Mediate Dominating Graph of a Graph

B.Basavanagoud and Sunilkumar M. Hosamani
(Karnatak University, Dharwad-580 003, Karnataka, India)
E-mail: b.basavanagoud@gmail.com

Abstract

Let S be the set of minimal dominating sets of graph G and $U, W \subset S$ with $U \bigcup W=S$ and $U \bigcap W=\emptyset$. A Smarandachely mediate-(U, W) dominating graph $D_{m}^{S}(G)$ of a graph G is a graph with $V\left(D_{m}^{S}(G)\right)=V^{\prime}=V \bigcup U$ and two vertices $u, v \in V^{\prime}$ are adjacent if they are not adjacent in G or $v=D$ is a minimal dominating set containing u. particularly, if $U=S$ and $W=\emptyset$, i.e., a Smarandachely mediate- (S, \emptyset) dominating graph $D_{m}^{S}(G)$ is called the mediate dominating graph $D_{m}(G)$ of a graph G. In this paper, some necessary and sufficient conditions are given for $D_{m}(G)$ to be connected, Eulerian, complete graph, tree and cycle respectively. It is also shown that a given graph G is a mediate dominating graph $D_{m}(G)$ of some graph. One related open problem is explored. Finally, some bounds on domination number of $D_{m}(G)$ are obtained in terms of vertices and edges of G.

Key Words: Connectedness, connectivity, Eulerian, hamiltonian, dominating set, Smarandachely mediate- (U, W) dominating graph.

AMS(2010): 05C69

§1. Introduction

The graphs considered here are finite and simple. Let $G=(V, E)$ be a graph and let the vertices and edges of a graph G be called the elements of G. The undefined terminology and notations can be found in [2]. The connectivity(edge connectivity) of a graph G, denoted by $\kappa(G)(\lambda(G))$, is defined to be the largest integer k for which G is k-connected (k-edge connected). For a vertex v of G, the eccentricity $\operatorname{ecc}_{G}(v)$ of v is the largest distance between v and all the other vertices of G, i.e., $\operatorname{ecc}_{G}(v)=\max \left\{d_{G}(u, v) / u \in V(G)\right\}$. The diameter $\operatorname{diam}(G)$ of G is the $\max \left\{\operatorname{ecc}_{G}(v) / v \in V(G)\right\}$. The chromatic number $\chi(G)$ of a graph G is the minimum number of independent subsets that partition the vertex set of G. Any such minimum partition is called a chromatic partition of $V(G)$.

Let $G=(V(G), E(G))$ and $H=(V(H), E(H))$ be two graphs. We call G and H to be isomorphic, and we write $G \cong H$, if there exists a bijection $\theta: V(G) \longrightarrow V(H)$ with $x y \in E(G)$ if and only if $\theta(x) \theta(y) \in E(H)$ for all $x, y \in V(G)$.

[^0]Let $G=(V, E)$ be a graph. A set $D \subseteq V$ is a dominating set of G if every vertex in $V-D$ is adjacent to some vertex in D. A dominating set D of G is minimal if for any vertex $v \in D, D-v$ is not a dominating set of G. The domination number $\gamma(G)$ of G is the minimum cardinality of a minimal dominating set of G. The upper domination number $\Gamma(G)$ of G is the maximum cardinality of a minimal dominating set of G. For details on $\gamma(G)$, refer [1].

The maximum number of classes of a domatic partition of G is called the domatic number of G and is denoted by $d(G)$. The vertex independence number $\beta_{0}(G)$ is the maximum cardinality among the independent set of vertices of G.

Our aim in this paper is to introduce a new graph valued function in the field of domination theory in graphs.

Definition 1.1 Let S be the set of minimal dominating sets of graph G and $U, W \subset S$ with $U \bigcup W=S$ and $U \bigcap W=\emptyset . A$ Smarandachely mediate- (U, W) dominating graph $D_{m}^{S}(G)$ of a graph G is a graph with $V\left(D_{m}^{S}(G)\right)=V^{\prime}=V \bigcup U$ and two vertices $u, v \in V^{\prime}$ are adjacent if they are not adjacent in G or $v=D$ is a minimal dominating set containing u. particularly, if $U=S$ and $W=\emptyset$, i.e., a Smarandachely mediate- (S, \emptyset) dominating graph $D_{m}^{S}(G)$ is called the mediate dominating graph $D_{m}(G)$ of a graph G.

In Fig.1, a graph G and its mediate dominating graph $D_{m}(G)$ are shown.

Fig. 1

Observations 1.2 The following results are easily observed.:
(1) For any graph G, \bar{G} is an induced subgraph of $D_{m}(G)$.
(2) Let $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ be the set of all minimal dominating sets of G, then each s_{i}; $1 \leq i \leq n$ will be independent in $D_{m}(G)$.
(3) If $G=K_{p}$, then $D_{m}(G)=p K_{2}$.
(4) If $G=\bar{K}_{p}$, then $D_{m}(G)=K_{p+1}$.

§2. Results

When defining any class of graphs, it is desirable to know the number of vertices and edges. It is hard to determine for mediate dominating graph. So we obtain a bounds for $D_{m}(G)$ to determine the number of vertices and edges in $D_{m}(G)$.

Theorem 2.1 For any graph $G, p+d(G) \leq p^{\prime} \leq \frac{p(p+1)}{2}$, where $d(G)$ is the domatic number of G and p^{\prime} denotes the number of vertices of $D_{m}(G)$. Further the lower bound is attained if and only if $G=\bar{K}_{p}$ and the upper bound is attained if and only if G is a $(p-2)$ regular graph.

Proof The lower bound follows from the fact that every graph has at least $d(G)$ number of minimal dominating sets of G and the upper bound follows from the fact that every vertex is in at most $(p-1)$ minimal dominating sets of G.

Suppose the lower bound is attained. Then every vertex is in exactly one minimal dominating set of G and hence, every minimal dominating set is independent. Further, for any two minimal dominating sets D and D^{\prime}, every vertex in D is adjacent to every vertex in D^{\prime}.

Suppose the upper bound is attained. Then each vertex is in exactly ($p-1$) minimal dominating sets hence G is $(p-2)$ regular.

Conversely, we first consider the converse part of the equality of the lower bound. If $G=\bar{K}_{p}$, then $d\left(\bar{K}_{p}\right)=1$ and there exist exactly one minimal dominating set $S(G)$. Therefore by the definition of $D_{m}(G), V\left(D_{m}(G)\right)=p+|S(G)|=p+1=p+d(G)$.

Now, we consider the converse part of the equality of the upper bound. Suppose G is a $(p-2)$ regular graph. Then G has $\frac{p(p-1)}{2}$ minimal dominating sets of G. Therefore by the definition of $D_{m}(G), V\left(D_{m}(G)\right)=p+|S(G)|=p+\frac{p(p-1)}{2}=\frac{p(p+1)}{2}$.

Theorem 2.2 For any graph $G, p \leq q^{\prime} \leq \frac{p(p+1)}{2}$, where q^{\prime} denotes the number of edges of $D_{m}(G)$. Further, the lower bound is attained if and only if $G=K_{p}$ and the upper bound is attained if and only if $G=\bar{K}_{p}$.

Proof First we consider the lower bound. Suppose the lower bound is attained. Then $p=q^{\prime}$, it follows that \bar{G} contains no edges in $D_{m}(G)$. Therefore by observation $3, G=K_{p}$; $p \geq 2$. Conversely, if $G=K_{p} ; p \geq 2$ the $D_{m}(G)=p K_{2}$. Therefore $p=q^{\prime}$.

Now consider the upper bound. Suppose the upper bound is attained. Then $q^{\prime}=\frac{p(p+1)}{2}$. Therefore $\delta\left(D_{m}(G)\right)=\Delta\left(D_{m}(G)\right)=p-1$. Hence $D_{m}(G)=K_{p+1}$. By observation $4, G=\bar{K}_{p}$.

Conversely, if $G=\bar{K}_{p}$, then $D_{m}(G)=K_{p+1}$, since K_{p+1} has $\frac{p(p+1)}{2}$ edges. Therefore $q^{\prime}=\frac{p(p+1)}{2}$.

In the next theorem, we prove the necessary and sufficient condition for $D_{m}(G)$ to be connected.

Theorem 2.3 For any (p, q) graph G, the mediate dominating graph $D_{m}(G)$ is connected if and only if $\Delta(G)<p-1$.

Proof Let $\Delta(G)<p-1$. We consider the following cases.
Case 1 Let u and v be any two adjacent vertices in G. Suppose there is no minimal dominating set containing both u and v. Then there exist another vertex w in V which is not adjacent to both u and v. Let D and D^{\prime} be any two maximal independent sets containing u, w and v, w respectively. Since every maximal independent set is a minimal dominating set, hence u and v are connected by a path $u D w D^{\prime} v$. Thus $D_{m}(G)$ is connected.

Case 2 Let u and v be any two nonadjacent vertices in G. Then by observation $1, \bar{G}$ is an induced subgraph of $D_{m}(G)$. Clearly u and v are connected in $D_{m}(G)$. Thus from the above two cases $D_{m}(G)$ is connected.

Conversely, suppose $D_{m}(G)$ is connected. On the contrary assume that $\Delta(G)=p-1$. Let u be any vertex of degree $p-1$. Then u is a minimal dominating set of G and $V-u$ also contains a minimal dominating set of G. It follows that $D_{m}(G)$ has two components, a contradiction.

Theorem 2.4 For any graph $G, D_{m}(G)$ is either connected or has at least one component which is K_{2}.

Proof We consider the following cases:
Case 1 If $\Delta(G)<p-1$, then by Theorem 2.1, $D_{m}(G)$ is connected.
Case 2 If $\delta(G)=\Delta(G)=p-1$, then G is K_{p}. By Observation 3, $D_{m}\left(K_{p}\right)=p K_{2}$.
Case 3 If $\delta(G)<\Delta(G)=p-1$.
Let $u_{1}, u_{2}, \cdots, u_{i}$ be the vertices of degree $p-1$ in G. Let $H=G-\left\{u_{1}, u_{2}, \cdots, u_{i}\right\}$. Then clearly $\Delta(H)<p-1$. By Theorem 2.1, $D_{m}(H)$ is connected. Since $D_{m}(G)=D_{m}(H) \cup\left(\left\{u_{1}\right\}+\right.$ $\left.u_{1}\right) \cup\left(\left\{u_{2}\right\}+u_{2}\right) \cup \cdots \cup\left(\left\{u_{n}\right\}+u_{n}\right)$. Therefore it follows that at least one component of $D_{m}(G)$ is K_{2}.

Corollary 1 For any graph $G, D_{m}(G)=K_{p} \cup K_{2}$ if and only if $G=K_{1, p-1}$.
Proof The proof follows from Observation 3 and Theorem 2.6.
In the next theorem, we characterize the graphs G for which $D_{m}(G)$ is a tree.

Theorem 2.5 The mediate dominating graph $D_{m}(G)$ of G is a tree if and only if $G=K_{1}$.
Proof Let the mediate dominating graph $D_{m}(G)$ of G be a tree and $G \neq K_{1}$. Then by Theorem 2.3, $\Delta(G)<p-1$. Hence $D_{m}(G)$ is connected. Now consider the following cases.

Case 1 Let G be a disconnected graph. If G is totally disconnected graph, then by the observation $4, D_{m}(G)=K_{p+1}$, a contradiction.

Let us consider at least one component of G containing an edge uev. Then the smallest possible graph is $G=K_{2} \cup K_{1}$. Therefore $D_{m}(G)=C_{3} \cdot C_{3}$, a contradiction. Hence for any disconnected graph G of order at least two, $D_{m}(G)$ must contain a cycle of length at least three,
a contradiction. Thus $G=K_{1}$.
Case 2 Let G be a connected graph with $\Delta(G)<p-1$. By Theorem 2.3, $D_{m}(G)$ is connected. For $D_{m}(G)$ to be connected and $\Delta(G)<p-1$, the order of the graph G must be greater than or equal to four. Then there exist at least two nonadjacent vertices u and v in G, which belong to at least one minimal dominating set D of G. Therefore $u v D u$ is a cycle in $D_{m}(G)$, a contradiction. Thus from above two cases we conclude that $G=K_{1}$.

Conversely, if $G=K_{1}$, then by the definition of $D_{m}(G), D_{m}(G)=K_{2}$, which is a tree.
In the next theorem we characterize the graphs G for which $D_{m}(G)$ is a cycle.

Theorem 2.6 The mediate dominating graph $D_{m}(G)$ of G is a cycle if and only if $G=2 K_{1}$.
Proof Let $D_{m}(G)$ be a cycle. Then by Theorem 2.3, $\Delta(G)<p-1$. Suppose $G \neq 2 K_{1}$, then by Theorem 2.5, $D_{m}(G), D_{m}(G)$ is either a tree or containing at least one vertex of degree greater than or equal to 3 , a contradiction. Hence $G=2 K_{1}$.

Conversely, if $G=2 K_{1}$ then by observation, $D_{m}(G)=K_{3}$ or C_{3} a cycle.

Proposition 1 The mediate dominating graph $D_{m}(G)$ of G is a complete graph if and only if $G=\bar{K}_{p}$.

In the next theorem, we find the diameter of $D_{m}(G)$.

Theorem 2.7 Let G be any graph with $\Delta(G)<p-1$, then $\operatorname{diam}\left(D_{m}(G)\right) \leq 3$, where $\operatorname{diam}(G)$ is the diameter of G.

Proof Let G be any graph with $\Delta(G)<p-1$, then by Theorem 2.3, $D_{m}(G)$ is connected. Let $u, v \in V\left(D_{m}(G)\right)$ be any two arbitrary vertices in $D_{m}(G)$. We consider the following cases.

Case 1 Suppose $u, v \in V(G), u$ and v are nonadjacent vertices in G, then $d_{D_{m}(G)}(u, v)=1$. If u and v are adjacent in G, suppose there is no minimal dominating set containing both u and v. Then there exist another vertex w in $V(G)$, which is not adjacent to both u and v. Let D and D^{\prime} be any two maximal independent sets containing u, w and v, w respectively. Since every maximal independent set is a minimal dominating set, hence u and v are connected in $D_{m}(G)$ by a path $u D w D^{\prime} v$. Thus, $d_{D_{m}(G)}(u, v) \leq 3$.

Case 2 Suppose $u \in V$ and $v \notin V$. Then $v=D$ is a minimal dominating set of G. If $u \in D$, then $d_{D_{m}(G)}(u, v)=1$. If $u \notin D$, then there exist a vertex $w \in D$ which is adjacent to both u and v. Hence $d_{D_{m}(G)}(u, v)=d(u, w)+d(w, v)=2$.

Case 3 Suppose $u, v \in V$. Then $u=D$ and $v=D^{\prime}$ are two minimal dominating sets of G. If D and D^{\prime} are disjoint, then every vertex in $w \in D$ is adjacent to some vertex $x \in D^{\prime}$ and vice versa. This implies that, $d_{D_{m}(G)}(u, v)=d(u, w)+d(w, x)+d(x, v)=3$. If D and D^{\prime} have a vertex in common, then $d_{D_{m}(G)}(u, v)=d(u, w)+d(w, v)=2$. Thus from all these cases the result follows.

In the next two results we prove the vertex and edge connectivity of $D_{m}(G)$.

Theorem 2.8 For any graph G,

$$
\kappa\left(D_{m}(G)\right)=\min \left\{\min \left(d e g_{\substack{D_{m}(G) \\ 1 \leq i \leq p}} v_{i}\right), \min _{1 \leq j \leq n}\left|S_{j}\right|\right\}
$$

where $S_{j}^{\prime} s$ are the minimal dominating sets of G
Proof Let G be a (p, q) graph. We consider the following cases:
Case 1 Let $x \in v_{i}$ for some i, having minimum degree among all $v_{i}^{\prime} s$ in $D_{m}(G)$. If the degree of x is less than any vertex in $D_{m}(G)$, then by deleting those vertices of $D_{m}(G)$ which are adjacent with x, results in a disconnected graph.

Case 2 Let $y \in S_{j}$ for some j, having minimum degree among all vertices of $S_{j}^{\prime} s$. If degree of y is less than any other vertices in $D_{m}(G)$, then by deleting those vertices which are adjacent with y, results in a disconnected graph.
Hence the result follows.

Theorem 2.9 For any graph G,

$$
\lambda\left(D_{m}(G)\right)=\min \left\{\min \left(d e g_{\substack{D_{m(G)} \\ 1 \leq i \leq p}} v_{i}\right), \min _{1 \leq j \leq n}\left|S_{j}\right|\right\}
$$

where $S_{j}^{\prime} s$ are the minimal dominating sets of G
Proof The proof is on the same lines of the proof of Theorem 2.8.

§3. Traversability in $D_{m}(G)$

The following will be useful in the proof of our results.

Theorem $\mathbf{A}([2])$ A graph G is Eulerian if and only if every vertex of G has even degree. Next, we prove the necessary and sufficient conditions for $D_{m}(G)$ to be Eulerian.

Theorem 3.1 For any graph G with $\Delta(G)<p-1, D_{m}$ is Eulerian if and only if it satisfies the following conditions:
(i) Every minimal dominating set contains even number of vertices;
(ii) If $v \in V$ is a vertex of odd degree, then it is in odd number of minimal dominating sets, otherwise it is in even number of minimal dominating sets.

Proof Suppose $\Delta(G)<p-1$. By Theorem 2.3, $D_{m}(G)$ is connected. If $D_{m}(G)$ is Eulerian. On the contrary, if condition (i) is not satisfied, then there exists a minimal dominating set containing odd number of vertices and hence $D_{m}(G)$ has a vertex of odd degree, therefore by Theorem A, $D_{m}(G)$ is Eulerian, a contradiction. Similarly we can prove (ii). Conversely, suppose the given conditions are satisfied. Then degree of each vertex in $D_{m}(G)$ is even. Therefore by Theorem A, $D_{m}(G)$ is Eulerian.

Theorem 3.2 Let G be any graph with $\Delta(G)<p-1$ and $\Gamma(G)=2$. If every vertex is in exactly two minimal dominating sets of G, then $D_{m}(G)$ is Hamiltonian.

Proof Let $\Delta(G)<p-1$. Then by Theorem 2.3, $D_{m}(G)$ is connected. Clearly $\gamma(G)=\Gamma(G)$ and if every vertex is in exactly two minimal dominating sets then there exist an induced two regular graph in $D_{m}(G)$. Hence $D_{m}(G)$ contains a hamiltonian cycle. Therefore $D_{m}(G)$ is hamiltonian.

Next, we prove the chromatic number of $D_{m}(G)$.
Theorem 3.3 For any graph G,
$\chi\left(D_{m}(G)\right)= \begin{cases}\chi(\bar{G})+1 & \text { if vertices of any minimal dominating sets colored by } \chi(\bar{G}) \text { colors } \\ \chi(\bar{G}) & \text { otherwise }\end{cases}$
Proof Let G be a graph with $\chi(\bar{G})=k$ and D be the set of all minimal dominating sets of G. Since by the definition of $D_{m}(G), \bar{G}$ is an induced subgraph of $D_{m}(G)$ and by Observation 2, D is an independent set. Therefore to color $D_{m}(G)$, either we can make use of the colors which are used to color \bar{G} that is $\chi\left(D_{m}(G)\right)=k=\chi(\bar{G})$ or we should have to use one more new color. In particular, if the vertices of any minimal dominating set x of G are colored with k-colors, then we require one more new color to color x in $D_{m}(G)$. Hence in this case we require $k+1$ colors to color $D_{m}(G)$. Therefore $\chi\left(D_{m}(G)\right)=k+1$ This implies, $\chi\left(D_{m}(G)\right)=\chi(\bar{G})+1$.

§4. Characterization of $D_{m}(G)$

Question. Is it possible to determine the given graph G is a mediate dominating graph of some graph?

A partial solution to the above problem is as follows.
Theorem 4.1 If $G=K_{p} ; p \geq 2$, then it is a mediate dominating graph of \bar{K}_{p-1}.
Proof The proof follows from Theorem 2.2.

Problem 4.1 Give necessary and sufficient condition for a given graph G is a mediate dominating graph of some graph.

§5. Domination in $D_{m}(G)$

We first calculate the domination number of $D_{m}(G)$ of some standard class of graphs.
Theorem 5.1 (i) If $G=K_{p}$, then $\gamma\left(D_{m}\left(K_{p}\right)\right)=p$;
(ii) If $G=K_{1, p}$, then $\gamma\left(D_{m}\left(K_{1, p}\right)\right)=2$;
(iii) If $G=W_{p} ; p \geq 4$ then $\gamma\left(D_{m}\left(W_{p}\right)\right)=\gamma\left(\bar{C}_{p-1}\right)+1$;
(iv) If $G=P_{p} ; p \geq 2$ then $\gamma\left(D_{m}\left(P_{p}\right)\right)=2$;

Theorem 5.2 Let G be any graph of order p and $S=\left\{s_{1}, s_{2}, \cdots, s_{n}\right\}$ be the set of all minimal dominating sets of G, then $\gamma\left(D_{m}(G)\right) \leq \gamma(\bar{G})+|S|$.

Proof Let $D=\left\{v_{1}, v_{2}, \cdots, v_{i}\right\} ; 1 \leq i \leq p$ be a minimum dominating set of \bar{G}. By the definition of $D_{m(G)}, \bar{G}$ is an induced subgraph of $D_{m}(G)$ and by Observation 2, each s_{i}; $1 \leq i \leq n$ is independent in $D_{m}(G)$. Hence $D^{\prime}=D \cup S$ will form a dominating set in $D_{m}(G)$. Therefore $\gamma\left(D_{m}(G)\right) \leq\left|D^{\prime}\right|=|D \cup S|=\gamma(\bar{G})+|S|$.

Theorem 5.3 Let G be any connected graph with $\delta(G)=1$, then $\gamma\left(D_{m}(G)\right)=2$.
Proof Let G be any connected graph with a minimum degree vertex u, such that $\operatorname{deg}(u)=1$. Let v be a vertex adjacent to u in G. Then $\operatorname{deg}_{\bar{G}}(u)=p-2$, and every minimal dominating set contains either u or v. Hence $D=\{u, v\}$ is a minimal dominating set of $D_{m}(G)$. Therefore, $\gamma\left(D_{m}(G)\right)=|D|=|\{u, v\}|=2$.

Corollary 2 For any nontrivial tree $T, \gamma\left(D_{m}(T)\right)=2$.
Furthermore, we get a Nordhaus-Gaddum type result following.
Theorem 5.4 Let G be any graph of order p, then
(i) $\gamma\left(D_{m}(G)\right)+\gamma\left(D_{m}(\bar{G})\right) \leq p+1$;
(ii) $\gamma\left(D_{m}(G)\right) \cdot \gamma\left(D_{m}(\bar{G})\right) \leq p$.

Further, equality holds if and only if $G=K_{p}$.

References

[1] E. J. Cockayne and S. T. Hedetniemi, Towards a theory of domination in graphs, Networks,7(1977), 247-261.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, (1969).
[3] T. W. Haynes, S. T. Hedetniemi and P. J. Slater, Fundamentals of domination in graphs, Marcel Dekker, Inc., New York, (1998).

[^0]: ${ }^{1}$ Supported by UGC-SAP DRS-II New Delhi, India: for 2010-2015and the University Grants Commission, New Delhi,India-No.F.4-3/2006(BSR)/7-101/2007(BSR) dated: September 2009.
 ${ }^{2}$ Received April 8, 2011. Accepted August 28, 2011.

