous F.Smarandache function S(n) defined as the smallest positive integer m such that $n \mid m!$. That is, $S(n) = \min\{m : n \mid m!, n \in N\}$. For example, the first few values of S(n) are S(1) = 1, S(2) = 2, S(3) = 3, S(4) = 4, S(5) = 5, S(6) = 3, S(7) = 7, S(8) = 4, S(9) = 6, S(10) = 5, S(11) = 11, S(12) = 4, \cdots . The F.Smarandache LCM function SL(n) defined as the smallest positive integer k such that $n \mid [1, 2, \cdots, k]$, where $[1, 2, \cdots, k]$ denotes the least common multiple of $1, 2, \cdots, k$. The first few values of SL(n) are SL(1) = 1, SL(2) = 2, SL(3) = 3, SL(4) = 4, SL(5) = 5, SL(6) = 3, SL(7) = 7, SL(8) = 8, SL(9) = 9, SL(10) = 5, SL(11) = 11, SL(12) = 4, \cdots .

About the elementary properties of S(n) and SL(n), many authors had studied them, and obtained some interesting results, see reference [2], [3], [4] and [5]. For example, Murthy [2] proved that if n be a prime, then SL(n) = S(n). Simultaneously, Murthy [2] also proposed the following problem:

$$SL(n) = S(n), \quad S(n) \neq n$$
? (1)

Le Maohua [3] completely solved this problem, and proved the following conclusion:

Every positive integer n satisfying (1) can be expressed as

$$n = 12$$
 or $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r} p_r$

where p_1, p_2, \dots, p_r , p are distinct primes, and $\alpha_1, \alpha_2, \dots, \alpha_r$ are positive integers satisfying $p > p_i^{\alpha_i}, i = 1, 2, \dots, r$.

Dr. Xu Zhefeng [4] studied the value distribution problem of S(n), and proved the following conclusion:

Jian Ge

Let P(n) denotes the largest prime factor of n, then for any real number x > 1, we have the asymptotic formula

$$\sum_{n \le x} \left(S(n) - P(n) \right)^2 = \frac{2\zeta\left(\frac{3}{2}\right)x^{\frac{3}{2}}}{3\ln x} + O\left(\frac{x^{\frac{3}{2}}}{\ln^2 x}\right),$$

where $\zeta(s)$ denotes the Riemann zeta-function.

Lv Zhongtian [5] proved that for any fixed positive integer k any real number x > 1, we have the asymptotic formula fixed positive integer k

$$\sum_{n \le x} SL(n) = \frac{\pi^2}{12} \cdot \frac{x^2}{\ln x} + \sum_{i=2}^k \frac{c_i \cdot x^2}{\ln^i x} + O\left(\frac{x^2}{\ln^{k+1} x}\right),$$

where c_i $(i = 2, 3, \dots, k)$ are computable constants.

The main purpose of this paper is using the elementary methods to study the mean value properties of $[SL(n) - S(n)]^2$, and give an interesting mean value formula for it. That is, we shall prove the following conclusion:

Theorem. Let k be a fixed positive integer. Then for any real number x > 2, we have the asymptotic formula

$$\sum_{n \le x} \left[SL(n) - S(n) \right]^2 = \frac{2}{3} \cdot \zeta \left(\frac{3}{2} \right) \cdot x^{\frac{3}{2}} \cdot \sum_{i=1}^k \frac{c_i}{\ln^i x} + O\left(\frac{x^{\frac{3}{2}}}{\ln^{k+1} x} \right),$$

where $\zeta(s)$ be the Riemann zeta-function, c_i $(i = 1, 2, \dots, k)$ are computable constants.

§2. Proof of the theorem

In this section, we shall complete the proof of our theorem directly. In fact for any positive integer n > 1, let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$ be the factorization of n into prime powers, then from [2] we know that

$$S(n) = \max\{S(p_1^{\alpha_1}), \ S(p_2^{\alpha_2}), \ \cdots, \ S(p_s^{\alpha_s})\} \equiv S(p^{\alpha})$$
(2)

and

$$SL(n) = \max\{p_1^{\alpha_1}, p_2^{\alpha_2}, \cdots, p_s^{\alpha_s}\}.$$
 (3)

Now we consider the summation

$$\sum_{n \le x} \left[SL(n) - S(n) \right]^2 = \sum_{n \in A} \left[SL(n) - S(n) \right]^2 + \sum_{n \in B} \left[SL(n) - S(n) \right]^2, \tag{4}$$

where A and B denote two subsets of all positive integer in the interval [1, x]. A denotes the set involving all integers $n \in [1, x]$ such that $SL(n) = p^2$ for some prime p; B denotes the set involving all integers $n \in [1, x]$ such that $SL(n) = p^{\alpha}$ for some prime p with $\alpha = 1$ or $\alpha \geq 3$. If

 $n \in A$ and $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_s^{\alpha_s}$, then $n = p^2 m$ with $p \dagger m$, and all $p_i^{\alpha_i} \leq p^2$, $i = 1, 2, \dots s$. Note that $S(p_i^{\alpha_i}) \leq \alpha_i p_i$ and $\alpha_i \leq \ln n$, from the definition of SL(n) and S(n) we have

$$\sum_{n \in A} \left[SL(n) - S(n) \right]^2 = \sum_{\substack{mp^2 \le x \\ SL(m) < p^2}} \left[p^2 - S(mp^2) \right]^2$$

$$= \sum_{\substack{mp^2 \le x \\ SL(m) < p^2}} \left(p^4 - 2p^2 S(mp^2) + S^2(mp^2) \right)$$

$$= \sum_{\substack{mp^2 \le x \\ SL(m) < p^2}} p^4 + O\left(\sum_{\substack{mp^2 \le x \\ p^2 \le x \\ m}} p^2 \cdot \ln x \right) + O\left(\sum_{\substack{mp^2 \le x \\ mp^2 \le x$$

By the Abel's summation formula (See Theorem 4.2 of [6]) and the Prime Theorem (See Theorem 3.2 of [7]):

$$\pi(x) = \sum_{i=1}^{k} \frac{a_i \cdot x}{\ln^i x} + O\left(\frac{x}{\ln^{k+1} x}\right),$$

where a_i $(i = 1, 2, \dots, k)$ are computable constants and $a_1 = 1$.

We have

$$\sum_{p \le \sqrt{\frac{x}{m}}} p^4 = \frac{x^2}{m^2} \cdot \pi \left(\sqrt{\frac{x}{m}} \right) - \int_{\frac{3}{2}}^{\sqrt{\frac{x}{m}}} 4y^3 \cdot \pi(y) dy$$
$$= \frac{x^2}{m^2} \cdot \pi \left(\sqrt{\frac{x}{m}} \right) - \int_{\frac{3}{2}}^{\sqrt{\frac{x}{m}}} 4y^3 \left[\sum_{i=1}^k \frac{a_i \cdot y}{\ln^i y} + O\left(\frac{y}{\ln^{k+1} y}\right) \right] dy$$
$$= \frac{1}{5} \cdot \frac{x^{\frac{5}{2}}}{m^{\frac{5}{2}}} \cdot \sum_{i=1}^k \frac{b_i}{\ln^i \sqrt{\frac{x}{m}}} + O\left(\frac{x^{\frac{5}{2}}}{m^{\frac{5}{2}} \cdot \ln^{k+1} x}\right), \tag{6}$$

where we have used the estimate $m \leq \sqrt{x}$, and all b_i are computable constants with $b_1 = 1$.

Note that
$$\sum_{m=1}^{\infty} \frac{1}{m^{\frac{5}{2}}} = \zeta\left(\frac{5}{2}\right)$$
, and $\sum_{m=1}^{\infty} \frac{\ln^i m}{m^{\frac{5}{2}}}$ is convergent for all $i = 1, 2, 3, \dots, k$. So

from (5) and (6) we have

$$\sum_{n \in A} [SL(n) - S(n)]^2$$

$$= \sum_{m \le \sqrt{x}} \left[\frac{1}{5} \cdot \frac{x^{\frac{5}{2}}}{m^{\frac{3}{2}}} \cdot \sum_{i=1}^k \frac{b_i}{\ln^i \sqrt{\frac{x}{m}}} + O\left(\frac{x^{\frac{5}{2}}}{m^{\frac{5}{2}} \cdot \ln^{k+1} x}\right) \right] + O\left(x^2\right)$$

$$= \frac{2}{5} \cdot \zeta\left(\frac{5}{2}\right) \cdot x^{\frac{5}{2}} \cdot \sum_{i=1}^k \frac{c_i}{\ln^i x} + O\left(\frac{x^{\frac{5}{2}}}{\ln^{k+1} x}\right),$$
(7)

where c_i $(i = 1, 2, 3, \dots, k)$ are computable constants and $c_1 = 1$.

Now we estimate the summation in set *B*. For any positive integer $n \in B$. If $n \in B$ and SL(n) = p, then we also have S(n) = p. So $[SL(n) - S(n)]^2 = [p - p]^2 = 0$. If $SL(n) = p^{\alpha}$ with $\alpha \geq 3$, then $[SL(n) - S(n)]^2 = [p^{\alpha} - S(n)]^2 \leq p^{2\alpha} + \alpha^2 p^2$ and $\alpha \leq \ln n$. So we have

$$\sum_{n \in B} \left[SL(n) - S(n) \right]^2 \ll \sum_{\substack{np^{\alpha} \le x \\ \alpha \ge 3}} \left(p^{2\alpha} + p^2 \ln^2 n \right) \ll x^2.$$
(8)

Combining (4), (7) and (8) we may immediately deduce the asymptotic formula

$$\sum_{n \le x} \left[SL(n) - S(n) \right]^2 = \frac{2}{5} \cdot \zeta \left(\frac{5}{2} \right) \cdot x^{\frac{5}{2}} \cdot \sum_{i=1}^k \frac{c_i}{\ln^i x} + O\left(\frac{x^{\frac{5}{2}}}{\ln^{k+1} x} \right),$$

where c_i $(i = 1, 2, 3, \dots, k)$ are computable constants and $c_1 = 1$.

This completes the proof of Theorem.

References

[1] F. Smarandache, Only Problems, Not Solutions, Chicago, Xiquan Publishing House, 1993.

[2] A. Murthy, Some notions on least common multiples, Smarandache Notions Journal, 12(2001), 307-309.

[3] Le Maohua, An equation concerning the Smarandache LCM function, Smarandache Notions Journal, **14**(2004), 186-188.

[4] Xu Zhefeng, The value distribution property of the Smarandache function, Acta Mathematica Sinica (Chinese Series), **49**(2006), No.5, 1009-1012.

[5] Lv Zhongtian, On the F.Smarandache LCM function and its mean value. Scientia Magna, 3(2007), No.1, 22-25.

[6] Tom M. Apostol, Introduction to Analytic Number Theory. New York, Springer-Verlag, 1976

[7] Pan Cengdong and Pan Chengbiao, The elementary proof of the prime theorem, Shanghai Science and Technology Press, Shanghai, 1988.

[8] G.H.Hardy and E.M.Wright, An introduction to the theory of numbers, Oxford University Press, 1981.