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Abstract The main purpose of this paper is using the elementary method to study the
mean value properties of the Smarandache multiplicative function, and give an
interesting asymptotic formula for it.
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§1. Introduction
For any positive integer n, we define f(n) as a Smarandache multiplicative

function, if f(ab) = max(f(a), f(b)), (a, b) = 1. Now for any prime p and
any positive integer α, we taking f(pα) = αp. If n = pα1

1 pα2
2 · · · pαk

k is the
prime powers factorization of n, then

f(n) = max
1≤i≤k

{f(pαi
i )} = max

1≤i≤k
{αipi}.

Now we define Pd(n) as another new arithmetical function. We let

Pd(n) =
∏

d|n
d = n

d(n)
2 , (1)

where d(n) =
∑

d|n
1 is the Dirichlet divisor function.

It is clear that f(Pd(n)) is a new Smarandache multiplicative function.
About the arithmetical properties of f(n), it seems that none had studied it
before. This function is very important, because it has many similar properties
with the Smarandache function S(n). The main purpose of this paper is to
study the mean value properties of f(Pd(n)), and obtain an interesting mean
value formula for it. That is, we shall prove the following:

Theorem. For any real number x ≥ 2, we have the asymptotic formula

∑

n≤x

f(Pd(n)) =
π4

72
x2

lnx
+ C · x2

ln2 x
+ O

(
x2

ln3 x

)
,
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where C =
5π4

288
+

1
2

∞∑

n=1

d(n) ln n

n2
is a constant.

§2. Proof of the Theorem
In this section, we shall complete the proof of the theorem. First we need

following one simple Lemma. For convenience, let n = pα1
1 pα2

2 · · · pαk
k be the

prime powers factorization of n, and P (n) be the greatest prime factor of n,
that is, P (n) = max

1≤i≤k
{pi}. Then we have

Lemma. For any positive integer n, if there exists P (n) such that P (n) >√
n, then we have the identity

f(n) = P (n).

Proof. From the definition of P (n) and the condition P (n) >
√

n, we get

f(P (n)) = P (n). (2)

For other prime divisors pi of n (1 ≤ i ≤ k and pi 6= P (n)), we have

f(pαi
i ) = αipi.

Now we will debate the upper bound of f(pαi
i ) in three cases:

(I) If αi = 1, then f(pi) = pi ≤
√

n.
(II) If αi = 2, then f(p2

i ) = 2pi ≤ 2 · n 1
4 ≤ √

n.

(III) If αi ≥ 3, then f(pαi
i ) = αi · pi ≤ αi · n

1
2αi ≤ n

1
2αi · ln n

ln pi
≤ √

n,
where we use the fact that α ≤ ln n

ln p , if pα|n.
Combining (I)-(III), we can easily obtain

f(pαi
i ) ≤ √

n. (3)

From (2) and (3), we deduce that

f(n) = max
1≤i≤k

{f(pαi
i )} = f(P (n)) = P (n).

This completes the proof of Lemma.
Now we use the above Lemma to complete the proof of Theorem. First we

define two sets A and B as following:

A = {n|n ≤ x, P (n) ≤ √
n} and B = {n|n ≤ x, P (n) >

√
n}.

Using the Euler summation formula, we may get

∑

n∈A

f(Pd(n)) ¿
∑

n∈A

P (n)d(n) ¿
∑

n≤x

√
xd(n) ¿ x

3
2 lnx. (4)
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For another part of the summation, since P (n) = p, we can assume that
n = pl, where p > l and (p, l) = 1. Note that

Pd(n) = n
d(n)

2 = (pl)
d(lp)

2 = (pl)d(l)

and

f(Pd(n)) = f((pl)d(l)) = f(pd(l)) = d(l)p,

we have
∑

n∈B

f(Pd(n)

=
∑

pl≤x

p>
√

pl

d(l)p =
∑

pl≤x
p>l

d(l)p =
∑

p≤x

p
∑

l≤x
p

l<p

d(l)

=
∑

√
x≤p≤x

p
∑

l< x
p

d(l) +
∑

p≤√x

p
∑

l<p

d(l)

=
∑

p≤x

p
∑

l< x
p

d(l) + O


 ∑

p≤√x

p
∑

l<p

d(l)


 + O




∑

p≤√x

p
∑

l< x
p

d(l)




=
∑

p≤√x

p
∑

l< x
p

d(l) +
∑

l≤√x

d(l)
∑

p< x
l

p−

 ∑

p≤√x

p





 ∑

l≤√x

d(l)




+O




∑

p≤√x

p
∑

l< x
p

d(l)


 + O




∑

p≤√x

p
∑

l< x
p

d(l)


 , (5)

where we have used Theorem 3.17 of [3]. Note that the asymptotic formula
(see Theorem 3.3 of [3])

∑

n≤x

d(n) = x lnx + (2γ − 1)x + O
(√

x
) ¿ x lnx, ζ(2) =

π2

6

(where γ is the Euler constant) and

π(x) =
x

lnx
+

x

ln2 x
+

2x

ln3 x
+ O

(
x

ln4 x

)
,

we have

∑

p≤x

p
∑

l< x
p

d(l) =
∑

p≤x

p

[
x

p
ln

x

p
+ (2γ − 1)

x

p
+ O

(√
x

p

)]
¿ x

3
2 (6)
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∑

p≤√x

p
∑

l<p

d(l) ¿
∑

p≤√x

p2 ln p ¿ x
3
2 (7)

∑

p≤√x

p
∑

l< x
p

d(l) ¿
∑

p≤√x

p× x

p
ln

x

p
¿ x

3
2 . (8)

and 
 ∑

p≤√x

p





 ∑

l≤√x

d(l)


 ¿ x

3
2 (9)

Applying Abel’s identity (Theorem 4.2 of [3]) we also have

∑

l≤√x

d(l)
∑

p< x
l

p =
∑

l≤√x

d(l)

[
x

l
π(

x

l
)−

∫ x
l

2
π(y)dy

]

=
∑

l≤√x

d(l)

[
1
2

x2

l2 ln x
l

+
5
8

x2

l2 ln2 x
l

+ O

(
x2

l2 ln3 x

)]

=
π4

72
x2

lnx
+ C · x2

ln2 x
+ O

(
x2

ln3 x

)
, (10)

where C =
5π4

288
+

1
2

∞∑

n=1

d(n) ln n

n2
is a constant.

Combining (5), (6), (7),(8),(9) and (10) we may immediately deduce the
asymptotic formula

∑

n≤x

f(Pd(n)) =
π4

72
x2

lnx
+ C · x2

ln2 x
+ O

(
x2

ln3 x

)
.

This completes the proof of Theorem.
Note. Substitute to

∑

n≤x

d(n) = x lnx + (2γ − 1)x + O
(√

x
) ¿ x lnx, ζ(2) =

π2

6

and

π(x) =
x

lnx
+

x

ln2 x
+

2x

ln3 x
+ O

(
x

ln4 x

)
,

we can get a more accurate asymptotic formula for
∑

n≤x

f(Pd(n)).
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