Scientia Magna

Vol. 1 (2005), No. 2, 162-166

The Smarandache minimum and maximum functions

József Sándor
Babes-Bolyai University of Cluj, Romania

Abstract

This papers deals with the introduction and preliminary study of the Smarandache minimum and maximum functions.

Keywords Smarandache minimum and maximum functions; arithmetical properties.

1. Let $f: N^{*} \longrightarrow N$ be a given arithmetic function and $A \subset N$ a given set. The arithmetic function

$$
\begin{equation*}
F_{f}^{A}(n)=\min \{k \in A: n \mid f(k)\} \tag{1}
\end{equation*}
$$

has been introduced in [4] and [5].
For $A=N, f(k)=k$! one obtains the Smarandache function; For $A=N^{*}, A=p=$ $\{2,3,5, \cdot\}=$ set of all primes, one obtains a function

$$
\begin{equation*}
P(n)=\min \{k \in P: n \mid k!\} \tag{2}
\end{equation*}
$$

For the properties of this function, see [4] and [5]. The "dual" function of (1) has been defined by

$$
\begin{equation*}
G_{g}^{A}(n)=\max \{k \in A: g(k) \mid n\}, \tag{3}
\end{equation*}
$$

where $g: N^{*} \longrightarrow N$ is a given function, and $A \in N$ is a given set. Particularly, for $A=$ $N^{*}, g(k)=k$!, one obtains the dual of the Smarandache function,

$$
\begin{equation*}
S_{*}(n)=\max \{k \geq 1: k!\mid n\} \tag{4}
\end{equation*}
$$

For the properties of this function, see [4] and [5]. F.Luca [3], K.Atanassov [1] and L.le [2] have proved in the affirmative a conjecture of the author.
For $A=N^{*}$ and $f(k)=g(k)=\varphi(k)$ in (1), resp.(3) one obtains the Euler minimum, resp. maximum-function, defined by

$$
\begin{equation*}
E(n)=\min \{k \geq 1: n \mid \varphi(k)\} \tag{5}
\end{equation*}
$$

$$
\begin{equation*}
E_{*}(n)=\max \{k \geq 1: \varphi(k) \mid n\} \tag{6}
\end{equation*}
$$

For the properties of these function, see [6]. When $A=N^{*}, f(k)=d(k)=$ number of divisors of k, one obtains the divisor minimum function (see [4], [5] and [7])

$$
\begin{equation*}
D(n)=\min \{k \geq 1: n \mid d(k)\} \tag{7}
\end{equation*}
$$

It is interesting to note that the divisor maximum function (i.e., the " dual" of $D(n)$) given by

$$
\begin{equation*}
D_{*}(n)=\max \{k \geq 1: d(k) \mid n\} \tag{8}
\end{equation*}
$$

is not well defined! Indeed, for any prime p one has $d\left(p^{n-1}\right)=n \mid n$ and p^{n-1} is unbounded as $p \longrightarrow \infty$. For a finite set A, however $D_{*}^{A}(n)$ does exist. On one hand, it has been shown in [4] and [5] that

$$
\begin{equation*}
\sum(n)=\min \{k \geq 1: n \mid \sigma(k)\} \tag{9}
\end{equation*}
$$

(denoted there by $F_{\sigma}(n)$) is well defined. (Here $\sigma(k)$ denotes the sum of all divisors of k). The dual of the sum-of-divisors minimum function is

$$
\begin{equation*}
\left.\sum_{*}(n)=\max (k \geq 1: \sigma(k) \mid n\}\right) \tag{10}
\end{equation*}
$$

Since $\sigma(1)=1 \mid n$ and $\sigma(k) \geq k$, clearly $\sum_{*}(n) \leq n$, so this function is well defined (see [8]).
2. The Smarandache minimum function will be defined for $A=N^{*}, f(k)=S(k)$ in (1). Let us denote this function by $S_{\text {min }}$:

$$
\begin{equation*}
S_{\min }(n)=\min \{k \geq 1: n \mid S(k)\} \tag{11}
\end{equation*}
$$

Let us assume that $S(1)=1$, i. e., $S(n)$ is defined by (1) for $A=N^{*}, f(k)=k!$:

$$
\begin{equation*}
S(n)=\min \{k \geq 1: n \mid k!\} \tag{12}
\end{equation*}
$$

Otherwise (i.e.when $S(1)=0$) by $n \mid 0$ for all n, by (11) for one gets the trivial function $S_{\text {min }}(n)=0$. By this assumption, however, one obtains a very interesting (and difficult) function $s_{\text {min }}$ given by (11). Since $n \mid S(n!)=n$, this function is correctly defined.

The Smarandache maximum function will be defined as the dual of $S_{\min }$:

$$
\begin{equation*}
S_{\max }(n)=\max (k \geq 1: S(k) \mid n\} \tag{13}
\end{equation*}
$$

We prove that this is well defined. Indeed, for a fixed n, there are a finite number of divisors of n, let $i \mid n$ be one of them. The equation

$$
\begin{equation*}
S(k)=i \tag{14}
\end{equation*}
$$

is well-known to have a number of $d(i!)-d((i-1)!)$ solutions, i. e., in a finite number. This implies that for a given n there are at most finitely many k with $S(k) \mid k$, so the maximum in (13) is attained.

Clearly $S_{\min }(1)=1, S_{\min }(2)=2, S_{\min }(3)=3, S_{\min }(4)=4, S_{\min }(5)=5, S_{\min }(6)=$ $9, S_{\min }(7)=7, S_{\min }(8)=32, S_{\min }(9)=27, S_{\min }(10)=25, S_{\min }(11)=11$, etc, which can be determined from a table of Smarandache numbers:

n	1	2	3	4	5	6	7	8	9	10	11	12	13
$\mathrm{~S}(\mathrm{n})$	1	2	3	4	5	3	7	4	6	5	11	4	13

n	14	15	16	17	18	19	20	21	22	23	24	25
$\mathrm{~S}(\mathrm{n})$	7	5	6	7	6	19	5	7	11	23	4	10

We first prove that:
Theorem 1. $\quad S_{\min }(n) \geq n$ for all $n \geq 1$, with equality only for

$$
\begin{equation*}
n=1,4, p(p=\text { prime }) \tag{15}
\end{equation*}
$$

Proof. Let $n \mid S(k)$. If we would have $k<n$, then since $S(k) \leq k<n$ we should get $S(k)<n$, in contradiction with $n \mid S(k)$. Thus $k \geq n$, and taking minimum, the inequality follows. There is equality for $n=1$ and $n=4$. Let now $n>4$. If $n=p=$ prime, then $p \mid S(p)=p$, but for $k<p, p \dagger S(k)$. Indeed, by $S(k) \leq k<p$ this is impossible. Reciprocally, if $\min \{k \geq 1: n \mid S(k)\}=n$, then $n \mid S(n)$, and by $S(n) \leq n$ this is possible only when $S(n)=n$, i. e., when $n=1,4, p(p=$ prime $)$.

Theorem 2. For all $n \geq 1$,

$$
\begin{equation*}
S_{\min }(n) \leq n!\leq S_{\max }(n) \tag{16}
\end{equation*}
$$

Proof. Since $S(n!)=n$, definition (11) gives the left side of (16), while definition (13) gives the right side inequality.

Corollary. The series $\sum_{n \geq 1} \frac{1}{S_{\min }(n)}$ is divergent, while the series $\sum_{n \geq 1} \frac{1}{S_{\max }(n)}$ is convergent.
Proof. Since $\sum_{n \geq 1} \frac{1}{S_{\max }(n)} \leq \sum_{n \geq 1} \frac{1}{n!}=e-1$ by (16), this series is convergent. On the other hand,

$$
\sum_{n \geq 1} \frac{1}{S_{\min }(n)} \geq \sum_{p} \frac{1}{S_{\min }(p)}=\sum_{p} \frac{1}{p}=+\infty
$$

so the first series is divergent.
Theorem 3. For all primes p one has

$$
\begin{equation*}
S_{\max }(p)=p! \tag{17}
\end{equation*}
$$

Proof. Let $S(k) \mid p$. Then $S(k)=1$ or $S(k)=p$. We prove that if $S(k)=p$, then $k \leq p!$. Indeed, this follows from the definition (12), since $S(k)=\min \{m \geq 1: k \mid m!\}=p$ implies $k \mid p!$, so $k \leq p$!. Therefore the greatest value of k is $k=p$!, when $S(k)=p \mid p$. This proves relation (17).

Theorem 4. For all primes p,

$$
\begin{equation*}
S_{\min }(2 p) \leq p^{2} \leq S_{\max }(2 p) \tag{18}
\end{equation*}
$$

and more generally; for all $m \leq p$,

$$
\begin{equation*}
S_{\min }(m p) \leq p^{m} \leq S_{\max }(m p) \tag{19}
\end{equation*}
$$

Proof. (19) follows by the known relation $S\left(p^{m}\right)=m p$ if $m \leq p$ and the definition (11), (13). Particularly, for $m=2$, (19) reduces to (18). For $m=p$, (19) gives

$$
\begin{equation*}
S_{\min }\left(p^{2}\right) \leq p^{p} \leq S_{\max }\left(p^{2}\right) \tag{20}
\end{equation*}
$$

This case when m is also an arbitrary prime is given in.
Theorem 5. For all odd primes p and $q, p<q$ one has

$$
\begin{equation*}
S_{\min }(p q) \leq q^{p} \leq p^{q} \leq S_{\max }(p q) \tag{21}
\end{equation*}
$$

(21) holds also when $p=2$ and $q \geq 5$.

Proof. Since $S\left(q^{p}\right)=p q$ and $S\left(p^{q}\right)=q p$ for primes p and q, the extreme inequalities of (21) follow from the definition (11) and (13). For the inequality $q^{p}<p^{q}$ remark that this is equivalent to $f(p)>f(q)$, where $f(x)=\frac{\ln x}{x}(x \geq 3)$.

Since $f^{\prime}(x)=\frac{1-\ln x}{x^{2}}=0 \Leftrightarrow x=e$ immediately follows that f is strictly decreasing for $x \geq e=2.71$. From the graph of this function, since $\frac{\ln 2}{2}=\frac{\ln 4}{4}$ we get that

$$
\frac{\ln 2}{2}<\frac{\ln 3}{3}
$$

but

$$
\frac{\ln 2}{2}>\frac{\ln q}{q}
$$

for $q \geq 5$. Therefore (21) holds when $p=2$ and $q \geq 5$. Indeed, $f(q) \leq f(5)<f(4)=f(2)$.

Remark. For all primes p, q

$$
\begin{equation*}
S_{\min }(p q) \leq \min \left\{p^{q}, q^{p}\right\} \tag{22}
\end{equation*}
$$

and

$$
\begin{equation*}
S_{\max }(p q) \geq \max \left\{p^{q}, q^{p}\right\} \tag{23}
\end{equation*}
$$

For $p=q$ this implies relation (21).
Proof. Since $S\left(q^{p}\right)=S\left(p^{q}\right)=p q$, one has

$$
S_{\min }(p q) \leq p^{q}, S_{\min }(p q) \leq q^{p}, S_{\max }(p q) \leq p^{q}, S_{\max }(p q) \leq q^{p}
$$

References

[1] K.Atanassov, Remark on Jozsef Sandor and Florian Luca's theorem, C. R. Acad. Bulg. Sci., 55(10)(2002), 9-14.
[2] M.Le, A conjecture concerning the Smarandache dual function, Smarandache Notions J., 14(2004), 153-155.
[3] F.Luca, On a divisibility property involving factorials, C. R. Acad. Bulg. Sci., 53(6)(2000), 35-38.
[4] J.Sandor, On certain generalizations of the Smarandache function, Notes Number Theorem Disci. Math., 5(2)(1999),41-51.
[5] J.Sandor, On certain generalizations of the Smarandache function, Smarandache Notions Journal, 11(2000), 202-212.
[6] J.Sandor, On the Euler minimum and maximum functions(to appear).

