On Algebraic Multi-Ring Spaces

Linfan Mao

Chinese Academy of Mathematics and System Scienc Beijing , P.R.China

Abstract A Smarandache multi-space is a union of n spaces A_1, A_2, \dots, A_n with some additional conditions hold. Combining these Smarandache multi-spaces with rings in classical ring theory, the conception of multi-ring spaces is introduced and some characteristics of multi-ring spaces are obtained in this paper.

Keywords Ring, multi-space, multi-ring space, ideal subspace chain.

§1. Introduction

These multi-spaces is introduced by Smarandache in [6] under an idea of hybrid mathematics: combining different fields into a unifying field ([7]), which can be formally defined with mathematical words by the next definition.

Definition 1.1. For any integer $i, 1 \le i \le n$ let A_i be a set with ensemble of law L_i , denoted by $(A_i; L_i)$. Then the union of $(A_i; L_i)$, $1 \le i \le n$

$$\widetilde{A} = \bigcup_{i=1}^{n} (A_i; L_i),$$

is called a multi-space.

As we known, a set R with two binary operation "+" and " \circ ", denoted by $(R; +, \circ)$, is said to be a ring if for $\forall x, y \in R$, $x + y \in R$, $x \circ y \in R$, the following conditions hold.

- (i) (R;+) is an abelian group;
- (ii) $(R; \circ)$ is a semigroup;
- (iii) For $\forall x, y, z \in R$, $x \circ (y + z) = x \circ y + x \circ z$ and $(x + y) \circ z = x \circ z + y \circ z$.

By combining these Smarandache multi-spaces with rings in classical mathematics, a new kind of algebraic structure called multi-ring spaces is found, which are defined in the next definition.

Definition 1.2. Let $\widetilde{R} = \bigcup_{i=1}^{m} R_i$ be a complete multi-space with a double binary operation set $O(\widetilde{R}) = \{(+_i, \times_i), 1 \leq i \leq m\}$. If for any integers $i, j, i \neq j, 1 \leq i, j \leq m, (R_i; +_i, \times_i)$ is a ring and for $\forall x, y, z \in \widetilde{R}$,

$$(x +_i y) +_j z = x +_i (y +_j z), \quad (x \times_i y) \times_j z = x \times_i (y \times_j z)$$

and

$$x \times_i (y +_i z) = x \times_i y +_i x \times_i z, \quad (y +_i z) \times_i x = y \times_i x +_i z \times_i x$$

provided all these operation results exist, then \widetilde{R} is called a multi-ring space. If for any integer $1 \leq i \leq m$, $(R; +_i, \times_i)$ is a field, then \widetilde{R} is called a multi-field space.

For a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$, let $\widetilde{S} \subset \widetilde{R}$ and $O(\widetilde{S}) \subset O(\widetilde{R})$, if \widetilde{S} is also a multi-ring space with a double binary operation set $O(\widetilde{S})$, then \widetilde{S} is said a multi-ring subspace of \widetilde{R} .

The main object of this paper is to find some characteristics of multi-ring spaces. For terminology and notation not defined here can be seen in [1], [5], [12] for rings and [2], [6] - [11] for multi-spaces and logics.

§2. Characteristics of multi-ring spaces

First, we get a simple criterions for multi-ring subspaces of a multi-ring space.

Theorem 2.1. For a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$, a subset $\widetilde{S} \subset \widetilde{R}$ with a double binary operation set $O(\widetilde{S}) \subset O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} if and only if for any integer $k, 1 \leq k \leq m$, $(\widetilde{S} \cap R_k; +_k, \times_k)$ is a subring of $(R_k; +_k, \times_k)$ or $\widetilde{S} \cap R_k = \emptyset$.

Proof. For any integer $k, 1 \leq k \leq m$, if $(\widetilde{S} \cap R_k; +_k, \times_k)$ is a subring of $(R_k; +_k, \times_k)$ or $\widetilde{S} \cap R_k = \emptyset$, then since $\widetilde{S} = \bigcup_{i=1}^m (\widetilde{S} \cap R_i)$, we know that \widetilde{S} is a multi-ring subspace by definition of multi-ring spaces.

Now if $\widetilde{S} = \bigcup_{j=1}^s S_{i_j}$ is a multi-ring subspace of \widetilde{R} with a double binary operation set $O(\widetilde{S}) = \{(+_{i_j}, \times_{i_j}), 1 \leq j \leq s\}$, then $(S_{i_j}; +_{i_j}, \times_{i_j})$ is a subring of $(R_{i_j}; +_{i_j}, \times_{i_j})$. Therefore, for any integer $j, 1 \leq j \leq s, S_{i_j} = R_{i_j} \cap \widetilde{S}$. But for other integer $l \in \{i; 1 \leq i \leq m\} \setminus \{i_j; 1 \leq j \leq s\}$, $\widetilde{S} \cap S_l = \emptyset$.

Applying a criterion for subrings of a ring, we get the following result.

Theorem 2.2. For a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$, a subset $\widetilde{S} \subset \widetilde{R}$ with a double binary operation set $O(\widetilde{S}) \subset O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} if and only if for any double binary operations $(+_i, \times_i) \in O(\widetilde{S})$, $(\widetilde{S} \cap R_i; +_i) \prec (R_i; +_i)$ and $(\widetilde{S}; \times_i)$ is complete.

Proof. According to Theorem 2.1, we know that \widetilde{S} is a multi-ring subspace if and only if for any integer $i, 1 \leq i \leq m$, $(\widetilde{S} \cap R_i; +_i, \times_i)$ is a subring of $(R_i; +_i, \times_i)$ or $\widetilde{S} \cap R_i = \emptyset$. By a well known criterion for subrings of a ring (see also [5]), we know that $(\widetilde{S} \cap R_i; +_i, \times_i)$ is a subring of $(R_i; +_i, \times_i)$ if and only if for any double binary operations $(+_j, \times_j) \in O(\widetilde{S})$, $(\widetilde{S} \cap R_j; +_j) \prec (R_j; +_j)$ and $(\widetilde{S}; \times_j)$ is a complete set. This completes the proof.

We use these ideal subspace chains of a multi-ring space to characteristic its structure properties. An ideal subspace \widetilde{I} of a multi-ring space $\widetilde{R} = \bigcup_{i=1}^m R_i$ with a double binary operation set $O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} satisfying the following conditions:

- (i) \widetilde{I} is a multi-group subspace with an operation set $\{+ | (+, \times) \in O(\widetilde{I})\}$;
- (ii) for any $r \in \widetilde{R}, a \in \widetilde{I}$ and $(+, \times) \in O(\widetilde{I}), r \times a \in \widetilde{I}$ and $a \times r \in \widetilde{I}$ provided these operation results exist.

Theorem 2.3. A subset \widetilde{I} with $O(\widetilde{I}), O(\widetilde{I}) \subset O(\widetilde{R})$ of a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$ with a double binary operation set $O(\widetilde{R}) = \{(+_i, \times_i) | 1 \le i \le m\}$ is a multi-ideal subspace if and only

50 Linfan Mao No. 2

if for any integer $i, 1 \le i \le m$, $(\widetilde{I} \cap R_i, +_i, \times_i)$ is an ideal of the ring $(R_i, +_i, \times_i)$ or $\widetilde{I} \cap R_i = \emptyset$. **Proof.** By definition of an ideal subspace, the necessity of conditions is obvious.

For the sufficiency, denote by $\widetilde{R}(+,\times)$ the set of elements in \widetilde{R} with binary operations "+" and "×". If there exists an integer i such that $\widetilde{I} \cap R_i \neq \emptyset$ and $(\widetilde{I} \cap R_i, +_i, \times_i)$ is an ideal of $(R_i, +_i, \times_i)$, then for $\forall a \in \widetilde{I} \cap R_i, \forall r_i \in R_i$, we know that

$$r_i \times_i a \in \widetilde{I} \bigcap R_i; \quad a \times_i r_i \in \widetilde{I} \bigcap R_i.$$

Notice that $\widetilde{R}(+_i, \times_i) = R_i$. Therefore, we get that for $\forall r \in \widetilde{R}$,

$$r \times_i a \in \widetilde{I} \cap R_i$$
; and $a \times_i r \in \widetilde{I} \cap R_i$

provided these operation results exist. Whence, \widetilde{I} is an ideal subspace of \widetilde{R} .

An ideal subspace \widetilde{I} of a multi-ring space \widetilde{R} is maximal if for any ideal subspace \widetilde{I}' , if $\widetilde{R}\supseteq\widetilde{I}'\supseteq\widetilde{I}$, then $\widetilde{I}'=\widetilde{R}$ or $\widetilde{I}'=\widetilde{I}$. For any order of these double binary operations in $O(\widetilde{R})$ of a multi-ring space $\widetilde{R}=\bigcup_{i=1}^m R_i$, not loss of generality, assume it being $(+_1,\times_1)\succ (+_2,\times_2)\succ$

 $\cdots \succ (+_m, \times_m)$, we can construct an *ideal subspace chain* of \widetilde{R} by the following programming.

(i) Construct an ideal subspace chain

$$\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1s_1}$$

under the double binary operation $(+_1, \times_1)$, where \widetilde{R}_{11} is a maximal ideal subspace of \widetilde{R} and in general, for any integer i, $1 \le i \le m-1$, $\widetilde{R}_{1(i+1)}$ is a maximal ideal subspace of \widetilde{R}_{1i} .

(ii) If the ideal subspace

$$\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1s_1} \supset \cdots \supset \widetilde{R}_{i1} \supset \cdots \supset \widetilde{R}_{is_i}$$

has been constructed for $(+_1, \times_1) \succ (+_2, \times_2) \succ \cdots \succ (+_i, \times_i)$, $1 \le i \le m-1$, then construct an ideal subspace chain of \widetilde{R}_{is_i}

$$\widetilde{R}_{is_i} \supset \widetilde{R}_{(i+1)1} \supset \widetilde{R}_{(i+1)2} \supset \cdots \supset \widetilde{R}_{(i+1)s_1}$$

under the operations $(+_{i+1}, \times_{i+1})$, where $\widetilde{R}_{(i+1)1}$ is a maximal ideal subspace of \widetilde{R}_{is_i} and in general, $\widetilde{R}_{(i+1)(i+1)}$ is a maximal ideal subspace of $\widetilde{R}_{(i+1)j}$ for any integer $j, 1 \leq j \leq s_i - 1$. Define an ideal subspace chain of \widetilde{R} under $(+_1, \times_1) \succ (+_2, \times_2) \succ \cdots \succ (+_{i+1}, \times_{i+1})$ being

$$\widetilde{R}\supset\widetilde{R}_{11}\supset\cdots\supset\widetilde{R}_{1s_1}\supset\cdots\supset\widetilde{R}_{i1}\supset\cdots\supset\widetilde{R}_{is_i}\supset\widetilde{R}_{(i+1)1}\supset\cdots\supset\widetilde{R}_{(i+1)s_{i+1}}.$$

Similar to a multi-group space ([3]), we get the following result for ideal subspace chains of multi-ring spaces.

Theorem 2.4. For a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$, its ideal subspace chain only has finite terms if and only if for any integer $i, 1 \leq i \leq m$, the ideal chain of the ring $(R_i; +_i, \times_i)$ has finite terms, i.e., each ring $(R_i; +_i, \times_i)$ is an Artin ring.

Proof. Let the order of double operations in O(R) be

$$(+_1, \times_1) \succ (+_2, \times_2) \succ \cdots \succ (+_m, \times_m)$$

and a maximal ideal chain in the ring $(R_1; +_1, \times_1)$ is

$$R_1 \succ R_{11} \succ \cdots \succ R_{1t_1}$$
.

Calculation shows that

$$\widetilde{R}_{11} = \widetilde{R} \setminus \{R_1 \setminus R_{11}\} = R_{11} \bigcup (\bigcup_{i=2}^m) R_i,$$

$$\widetilde{R}_{12} = \widetilde{R}_{11} \setminus \{R_{11} \setminus R_{12}\} = R_{12} \bigcup (\bigcup_{i=2}^{m}) R_i,$$

.

$$\widetilde{R}_{1t_1} = \widetilde{R}_{1t_1} \setminus \{R_{1(t_1-1)} \setminus R_{1t_1}\} = R_{1t_1} \bigcup (\bigcup_{i=2}^m) R_i.$$

According to Theorem 3.10, we know that

$$\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1t_1}$$

is a maximal ideal subspace chain of \widetilde{R} under the double binary operation $(+_1, \times_1)$. In general, for any integer $i, 1 \le i \le m-1$, assume

$$R_i \succ R_{i1} \succ \cdots \succ R_{it}$$

is a maximal ideal chain in the ring $(R_{(i-1)t_{i-1}}; +_i, \times_i)$. Calculate

$$\widetilde{R}_{ik} = R_{ik} \bigcup (\bigcup_{i=i+1}^{m}) \widetilde{R}_{ik} \bigcap R_i$$

Then we know that

$$\widetilde{R}_{(i-1)t_{i-1}} \supset \widetilde{R}_{i1} \supset \widetilde{R}_{i2} \supset \cdots \supset \widetilde{R}_{it_i}$$

is a maximal ideal subspace chain of $\widetilde{R}_{(i-1)t_{i-1}}$ under the double operation $(+_i, \times_i)$ by Theorem 2.3. Whence, if for any integer $i, 1 \leq i \leq m$, the ideal chain of the ring $(R_i; +_i, \times_i)$ has finite terms, then the ideal subspace chain of the multi-ring space \widetilde{R} only has finite terms. On the other hand, if there exists one integer i_0 such that the ideal chain of the ring $(R_{i_0}, +_{i_0}, \times_{i_0})$ has infinite terms, then there must be infinite terms in the ideal subspace chain of the multi-ring space \widetilde{R} .

A multi-ring space is called an Artin multi-ring space if each ideal subspace chain only has finite terms. We have consequence by Theorem 3.11.

52 Linfan Mao No. 2

Corollary 2.1. A multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m}$ with a double binary operation set $O(\widetilde{R}) = \{(+_i, \times_i) | 1 \le i \le m\}$ is an Artin multi-ring space if and only if for any integer $i, 1 \le i \le m$, the ring $(R_i; +_i, \times_i)$ is an Artin ring.

For a multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m}$ with a double binary operation set $O(\widetilde{R}) = \{(+_i, \times_i) | 1 \le i \le m\}$, an element e is an idempotent element if $e_{\times}^2 = e \times e = e$ for a double binary operation $(+, \times) \in O(\widetilde{R})$. We define the directed sum \widetilde{I} of two ideal subspaces \widetilde{I}_1 and \widetilde{I}_2 as follows:

(i) $\widetilde{I} = \widetilde{I}_1 \bigcup \widetilde{I}_2$;

(ii) $\widetilde{I}_1 \cap \widetilde{I}_2 = \{0_+\}$, or $\widetilde{I}_1 \cap \widetilde{I}_2 = \emptyset$, where 0_+ denotes an unit element under the operation +.

Denote the directed sum of \widetilde{I}_1 and \widetilde{I}_2 by

$$\widetilde{I} = \widetilde{I}_1 \bigoplus \widetilde{I}_2.$$

If for any $\widetilde{I}_1, \widetilde{I}_2, \ \widetilde{I} = \widetilde{I}_1 \bigoplus \widetilde{I}_2$ implies that $\widetilde{I}_1 = \widetilde{I}$ or $\widetilde{I}_2 = \widetilde{I}$, then \widetilde{I} is said to be non-reducible. We get the following result for these Artin multi-ring spaces, which is similar to a well-known result for these Artin rings (see [12]).

Theorem 2.5. Any Artin multi-ring space $\widetilde{R} = \bigcup_{i=1}^{m} R_i$ with a double binary operation set $O(\widetilde{R}) = \{(+_i, \times_i) | 1 \le i \le m\}$ is a directed sum of finite non-reducible ideal subspaces, and if for any integer $i, 1 \le i \le m$, $(R_i; +_i, \times_i)$ has unit 1_{\times_i} , then

$$\widetilde{R} = \bigoplus_{i=1}^{m} (\bigoplus_{j=1}^{s_i} (R_i \times_i e_{ij}) \bigcup (e_{ij} \times_i R_i)),$$

where e_{ij} , $1 \le j \le s_i$ are orthogonal idempotent elements of the ring R_i .

Proof. Denote by \widetilde{M} the set of ideal subspaces which can not be represented by a directed sum of finite ideal subspaces in \widetilde{R} . According to Theorem 2.4, there is a minimal ideal subspace \widetilde{I}_0 in \widetilde{M} . It is obvious that \widetilde{I}_0 is reducible.

Assume that $\widetilde{I}_0 = \widetilde{I}_1 + \widetilde{I}_2$. Then $\widetilde{I}_1 \notin \widetilde{M}$ and $\widetilde{I}_2 \notin \widetilde{M}$. Therefore, \widetilde{I}_1 and \widetilde{I}_2 can be represented by directed sums of finite ideal subspaces. Whence, \widetilde{I}_0 can be also represented by a directed sum of finite ideal subspaces. Contradicts that $\widetilde{I}_0 \in \widetilde{M}$.

Now let

$$\widetilde{R} = \bigoplus_{i=1}^{s} \widetilde{I}_i,$$

where each \widetilde{I}_i , $1 \leq i \leq s$, is non-reducible. Notice that for a double operation $(+, \times)$, each non-reducible ideal subspace of \widetilde{R} has the form

$$(e \times R(\times)) \bigcup (R(\times) \times e), e \in R(\times).$$

Whence, we know that there is a set $T \subset \widetilde{R}$ such that

$$\widetilde{R} = \bigoplus_{e \in T, \ \times \in O(\widetilde{R})} (e \times R(\times)) \bigcup (R(\times) \times e).$$

For any operation $x \in O(\widetilde{R})$ and a unit 1_x , assume that

$$1_{\times} = e_1 \oplus e_2 \oplus \cdots \oplus e_l, \ e_i \in T, \ 1 < i < s.$$

Then

$$e_i \times 1_{\times} = (e_i \times e_1) \oplus (e_i \times e_2) \oplus \cdots \oplus (e_i \times e_l).$$

Therefore, we get that

$$e_i = e_i \times e_i = e_i^2$$
 and $e_i \times e_j = 0_i$ for $i \neq j$.

That is, $e_i, 1 \leq i \leq l$, are orthogonal idempotent elements of $\widetilde{R}(\times)$. Notice that $\widetilde{R}(\times) = R_h$ for some integer h. We know that $e_i, 1 \leq i \leq l$ are orthogonal idempotent elements of the ring $(R_h, +_h, \times_h)$. Denote by e_{hj} for $e_j, 1 \leq j \leq l$. Consider all units in \widetilde{R} , we get that

$$\widetilde{R} = \bigoplus_{i=1}^{m} (\bigoplus_{j=1}^{s_i} (R_i \times_i e_{ij}) \bigcup (e_{ij} \times_i R_i)).$$

This completes the proof.

Corollary 2.2.([12]) Any Artin ring $(R; +, \times)$ is a directed sum of finite ideals, and if $(R; +, \times)$ has unit 1_{\times} , then

$$R = \bigoplus_{i=1}^{s} R_i e_i,$$

where $e_i, 1 \le i \le s$ are orthogonal idempotent elements of the ring $(R; +, \times)$.

§3. Open problems for a multi-ring space

Similar to Artin multi-ring spaces, we can also define Noether multi-ring spaces, simple multi-ring spaces, half-simple multi-ring spaces, \cdots , etc.. Open problems for these new algebraic structures are as follows.

Problem 3.1. Call a ring R a Noether ring if its every ideal chain only has finite terms. Similarly, for a multi-ring space \widetilde{R} , if its every ideal multi-ring subspace chain only has finite terms, it is called a Noether multi-ring space. Whether can we find its structures similar to Corollary 2.2 and Theorem 2.5?

Problem 3.2. Similar to ring theory, define a Jacobson or Brown-McCoy radical for multi-ring spaces and determine their contribution to multi-ring spaces.

References

- [1] G.Birkhoff and S.Mac Lane, A Survey of Modern Algebra, Macmillan Publishing Co., Inc, 1977.
- [2] Daniel Deleanu, A Dictionary of Smarandache Mathematics, Buxton University Press, London & New York, 2004.

- [3] L.F.Mao, On Algebraic Multi-Group Spaces, Beprint arXiv: math/0510427, 10(2005).
- [4] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
 - [5] L.Z. Nie and S.S Ding, Introduction to Algebra, Higher Education Publishing Press, 1994.
 - [6] F.Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10(2000).
- [7] F.Smarandache, A Unifying Field in Logics, Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
- [8] F.Smarandache, Neutrosophy, a new Branch of Philosophy, Multi-Valued Logic, **3**(2002)(special issue on Neutrosophy and Neutrosophic Logic, 297-384.
- [9] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, **3**(2002)(special issue on Neutrosophy and Neutrosophic Logic, 385-438.
- [10] W.B. Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, 2003.
- [11] W.B.Vasantha Kandasamy and F.Smarandache, Basic Neutrosophic Algebraic Structures and Their Applications to Fuzzy and Neutrosophic Models, HEXIS, Church Rock, 2004.
 - [12] Quanyan Xong, Ring Theory, Wuhan University Press, 1993.