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Abstract A Smarandache multi-space is a union of n spaces A1, A2, · · · , An with some

additional conditions holding. Combining Smarandache multi-spaces with classical metric

spaces, the conception of multi-metric spaces is introduced. Some characteristics of multi-

metric spaces are obtained and the Banach’s fixed-point theorem is generalized in this paper.
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§1. Introduction

The notion of multi-spaces is introduced by Smarandache in [6] under his idea of hybrid
mathematics: combining different fields into a unifying field ([7]), which is defined as follows.

Definition 1.1 For any integer i, 1 ≤ i ≤ n let Ai be a set with ensemble of law Li, and the
intersection of k sets Ai1 , Ai2 , · · · , Aik

of them constrains the law I(Ai1 , Ai2 , · · · , Aik
). Then

the union of Ai, 1 ≤ i ≤ n

Ã =
n⋃

i=1

Ai

is called a multi-space.
As we known, a set M associative a function ρ : M ×M → R+ = {x | x ∈ R, x ≥ 0} is

called a metric space if for ∀x, y, z ∈ M , the following conditions for the metric function ρ hold:

(1) (definiteness) ρ(x, y) = 0 if and only if x = y;
(ii) (symmetry) ρ(x, y) = ρ(y, x);
(iii) (triangle inequality) ρ(x, y) + ρ(y, z) ≥ ρ(x, z).
By combining Smarandache multi-spaces with classical metric spaces, a new kind of spaces

called multi-metric spaces is found, which is defined in the following.

Definition 1.2 A multi-metric space is a union M̃ =
m⋃

i=1

Mi such that each Mi is a space

with metric ρi for ∀i, 1 ≤ i ≤ m.

When we say a multi-metric space M̃ =
m⋃

i=1

Mi, it means that a multi-metric space with

metrics ρ1, ρ2, · · · , ρm such that (Mi, ρi) is a metric space for any integer i, 1 ≤ i ≤ m. For a

multi-metric space M̃ =
m⋃

i=1

Mi, x ∈ M̃ and a positive number R, a R-disk B(x,R) in M̃ is

defined by
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B(x,R) = { y | there exists an integer k, 1 ≤ k ≤ m such that ρk(y, x) < R, y ∈ M̃}

The main purpose of this paper is to find some characteristics of multi-metric spaces. For
terminology and notations not defined here can be seen in [1]− [2], [4] for terminologies in the
metric space and in [3], [5]− [9] for multi-spaces and logics.

§2. Characteristics of multi-metric spaces

For metrics on spaces, we have the following result.
Theorem 2.1. Let ρ1, ρ2, · · · , ρm be m metrics on a space M and F a function on Em

such that the following conditions hold:
(i) F (x1, x2, · · · , xm) ≥ F (y1, y2, · · · , ym) if for ∀i, 1 ≤ i ≤ m, xi ≥ yi;
(ii) F (x1, x2, · · · , xm) = 0 only if x1 = x2 = · · · = xm = 0;
(iii) For two m-tuples (x1, x2, · · · , xm) and (y1, y2, · · · , ym),

F (x1, x2, · · · , xm) + F (y1, y2, · · · , ym) ≥ F (x1 + y1, x2 + y2, · · · , xm + ym).

Then F (ρ1, ρ2, · · · , ρm) is also a metric on M .
Proof. We only need to prove that F (ρ1, ρ2, · · · , ρm) satisfies the metric conditions for

∀x, y, z ∈ M .
By (ii), F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = 0 only if for any integer i, ρi(x, y) = 0. Since

ρi is a metric on M , we know that x = y.
For any integer i, 1 ≤ i ≤ m, since ρi is a metric on M , we know that ρi(x, y) = ρi(y, x).

Whence,

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) = F (ρ1(y, x), ρ2(y, x), · · · , ρm(y, x)).

Now by (i) and (iii), we get that

F (ρ1(x, y), ρ2(x, y), · · · , ρm(x, y)) + F (ρ1(y, z), ρ2(y, z), · · · , ρm(y, z))

≥ F (ρ1(x, y) + ρ1(y, z), ρ2(x, y) + ρ2(y, z), · · · , ρm(x, y) + ρm(y, z))

≥ F (ρ1(x, z), ρ2(x, z), · · · , ρm(x, z)).

Therefore, F (ρ1, ρ2, · · · , ρm) is a metric on M .
Corollary 2.1. If ρ1, ρ2, · · · , ρm are m metrics on a space M , then ρ1 + ρ2 + · · · + ρm

and ρ1
1+ρ1

+ ρ2
1+ρ2

+ · · ·+ ρm

1+ρm
are also metrics on M .

A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is said convergence to a point x, x ∈ M̃

if for any positive number ε > 0, there exist numbers N and i, 1 ≤ i ≤ m such that if n ≥ N

then

ρi(xn, x) < ε.
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If {xn} convergence to a point x, x ∈ M̃ , we denote it by lim
n

xn = x.
We have a characteristic for convergent sequences in a multi-metric space.

Theorem 2.2. A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is convergent if and

only if there exist integers N and k, 1 ≤ k ≤ m such that the subsequence {xn|n ≥ N} is a
convergent sequence in (Mk, ρk).

Proof. If there exist integers N and k, 1 ≤ k ≤ m, such that {xn|n ≥ N} is a convergent
subsequence in (Mk, ρk), then for any positive number ε > 0, by definition there exists a positive
integer P and a point x, x ∈ Mk such that

ρk(xn, x) < ε

if n ≥ max{N, P}.
Now if {xn} is a convergent sequence in the multi-space M̃ , by definition for any positive

number ε > 0, there exist a point x, x ∈ M̃ and natural numbers N(ε) and k, 1 ≤ k ≤ m such
that if n ≥ N(ε), then

ρk(xn, x) < ε,

that is, {xn|n ≥ N(ε)} ⊂ Mk and {xn|n ≥ N(ε)} is a convergent sequence in (Mk, ρk).

Theorem 2.3. Let M̃ =
m⋃

i=1

Mi be a multi-metric space. For two sequences {xn}, {yn}
in M̃ , if lim

n
xn = x0, lim

n
yn = y0 and there is an integer p such that x0, y0 ∈ Mp, then

lim
n

ρp(xn, yn) = ρp(x0, y0).
Proof. According to Theorem 2.2, there exist integers N1 and N2 such that if n ≥

max{N1, N2}, then xn, yn ∈ Mp. Whence, we have that

ρp(xn, yn) ≤ ρp(xn, x0) + ρp(x0, y0) + ρp(yn, y0)

and

ρp(x0, y0) ≤ ρp(xn, x0) + ρp(xn, yn) + ρp(yn, y0).

Therefore,

|ρp(xn, yn)− ρp(x0, y0)| ≤ ρp(xn, x0) + ρp(yn, y0).

For any positive number ε > 0, since lim
n

xn = x0 and lim
n

yn = y0, there exist numbers

N1(ε), N1(ε) ≥ N1 and N2(ε), N2(ε) ≥ N2 such that ρp(xn, x0) ≤ ε
2 if n ≥ N1(ε) and

ρp(yn, y0) ≤ ε
2 if n ≥ N2(ε). Whence, if n ≥ max{N1(ε), N2(ε)}, then

|ρp(xn, yn)− ρp(x0, y0)| < ε.

Whether a convergent sequence can has more than one limit point? The following result
answers this question.

Theorem 2.4. If {xn} is a convergent sequence in a multi-metric space M̃ =
m⋃

i=1

Mi,

then {xn} has only one limit point.
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Proof. According to Theorem 2.2, there exist integers N and i, 1 ≤ i ≤ m such that
xn ∈ Mi if n ≥ N . Now if

lim
n

xn = x1 and lim
n

xn = x2,

and n ≥ N , by definition,

0 ≤ ρi(x1, x2) ≤ ρi(xn, x1) + ρi(xn, x2).

Whence, we get that ρi(x1, x2) = 0. Therefore, x1 = x2.
Theorem 2.5. Any convergent sequence in a multi-metric space is a bounded points set.
Proof. According to Theorem 2.4, we obtain this result immediately.

A sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is called a Cauchy sequence if for any

positive number ε > 0, there exist integers N(ε) and s, 1 ≤ s ≤ m such that for any integers
m,n ≥ N(ε), ρs(xm, xn) < ε.

Theorem 2.6. A Cauchy sequence {xn} in a multi-metric space M̃ =
m⋃

i=1

Mi is convergent

if and only if for ∀k, 1 ≤ k ≤ m, |{xn}
⋂

Mk| is finite or infinite but {xn}
⋂

Mk is convergent
in (Mk, ρk).

Proof. The necessity of these conditions is by Theorem 2.2.
Now we prove the sufficiency. By definition, there exist integers s, 1 ≤ s ≤ m and N1 such

that xn ∈ Ms if n ≥ N1. Whence, if |{xn}
⋂

Mk| is infinite and lim
n
{xn}

⋂
Mk = x, then there

must be k = s. Denoted by {xn}
⋂

Mk = {xk1, xk2, · · · , xkn, · · · }.
For any positive number ε > 0, there exists an integer N2, N2 ≥ N1 such that ρk(xm, xn) <

ε
2 and ρk(xkn, x) < ε

2 if m,n ≥ N2. According to Theorem 4.7, we get that

ρk(xn, x) ≤ ρk(xn, xkn) + ρk(xkn, x) < ε

if n ≥ N2. Whence, lim
n

xn = x.

A multi-metric space M̃ is said completed if every Cauchy sequence in this space is con-
vergent. For a completed multi-metric space, we obtain two important results similar to the
metric space theory in classical mathematics.

Theorem 2.7. Let M̃ =
m⋃

i=1

Mi be a completed multi-metric space. For a ε-disk sequence

{B(εn, xn)}, where εn > 0 for n = 1, 2, 3, · · · , the following conditions hold:
(i) B(ε1, x1) ⊃ B(ε2, x2) ⊃ B(ε3, x3) ⊃ · · · ⊃ B(εn, xn) ⊃ · · · ;
(ii) lim

n→+∞
εn = 0.

Then
+∞⋂
n=1

B(εn, xn) only has one point.

Proof. First, we prove that the sequence {xn} is a Cauchy sequence in M̃ . By the
condition (i), we know that if m ≥ n, then xm ∈ B(εm, xm) ⊂ B(εn, xn). Whence, for
∀i, 1 ≤ i ≤ m, ρi(xm, xn) < εn if xm, xn ∈ Mi.

For any positive number ε, since lim
n→+∞

εn = 0, there exists an integer N(ε) such that if n ≥
N(ε), then εn < ε. Therefore, if xn ∈ Ml, then limxm = xn. Whence, there exists an integer
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N such that if m ≥ N , then xm ∈ Ml by Theorem 2.2. Take integers m,n ≥ max{N, N(ε)}.
We know that

ρl(xm, xn) < εn < ε.

So {xn} is a Cauchy sequence.
By the assumption, M̃ is completed. We know that the sequence {xn} is convergence to a

point x0, x0 ∈ M̃ . By conditions (i) and (ii), we have that ρl(x0, xn) < εn if we take m → +∞.

Whence, x0 ∈
+∞⋂
n=1

B(εn, xn).

Now if there a point y ∈
+∞⋂
n=1

B(εn, xn), then there must be y ∈ Ml. We get that

0 ≤ ρl(y, x0) = lim
n

ρl(y, xn) ≤ lim
n→+∞

εn = 0

by Theorem 2.3. Therefore, ρl(y, x0) = 0. By definition of a metric on a space, we get that
y = x0.

Let M̃1 and M̃2 be two multi-metric spaces and f : M̃1 → M̃2 a mapping, x0 ∈ M̃1, f(x0) =
y0. For ∀ε > 0, if there exists a number δ such that for forallx ∈ B(δ, x0), f(x) = y ∈ B(ε, y0) ⊂
M̃2, i.e.,

f(B(δ, x0)) ⊂ B(ε, y0),

then we say f is continuous at point x0. If f is connected at every point of M̃1, then f is
said a continuous mapping from M̃1 to M̃2.

For a continuous mapping f from M̃1 to M̃2 and a convergent sequence {xn} in M̃1,
lim
n

xn = x0, we can prove that

lim
n

f(xn) = f(x0).

For a multi-metric space M̃ =
m⋃

i=1

Mi and a mapping T : M̃ → M̃ , if there is a point

x∗ ∈ M̃ such that Tx∗ = x∗, then x∗ is called a fixed point of T . Denoted by #Φ(T ) the
number of all fixed points of a mapping T in M̃ . If there are a constant α, 1 < α < 1 and
integers i, j, 1 ≤ i, j ≤ m such that for ∀x, y ∈ Mi, Tx, Ty ∈ Mj and

ρj(Tx, Ty) ≤ αρi(x, y),

then T is called a contraction on M̃ .
Theorem 2.8. Let M̃ =

m⋃
i=1

Mi be a completed multi-metric space and T a contraction

on M̃ . Then

1 ≤# Φ(T ) ≤ m.

Proof. Choose arbitrary points x0, y0 ∈ M1 and define recursively

xn+1 = Txn, yn+1 = Txn
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for n = 1, 2, 3, · · · . By definition, we know that for any integer n, n ≥ 1, there exists an
integer i, 1 ≤ i ≤ m such that xn, yn ∈ Mi. Whence, we inductively get that

0 ≤ ρi(xn, yn) ≤ αnρ1(x0, y0).

Notice that 0 < α < 1, we know that lim
n→+∞

αn = 0. Therefore, there exists an integer i0

such that

ρi0(limn xn, lim
n

yn) = 0.

Therefore, there exists an integer N1 such that xn, yn ∈ Mi0 if n ≥ N1. Now if n ≥ N1, we
have that

ρi0(xn+1, xn) = ρi0(Txn, Txn−1)

≤ αρi0(xn, xn−1) = αρi0(Txn−1, Txn−2)

≤ α2ρi0(xn−1, xn−2) ≤ · · · ≤ αn−N1ρi0(xN1+1, xN1).

and generally, for m ≥ n ≥ N1,

ρi0(xm, xn) ≤ ρi0(xn, xn+1) + ρi0(xn+1, xn+2) + · · ·+ ρi0(xn−1, xn)

≤ (αm−1 + αm−2 + · · ·+ αn)ρi0(xN1+1, xN1)

≤ αn

1− α
ρi0(xN1+1, xN1) → 0(m,n → +∞)

Therefore, {xn} is a Cauchy sequence in M̃ . Similarly, we can prove {yn} is also a Cauchy
sequence.

Because M̃ is a completed multi-metric space, we have that

lim
n

xn = lim
n

yn = z∗.

We prove z∗ is a fixed point of T in M̃ . In fact, by ρi0(limn xn, lim
n

yn) = 0, there exists an
integer N such that

xn, yn, Txn, T yn ∈ Mi0

if n ≥ N + 1. Whence, we know that

0 ≤ ρi0(z
∗, T z∗) ≤ ρi0(z

∗, xn) + ρi0(yn, T z∗) + ρi0(xn, yn)

≤ ρi0(z
∗, xn) + αρi0(yn−1, z

∗) + ρi0(xn, yn).

Notice

lim
n→+∞

ρi0(z
∗, xn) = lim

n→+∞
ρi0(yn−1, z

∗) = lim
n→+∞

ρi0(xn, yn) = 0.
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We get that ρi0(z
∗, T z∗) = 0, i.e., Tz∗ = z∗.

For other chosen points u0, v0 ∈ M1, we can also define recursively

un+1 = Tun, vn+1 = Tvn

and get the limit points lim
n

un = lim
n

vn = w∗ ∈ Mi0 , Tu∗ ∈ Mi0 . Since

ρi0(z
∗, u∗) = ρi0(Tz∗, Tu∗) ≤ αρi0(z

∗, u∗)

and 0 < α < 1, there must be z∗ = u∗.
Similar consider the points in Mi, 2 ≤ i ≤ m, we get that

1 ≤# Φ(T ) ≤ m.

Corollary 2.2.(Banach) Let M be a metric space and T a contraction on M . Then T

has just one fixed point.

§3. Open problems for a multi-metric space

On a classical notion, only one metric maybe considered in a space to ensure the same on
all the times and on all the situations. Essentially, this notion is based on an assumption that
spaces are homogeneous. In fact, it is not true in general.

Multi-Metric spaces can be used to simplify or beautify geometrical figures and algebraic
equations. One example is shown in Fig.1, in where the left elliptic curve is transformed to the
right circle by changing the metric along x, y-axes and an elliptic equation

x2

a2
+

y2

b2
= 1

to equation

x2 + y2 = r2

of a circle of radius r.
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Fig.1¸

Generally, in a multi-metric space we can simplify a polynomial similar to the approach
used in projective geometry. Whether this approach can be contributed to mathematics with
metrics?

Problem 3.1 Choose suitable metrics to simplify the equations of surfaces and curves in
E3.

Problem 3.2 Choose suitable metrics to simplify the knot problem. Whether can it be
used for classifying 3-dimensional manifolds?

Problem 3.3 Construct multi-metric spaces or non-linear spaces by Banach spaces. Sim-
plify equations or problems to linear problems.
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