Minimal Retraction of Space-time and Their Foldings

A. E. El-Ahmady and H. Rafat
(Department of Mathematics, Faculty Science of Tanta University, Tanta, Egypt)
E-mail:

Abstract

A Smarandache multi-spacetime is such a union spacetime $\bigcup_{i=1}^{n} S_{i}$ of spacetimes $S_{1}, S_{2}, \cdots, S_{n}$ for an integer $n \geq 1$. In this article, we will be deduced the geodesics of space-time, i.e., a Smarandache multi-spacetime with $n=1$ by using Lagrangian equations. The deformation retract of space-time onto itself and into a geodesics will be achieved. The concept of retraction and folding of zero dimension space-time will be obtained.The relation between limit of folding and retraction presented.

Key Words: Folding, deformation retract, space-time, Smarandache multi-spacetime.
AMS(2000): $53 \mathrm{~A} 35,51 \mathrm{H} 05,58 \mathrm{C} 05,51 \mathrm{~F} 10,58 \mathrm{~B} 34$.

§1. Introduction

The folding of a manifold was, firstly introduced by Robertson in [1977] [14]. Since then many authers have studied the folding of manifolds such as in $[4,6,12,13]$. The deformation retracts of the manifolds defined and discussed in [5,7]. In this paper, we will discuss the folding restricted by a minimal retract and geodesic. We may also mention that folding has many important technical applications, for instance, in the engineering problems of buckling and post-buckling of elastic and elastoplastic shells [1]. More studies and applications are discussed in [4], [8], [9], [10], [13].

§2. Definitions

1. A subset A of a topological space X is called a retract of X, if there exists a continuous map $r: X \rightarrow A$ such that ([2]):
(i) X is open;
(ii) $r(a)=a, \forall a \in A$.
2. A subset A of atopological space X is said to be a deformation retract if there exists a retraction $r: X \rightarrow A$, and a homotopy $f: X \times I \rightarrow X$ such that([2]):

$$
f(x, 0)=x, \forall, x \in X
$$

[^0]\[

$$
\begin{aligned}
& f(x, 1)=r(x), \forall x \in X \\
& f(a, t)=a, \forall a \in A, t \in[0,1]
\end{aligned}
$$
\]

3. Let M and N be two smooth manifolds of dimensions m and n respectively. A map $f: M \rightarrow N$ is said to be an isometric folding of M into N if and only if for every piecewise geodesic path $\gamma: J \rightarrow M$, the induced path $f \circ \gamma: J \rightarrow N$ is a piecewise geodesic and of the same length as $\gamma([14])$. If f does not preserve the lengths, it is called topological folding.
4. Let M be an m-dimensional manifold. M is said to be minimal m-dimensional manifold if the mean curvature vanishes everywhere, i.e., $H(\sigma . p)=0$ for all $p \in M$ ([3]).
5. A subset A of a minimal manifold M is a minimal retraction of M, if there exists a continuous map $r: M \rightarrow$ Asuch that ([12]):
(i) M is open;
(ii) $r(M)=A$;
(iii) $r(a)=a, \forall a \in A$;
(iv) $r(M)$ is minimal manifold.

§3. Main Results

Using the Neugebaure-Bcklund transformation, the space-time T take the form [11]

$$
\begin{equation*}
d s^{2}=d t^{2}-d p^{2}-d z^{2}-p^{2} d \phi^{2} \tag{1}
\end{equation*}
$$

Using the relationship between the cylindrical and spherical coordinates, the metric becomes

$$
\begin{aligned}
\overline{d s}^{2}= & r^{2}\left(\sin ^{2} \theta_{2}-\cos ^{2} \theta_{2}\right) \overline{d \theta}_{2}^{2}-r^{2} \sin ^{2} \theta_{2} \overline{d \theta}_{1}^{2}+\left(\cos ^{2} \theta_{2}-\sin ^{2} \theta_{2}\right) \overline{d r}^{2} \\
& -r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \overline{d \varphi}^{2}-4 r \sin \theta_{2} \cos \theta_{2} d \theta_{2} d r
\end{aligned}
$$

The coordinates of space-time T are:

$$
\left.\begin{array}{rl}
y_{1} & =\sqrt{c_{1}\left(r, \theta_{2}\right)-r^{2} \sin ^{2} \theta_{2} \theta_{1}^{2}} \tag{2}\\
y_{2} & =\sqrt{4 r^{2} \cos 2 \theta_{2}+k_{1}} \\
y_{3} & =\sqrt{r^{2} \cos 2 \theta_{2}+c_{3}\left(\theta_{2}\right)} \\
y_{4} & =\sqrt{c_{4}\left(r, \theta_{1}, \theta_{2}\right)-r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \phi^{2}}
\end{array}\right\}
$$

where $c_{1}, k_{1}, c_{3}, c_{4}$ are the constant of integrations. Applying the transformation

$$
\begin{aligned}
x_{1}^{2} & =y_{1}^{2}-c_{1}\left(r, \theta_{2}\right) \\
x_{2}^{2} & =y_{2}^{2}-k_{1} \\
x_{3}^{2} & =y_{3}^{2}-c_{3}\left(\theta_{2}\right) \\
x_{4}^{2} & =y_{4}^{2}-c_{4}\left(r, \theta_{1}, \theta_{2}\right)
\end{aligned}
$$

Then, the coordinates of space-time T becomes:

$$
\left.\begin{array}{l}
x_{1}=i r \sin \theta_{2} \theta_{1} \tag{3}\\
x_{2}=2 r \sqrt{\cos 2 \theta_{2}} \\
x_{3}=r \sqrt{\cos 2 \theta_{2}} \\
x_{4}=i r \sin \theta_{1} \sin \theta_{2} \phi .
\end{array}\right\}
$$

Now, we apply Lagrangian equations

$$
\frac{d}{d s}\left(\frac{\partial T}{\partial G_{i}}\right)-\frac{\partial T}{\partial G_{i}}=0, i=1,2,3,4 .
$$

to find a geodesic which is a subset of the space-time T. Since

$$
\begin{aligned}
T= & \frac{1}{2}\left\{-r^{2} \cos 2 \theta_{2} \theta_{2}^{\prime 2}-r^{2} \sin ^{2} \theta_{2} \theta_{1}^{\prime 2}+\cos 2 \theta_{2} r^{\prime 2}-r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \phi^{\prime 2}\right. \\
& \left.-2 r \sin 2 \theta_{2} \theta_{2}^{\prime} r^{\prime}\right\}
\end{aligned}
$$

then, the Lagrangian equations for space-time T are:

$$
\begin{gather*}
\frac{d}{d s}\left(r^{2} \sin ^{2} \theta_{2} \theta_{1}^{\prime}\right)+\left(r^{2} \sin \theta_{1} \cos \theta_{1} \sin ^{2} \theta_{2} \phi^{\prime 2}\right)=0 \tag{4}\\
\frac{d}{d s}\left(r^{2} \cos 2 \theta_{2} \theta_{2}^{\prime}+r \sin \theta_{2} r^{\prime}\right)+\left(r^{2} \sin 2 \theta_{2} \theta_{2}^{\prime 2}+r^{2} \sin \theta_{2} \cos \theta_{2} \theta_{1}^{1}\right. \tag{5}\\
\left.+\sin 2 \theta_{2} r^{\prime 2}+r^{2} \sin ^{2} \theta_{1} \sin \theta_{2} \cos \theta_{2} \phi^{\prime 2}+2 r \cos 2 \theta_{2} \theta_{2}^{\prime} r^{\prime}\right)=0 \\
\frac{d}{d s}\left(\cos 2 \theta_{2} r^{\prime}-r \sin 2 \theta_{2} \theta_{2}^{\prime}\right)+\left(r \cos 2 \theta_{2} \theta_{2}^{\prime 2}+r \sin ^{2} \theta_{2} \theta_{1}^{\prime 2}+\right. \tag{6}\\
\left.r \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \phi^{\prime 2}+\sin 2 \theta_{2} \theta_{2}^{\prime} r^{\prime}\right)=0 \\
\frac{d}{d s}\left(r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \phi^{\prime}\right)=0 . \tag{7}
\end{gather*}
$$

From equation (7) we obtain $r^{2} \sin ^{2} \theta_{1} \sin ^{2} \theta_{2} \phi^{1}=$ constant μ. If $\mu=0$, we obtain the following cases:
(i) If $r=0$, hence we get the coordinates of space-time T_{1}, which are defined as

$$
x_{1}=0, x_{2}=0, x_{3}=0, x_{4}=0,
$$

which is a hypersphere $T_{1}, x_{1}^{2}-x_{2}^{2}-x_{3}^{2}-x_{4}^{2}=0$ on the null cone since the distance between any two different points equal zero, it is a minimal retraction and geodesic.
(ii) If $\sin ^{2} \theta_{1}=0$, we get

$$
x_{1}=0, x_{2}=2 r \sqrt{\cos 2 \theta_{2}}, x_{3}=r \sqrt{\cos 2 \theta_{2}}, x_{4}=0 .
$$

Thus, $x_{1}^{2}+x_{2}^{2}+x_{3}^{2}+x_{4}^{2}=5 r^{2} \cos 2 \theta_{2}$, which is a hypersphere S_{1} in space-time T with $x_{1}=x_{4}=0$. It is a geodesic and retraction.
(iii) If $\sin ^{2} \theta_{2}=0$, then $\theta_{2}=0$ we obtain the following geodesic retraction

$$
x_{1}=0, x_{2}=2 r, x_{3}=r, x_{4}=0, \quad x_{1}^{2}+x_{2}^{2}+x_{3}^{2}-x_{1}^{2}=5 r^{2}
$$

which is the hypersphere $S_{2} \subset T$ with $x_{1}=x_{4}=0$.
(iv) If $\phi^{\prime}=0$ this yields the coordinate of $T_{2} \subset T$ given by

$$
x_{1}=i r \sin \theta_{2} \theta_{1}, x_{2}=2 r \sqrt{\cos 2 \theta_{2}}, x_{3}=r \sqrt{\cos 2 \theta_{2}}, x_{4}=0
$$

It is worth nothing that $x_{4}=0$ is a hypersurface $T_{2} \subset T$. Hence, we can formulate the following theorem.

Theorem 1 The retractions of space-time is null geodesic, geodesic hyperspher and hypersurface.

Lemma 1 In space-time the minimal retraction induces null-geodesic.
Lemma 2 A minimal geodesic in space-time is a necessary condition for minimal retration.
The deformation retract of the space-time T is defined as

$$
\rho: T \times I \rightarrow T
$$

where T is the space-time and I is the closed interval $[0,1]$. The retraction of the space-time T is defined as

$$
R: T \rightarrow T_{1}, T_{2}, S_{1} \text { and } S_{2}
$$

The deformation retract of space-time T into a geodesic $T_{1} \subset T$ is defined by

$$
\begin{aligned}
\rho(m, t)= & (1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\right. \\
& \left.i r \sin \theta_{1} \sin \theta_{2} \phi\right\}+t\{0,0,0,0\} .
\end{aligned}
$$

where $\rho(m, 0)=\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\}, \rho(m, 1)=\{0,0,0,0\}$.
The deformation retract of space-time T into a geodesic $T_{2} \subset T$ is defined as

$$
\begin{aligned}
\rho(m, t) & =(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\} \\
& +t\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, 0\right\}
\end{aligned}
$$

The deformation retract of space-time T into a geodesic $S_{1} \subset T$ is defined by

$$
\begin{aligned}
\rho(m, t) & =(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\} \\
& +t\left\{0,2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, 0\right\}
\end{aligned}
$$

The deformation retract of space-time T into a geodesic $S_{2} \subset T$ is defined as

$$
\rho(m, t)=(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\}+t\{0,2 r, r, 0\}
$$

Now we are going to discuss the folding \Im of the space-time T. Let $\Im: T \rightarrow T$, where

$$
\begin{equation*}
\Im\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}, x_{2}, x_{3},\left|x_{4}\right|\right) \tag{8}
\end{equation*}
$$

An isometric folding of the space-time T into itself may be defined as

$$
\begin{aligned}
\Im: & \left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\} \\
\rightarrow & \left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\} .
\end{aligned}
$$

The deformation retract of the folded space-time T into the folded geodesic T_{1} is

$$
\begin{aligned}
\rho_{\Im}: & \left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\} \times I \\
\rightarrow & \left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\}
\end{aligned}
$$

with

$$
\rho_{\Im}(m, t)=(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\}+t\{0,0,0,0\} .
$$

The deformation retract of the folded space-time T into the folded geodesic T_{2} is

$$
\begin{aligned}
\rho_{\Im}(m, t) & =(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\} \\
& +t\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, 0\right\} .
\end{aligned}
$$

The deformation retract of the folded space-time T into the folded geodesic S_{1} is

$$
\begin{aligned}
\rho_{\Im}(m, t) & =(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\} \\
& +t\left\{0,2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}}, 0\right\} .
\end{aligned}
$$

The deformation retract of the folded space-time T into the folded geodesic S_{2} is

$$
\begin{aligned}
\rho_{\Im}(m, t) & =(1-t)\left\{i r \sin \theta_{2} \theta_{1}, 2 r \sqrt{\cos 2 \theta_{2}}, r \sqrt{\cos 2 \theta_{2}},\left|i r \sin \theta_{1} \sin \theta_{2} \phi\right|\right\} \\
& +t\{0,2 r, r, 0\}
\end{aligned}
$$

Then, the following theorem has been proved.
Theorem 2 Under the defined folding, the deformation retract of the folded space-time into the folded geodesics is the same as the deformation retract of space-time into the geodesics.

Now, let the folding be defined as:

$$
\begin{equation*}
\Im^{*}\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x,\left|x_{2}\right|, x_{3}, x_{4}\right) \tag{9}
\end{equation*}
$$

The isometric folded space-time $\Im(T)$ is

$$
\bar{R}=\left\{i r \sin \theta_{2} \theta_{1},\left|2 r \sqrt{\cos 2 \theta_{2}}\right|, r \sqrt{\cos 2 \theta_{2}}, i r \sin \theta_{1} \sin \theta_{2} \phi\right\}
$$

Hence, we can formulate the following theorem.

Theorem 3 The deformation retract of the folded space-time ,i.e., $\rho \Im^{*}(T)$ is different from the deformation retract of space-time under condition (9).

Now let $\Im_{1}: T^{n} \rightarrow T^{n}$,
$\Im_{2}: \Im_{1}\left(T^{n}\right) \rightarrow \Im_{1}\left(T^{n}\right)$,
$\Im_{3}: \Im_{2}\left(\Im_{1}\left(T^{n}\right)\right) \rightarrow \Im_{2}\left(\Im_{1}\left(T^{n}\right)\right), \cdots$,
$\left.\left.\Im_{n}: \Im_{n-1}\left(\Im_{n-2} \ldots\left(\Im_{1}\left(T^{n}\right)\right) \ldots\right)\right) \rightarrow \Im_{n-1}\left(\Im_{n-2} \ldots\left(\Im_{1}\left(T^{n}\right)\right) \ldots\right)\right)$,
$\left.\lim _{n \rightarrow \infty} \Im_{n-1}\left(\Im_{n-2} \ldots\left(\Im_{1}\left(T^{n}\right)\right) \ldots\right)\right)=n-1$ dimensional space-time T^{n-1}.
Let $h_{1}: T^{n-1} \rightarrow T^{n-1}$,
$h_{2}: h_{1}\left(T^{n-1}\right) \rightarrow h_{1}\left(T^{n-1}\right)$,
$h_{3}: h_{2}\left(h_{1}\left(T^{n-1}\right)\right) \rightarrow h_{2}\left(h_{1}\left(T^{n-1}\right), \ldots\right.$,
$\left.\left.h_{m}: h_{m-1}\left(h_{m-2} \ldots\left(h_{1}\left(T^{n-1}\right)\right) \ldots\right)\right) \rightarrow h_{m-1}\left(h_{m-2} \ldots\left(h_{1}\left(T^{n-1}\right)\right) \ldots\right)\right)$,
$\lim h_{m}\left(h_{m}: h_{m-1}\left(h_{m-2} \ldots\left(h_{1}\left(T^{n-1}\right)\right) \ldots\right)\right)=n-2$ dimensional space-time T^{n-2}.
Consequently, $\lim _{s \rightarrow \infty} \lim _{m \rightarrow \infty} \lim _{n \rightarrow \infty} \ldots k_{s}\left(h_{m}\left(\Im_{n}\left(T^{n}\right)\right)\right)=0$-dimensional space-time. Hence, we can formulate the following theorem.

Theorem 4 The end of the limits of the folding of space-time T^{n} is a 0-dimensional geodesic, it is a minimal retraction.

Now let f_{1} be the foldings and r_{i} be the retractions. then we have

$$
\begin{aligned}
& T^{n} \xrightarrow{f_{1}^{1}} T_{1}^{n} \xrightarrow{f_{2}^{1}} T_{2}^{n} \longrightarrow \cdots T_{n-1}^{n} \xrightarrow{\lim f_{i}^{1}} T^{n-1}, \\
& T^{n} \xrightarrow{r_{1}^{1}} T_{1}^{n} \xrightarrow{r_{2}^{1}} T_{2}^{n} \longrightarrow \cdots T_{n-1}^{n} \xrightarrow{\lim r_{i}^{1}} T^{n-1}, \\
& T^{n} \xrightarrow{f_{1}^{2}} T_{1}^{n-1} \xrightarrow{f_{2}^{2}} T_{2}^{n-1} \longrightarrow \cdots T_{n-1}^{n} \xrightarrow{\lim f_{i}^{2}} T^{n-2}, \cdots, \\
& T^{n-1} \xrightarrow{r_{1}^{1}} T_{1}^{n-1} \xrightarrow{r_{2}^{2}} T_{2}^{n-1} \longrightarrow \cdots T_{n-1}^{n} \xrightarrow{\lim r_{i}^{2}} T^{n-2}, \cdots, \\
& T^{1} \xrightarrow{f_{1}^{n}} T_{1}^{1} \xrightarrow{f_{2}^{n}} T_{2}^{1} \longrightarrow \cdots T_{n-1}^{1} \xrightarrow{\lim f_{i}^{n}} T^{0}, \\
& T^{1} \xrightarrow{r_{1}^{n}} T_{1}^{1} \xrightarrow{r_{2}^{n}} T_{2}^{1} \longrightarrow \cdots T_{n-1}^{1} \xrightarrow{\lim f_{i}^{n}} T^{0} .
\end{aligned}
$$

Then the end of the limits of foldings $=$ the limit of retractions $=0$-dimensional space-time. Whence, the following theorem has been proved.

Theorem 5 In space-time the end of the limits of foldings of T^{n} into itself coincides with the minimal retraction.

References

[1] M. J. Ablowitz and P. A. Clarkson: Solutions, Nonlinear evolution equations and inverse scattering Cambridage University press(1991)
[2] M. A. Armstrong: Basic topology, McGrow-Hill(1979).
[3] M. P. Docarmo:Riemannian geometry, Boston,Birkhauser(1992).
[4] A. E. El-Ahmady: Fuzzy folding of fuzzy horocycle, Circolo Matematico, di Palermo, Serie II, Tomo LIII, 443-450, 2004.
[5] A. E. El-Ahmady: The deformation retract and topological folding of buchdahi space, Periodica Mathematica Hungarica, 28(1),1994, 19-30.
[6] A. E. El-Ahmady: Fuzzy Lobachevskian space and its folding, The Joural of Fuzzy Mathematics, 12(2),2004, 255-260.
[7] A. E. El-Ahmady and H. M. Shamara: Fuzzy deformation retract of fuzzy horospheres, Indian J.Pure Appel.Math., 32(10), 2001 1501-1506.
[8] A. E. El-Ahmady, The deformation retract of a manifold adimting a simple transitive group of motions and its topological folding, Bull. Cal. Math. Soc., 96 (4), 2004, 279-284.
[9] A. E. El-Ahmady, Limits of fuzzy retractions of fuzzy hyperspheres and their foldings, Tamkang Journal of Mathematics (accepted).
[10] A. E. El-Ahmady and H. Rafat, A calculation of geodesics in chaotic flat space and its folding, Chaos, Solitions and Fractals (accepted).
[11] C. Rogers and W. F. Shadwick: Backland transformations and their applications, Academic Press, 1982.
[12] M. El-Ghoul and K. Khalifa, The folding of minimal manifolds and its deformation, Chaos, Solitons and Fractals U.K., 13(2002), 1031-1035.
[13] M. El-Ghoul, A. E. El-Ahmady and H. Rafat, Folding-retraction of chaotic dynamical manifold and the VAK of vacuum fluction, Chaos, Solitions and Fractal, UK, 20(2004) 209-217.
[14] S. A. Robertson, Isometric folding of Riemannian manifolds, Proc. Roy. Soc. Edinburgh, 77(1977), 275-284.

[^0]: ${ }^{1}$ Received Oct.15, 2009. Accepted Nov. 18, 2009.

