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The changing climate in supply chain management, driven by technological trends, increased competi-
tion, demand pressure, globalization and outsourcing has led companies to be more receptive to forming
coalitions while taking a broader strategic view of the marketplace. The structure of a transport coalition
is an important issue influencing the life cycle of such relationships. This structure is a set of consensual
relationships that connect key operating criteria for the coalition. The structure can change over time.
This structural change is causal and its extreme situation might cause deterioration of the coalition. This
work proposes a systematic way of analyzing the causal inference mechanism between the operating col-
laborative criteria and their categories in transport collaboration using a fuzzy cognitive map based
approach. The findings address the decision making on the level of collaborative integration of coalition
by the detection thresholds according to ‘‘go’’, ‘‘go with conditions’’ and ‘‘no-go’’ signals. This approach is
supported with the application to a ‘‘real world’’ case of a multi-echelon heterarchical transport network
through a series of simulation experiments.

� 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Transport management is a highly leveraged function for value
creation meaning that even small improvements in business pro-
cesses can drive large increases in profitability and cost reduction
(Stank & Goldsby, 2000). Therefore the transport industry has seen
a recent emergence of strategic collaborative initiatives (Cruijssen,
Dullaert, & Fleuren, 2007; Fugate, Davis-Sramek, & Goldsby, 2009).
Studies have shown that there is a notable realization of collabora-
tive actions in the business of freight transport with particular in-
creases in the use of intermodal shipments and the improvement
of carrier tracking and shipment consolidation (Graham, 2011).
Transport collaboration can be considered to be a strategic asset
for optimizing the supply chain and improving the competitive-
ness of companies (Kayikci & Zsifkovits, 2012). Therefore, transport
users, transport service providers and/or technology providers
establish coalition communities in order to reap benefits from joint
operational processes. Since every coalition has unique aspects,
there is no ‘‘one size fits all approach’’ for building a transport
collaboration. That being said, the structure of a collaboration
should contain the combination of automated and adaptive tech-
nologies, business processes and proactive human collaboration in
socio-technical systems (Gaurav, 2004; Ritter, Lyons, & Swindler,
2007). Success for a transport coalition is achieved when the
above-mentioned combination is strategically aligned for every
coalition partner. The structure of transport collaboration can
change over time. This change in the structure is causal (Dickerson
& Kosko, 1998). The analysis of causal mechanisms among critical
criteria is crucial as it might provide early signals about the level
of collaborative integration of a coalition. These signals are mainly
used for decision making and prediction. In previous work, we
investigated thirty-seven operating criteria within five main cate-
gories for transport collaboration structures. This work utilizes
those criteria and is aimed at answering the following research
question: How would a given pair of criteria in transport collabora-
tion structure be causally interrelated. In other word, how would every
change in the pair of criteria affect the transport collaboration struc-
ture under a set of scenario conditions? To address these concerns,
a Fuzzy Cognitive Map (FCM) based model is proposed, which
can give early signals for the possible future condition of coalition
by detecting ‘‘go’’, ‘‘go with conditions’’ and ‘‘no-go’’. These signals
can be interpreted as the level of collaborative integration respec-
tively as ‘‘full-integration’’, ‘‘partly integration’’ and ‘‘no integra-
tion’’. The FCM approach is especially useful for solving
unstructured problems in soft knowledge-based issues (e.g. organi-
zational theory, intra-organizational relations, and transport net-
work), where different decision criteria are causally interrelated
and fundamentally ‘‘fuzzy’’ (Kosko, 1986). FCM can be seen as
descriptive models which can explain the ways coalition partners
actually do derive explanations of the past, make predictions of
the future, and choose policies in the present (Schwenk, 1988),
from those aspects FCM is also applicable for the scenario develop-
ment (Glykas, 2010; Jetter & Schweinfort, 2011; Van Vilet, Kok, &
Veldkamp, 2010). In an FCM-based model, we utilized a pair-wise
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scenario matrix in the FCM iterative process to compare every pair
of given criteria using simulation experiments. The form of ex-
tended FCM gives fuzzily intersected zones to observe the causal
mechanism among a system set. These zones can infer the inten-
sity of change in the structure. This research is based on the empir-
ical findings of transport collaboration practices in a ‘‘real-world’’
coalition and the required data for the approach was collected in
advance from a questionnaire. The findings of this research show
how the change among two criteria can affect the transport
collaboration structure and the result can be divided into smaller
fuzzy sets or sub-domains in order to observe the change in the
structure. This paper assumed that the coalition has a high level
of collaborative integration. The result of this study provides a
structured understanding of the system perceptions for the coali-
tion partners. Therefore, it contributes to the simplification of the
decision making process for a coalition by scenario development
based on the FCM-based model.

2. Criteria and categories in transport collaboration structure

Today, the most frequently identified underlying inefficiencies
encountered by transport managers are poor capacity utilization,
empty backhaul, high transport costs, low profit margins and the
sometimes harsh environmental impact of transport logistics.
Transport collaboration has grown in popularity as a sustainable
strategy over the last few years to cope with such industry conse-
quences. Transport collaboration refers to innovative approaches
with socio-technical systems applied to collaborative transport
planning and execution encompassing platform-based, automated,
adaptive technologies, supporting business processes and
proactive human collaboration (Gaurav, 2004; Ritter et al., 2007).
Coalition communities in transport collaboration occur across a
variety of levels and business functions between two organizations
(bi-lateral) or in a network of multiple organizations (multi-lat-
eral) that is driven in three planes: vertically, horizontally, and
laterally. These can vary with the level of collaborative integration
from a very superficial transactional relationship to a highly
integrated relationship among coalition partners (Kayikci & Zsifko-
vits, 2012). This may not only involve exploiting synergies between
participants, but also conducts the allocation of benefits fairly
among them. Transport collaboration typically requires a consoli-
dation of capacities across different business units where the cen-
tralization of transport management allows the allocation of the
resources more efficiently. Transport collaboration models are
powered by advanced software systems and the Internet which al-
low companies to expand collaborative transport networks on a
large scale. In effect companies are forming web-based and more
traditional partnerships to reduce the transportation and inventory
costs while raising the bar on customer service. Transport users
and transport service providers enter into relationships to fill per-
ceived needs; one of which is for scarce resources. Each partner
contributes necessary resources with the expectation of receiving
valued returns (Fugate et al., 2009). A coalition’s partners must de-
cide together on the selection of the proper collaborative infra-
structure and systems. Bringing together the right partners and
selecting the right process and technology for collaboration are
as critical as defining the supporting structure at the right time.
Close collaboration is always desirable to align the involved parties
and then enhance the value of the transport network’s combined
activities (Kayikci & Zsifkovits, 2012). However, many collabora-
tive transport initiatives fail to deliver the value expected from
them (Kampstra, Ashayeri, & Gattorna, 2006; Lambert & Knemeyer,
2004) and come to an end with separation and failure (Graham,
2011). This results in a misalignment of transport collaboration
structure and results in poor decision making and wrong actions
being taken.
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Structure is an important issue influencing the level of collabo-
rative integration of coalition; it can be seen as a collection of
criteria and the set of interactive relationships that connects these
criteria. After elucidating the importance of transport collaboration
structure, in previous work we investigated thirty-seven criteria
with five main categories based on their attributes (as seen in
Table 1). These criteria and categories are used as fuzzy logic
toolkit in this research. These categories were: (1) Technical
perspective: contains Information and Communication Technology
(ICT) capabilities which facilitate data integration and exchange
across supply chain. (2) Risk perspective: refers to the possible risk
areas in management of transport collaboration associated with
strategic restructuring activities like transport chain, skill set,
control risk and so on., (3) Financial perspective: gives a reflection
of financial performance ensuring financial integrity within
distinct organizations are in place for reducing costs and increasing
overall efficiency. (4) Organizational perspective: indicates the
organizational alignment that involves readiness of integration,
co-ordination and collaboration across organizations (5)
Operational perspective: comprise the effective resource (asset)
utilization and customer service, efficient transport costs and
environmental sustainability.
3. Research methodology

Causal inference is a central aim of both experimental as well as
observational studies in the social sciences. It is a big challenge to
infer counterfactual conditions from observed data by accounting
for what would have happened versus what actually happened.
The term of causal mechanism is the causal process through which
the effect of a treatment on an outcome comes about (Imai, Dustin,
& Teppei, 2013). This causal process draws the connection between
different criteria. Causal effect is the findings that change in one
criterion leads to change in another criterion. FCM is a powerful
technique for representing models of causal inference among pairs
of criteria. This paper formally analyzes the causal mechanism of
transport collaboration by proposing a FCM-based model. Intui-
tively, FCM is a fuzzy digraph with feedback (Kosko, 1986) that
represents a causal system with uncertain and incomplete causal
information. The human experience and knowledge on the com-
plex systems is embedded in the structure of FCMs and the corre-
sponding causal inference processes. FCM combines simple actions
to model human knowledge and dynamic behavior for decision
making process (Dickerson & Kosko, 1994; Jetter & Schweinfort,
2011). FCM is developed by the number of decision makers who
know the system and its behavior under different circumstances
in such a way that the accumulated experience and knowledge
are integrated in a causal relationship among the system compo-
nents (Kosko, 1992). FCM analyzes the causal interference (i.e. po-
sitive, negative or zero) between given criteria and the degree of
influence (x) of this interference expressed in linguistic terms.
However, there are other semi-quantitative and qualitative model-
ing methods available besides FCM; Ozesmi and Ozesmi (2004)
and Van Vilet et al. (2010) mentioned that FCM addresses the fol-
lowing characteristics. These are our reasons for choosing FCM in-
stead of other methods:

– It is easy to understand (as all decision makers should be able to
understand the basics)

– Has a high level of integration (needed for the complex issues
related to transport)

– Can be performed over a relatively short time
– Gives a system description.
– It is also useful for extension activities to educate decision mak-

ers, if there are any misperceptions.
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Table 1
Criteria and categories of transport collaboration structure.

Category Criterion Abbr. code Ci Definition

Technical perspective Reliability RELI C1 Track and traceability, reliability of technical systems
Standardization STD C2 Acceptable data standards in order to facilitate information exchange
Technological
capabilities

TECHCAP C3 Support multiple technologies, multiple collaborative models and scalability of collaborative
solutions

Integration level INTL C4 Operation, coordination or strategic; which are ad-hoc or formal basis.
Information quality INFQ C5 Quality of data transactions
System performance SPER C6 Capability for operating, network and application level
Flexibility in toolset FLEXT C7 Maximum scalability and flexibility in functions

Risk perspective Skill set SKILL C8 Lack of skilled staff, organizational incompatibility
Feasibility FEA C9 Investability of the strategy
Technology usage TECHUS C10 Lack of technological investment and integration
Safety and security SASE C11 Confidentiality
Transport chain TRCHAIN C12 Risk in the structure of the transport chain i.e. risk in intermodal transport
Profitability PROF C13 Capability risk to make more profit, low cost saving potential
Control risk CONT C14 Loss of managerial control
Infrastructure INF C15 Risk in basic facilities

Financial perspective Overall efficiency OVEFF C16 All associated costs in transport collaboration process
Transport cost COST C17 The economic cost of transportation
Level of orientation ORIENT C18 Long-, mid- or short-term direction
Accelerated ROI ROI C19 Faster return on investment
Cost sharing COSTSHAR C20 Ability to share and allocate cost
Financial performance FINANS C21 Resulting with high financial ratios

Organizational
perspective

Organizational fit ORGFIT C22 Organizational readiness for collaboration. The ability to work formally or informally with
external partners

Management
involvement

MNG C23 Support and acceptance from managerial level

Openness of
communication

OPENCOM C24 Agreement on open dialogues; open to partnership and collaboration.

Information sharing INFSHAR C25 Willingness to share information
Transparency TRANS C26 Enhancing full of cross-organizational visibility for data exchange
Leadership LEAD C27 Readiness for leadership in the coalition
Trusting relationship TRUST C28 The level of trust and commitment to collaborate for a long term.

Operational
perspective

Asset optimization ASSET C29 The performance of the asset utilization

Capacity CAPA C30 Total operating capacity
Replenishment length REPLEN C31 Process length
Lead time LEADT C32 Process time
Flexibility in processes FLEXP C33 Ability to change processes according to unexpected conditions
Carbon footprint SUST C34 Sustainability – Reduction of CO2 emissions
Predictability PREDIC C35 Predictability of demand
Variability VAR C36 Variability of demand
Service level SERV C37 High, medium or low effectiveness

C4

C5

C2
C6

C3C1

w46

w41

w13

w31

w62

w12 w32

w53

w61

Fig. 1. Causal diagram.
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An FCM F can be defined through a graph, i.e. M = (V, E), that
models the map structure. Formally, an FCM F is a 4-tuple F = (M,
w, v, T) and it consists of a map structure M = (V, E), where V is a
set of concepts V = {Ci|i = 1, . . ., n} and edge E = {(Ci, Cj) | Ci, Cj e V};
edge weight wi,j = E e [�1, 1], the vector value of each concept
v = V e [0, 1] and real time value T 2 R modeling the iteration
length in cognitive inference. A concept Ci in FCM represents a cri-
terion. Interconnections among concepts are characterized by an
edge with an arrow that indicates the causal interference and the
direction of influence for an ordered pair of concepts (Ci, Cj); the
degree of causal increase or decrease among these two concepts
are determined by edge weight wij. Human knowledge and experi-
ence are reflected in the selection of concepts and edge weights for
the interconnections between concepts of the FCM. The causal
relationship among two concepts can be bi-directed (as seen be-
tween C1 and C3 in Fig. 1) and their edge weights do not necessarily
have to be at the same value, they can be positive (+) as well as
negative (�) (wij,wji,wij – wji). There are three possible types of
causal relationships among concepts: wij > 0, positive causality
between Ci and Cj; wij = 0, no relationship between Ci and Cj;
wij < 0, negative causality between Ci and Cj. The independencies
between concepts can be visualized through a causal diagram of
Please cite this article in press as: Kayikci, Y., & Stix, V. Causal mechanism i
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the kind shown in Fig. 1. This diagram represents the graphical
illustration of six concepts that are causally linked to each other.
This causal linkage among concepts is represented with nine edge
weights. We assume that the concepts which influence the prob-
lem were identified in advance.

Primarily there are four steps involved in the proposed
FCM-based model: (1) generation of the edge matrix, (2) causal
inference and computation of the indices, (3) calculation of
n transport collaboration. Expert Systems with Applications (2013), http://
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Fig. 2. Framework of the proposed FCM-based model.

Fig. 3. A triangular fuzzy membership function, fW .
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categorical edge weights, (4) development of decision making
rules. The detail of the proposed model is given in Fig. 2, and the
procedures are presented in-depth in the following subsections.

3.1. Step 1: generation of the edge matrix

The first step is the data collection phase in order to generate
the edge matrix for FCM. Various methodologies in FCM could be
used in order to reach a group consensus among the decision mak-
ers. Delphi is a well-known methodology used to structure the
decision makers’ communication process to reach a consensus
regarding a complex problem. One of the main features of the Delhi
study is that the experts have the opportunity to change their opin-
ions regarding to feedback reports. Here, the Fuzzy Delphi Method
(FDM) is utilized and integrated into the FCM to assign the causal
weight (wij) between two concepts (Ci, Cj) by group decision-mak-
ing. FDM was first proposed by Ishikawa et al. (1993). It is based on
the combination of the traditional Delphi technique and fuzzy set
theory. Noorderhaben (1995) indicated that applying the FDM to
group decision can solve the fuziness of common understanding
of decision maker opinions. Moreover, FDM supports the
FCM-based model using an interactive procedure of knowledge
acquisition and it helps to prevent the model from the possible
inconsistencies and cycles. In fuzzy set theory, membership func-
tions assign to each object a degree of membership ranging on a
given scale (Saaty, 1980). Different fuzzy membership functions
used by other were considered including a triangular membership
function, Gaussian membership function and a trapezoidal mem-
bership function (Passino & Yurkovich, 1998). We adopted triangu-
lar membership functions since they are the most commonly used
ones fort this study. A tilde (�) will be replaced above the weight
symbol to represent the causal fuzzy weight ð ~wi;jÞ. The FDM steps
are as follows:

i. Set up the Triangular Fuzzy Memberships (TFM): The equation of
triangular includes three parameters, i.e. l, m and u, as shown in
Fig. 3. The parameters l, m and u, respectively, denote the smallest
possible value, the most promising value and the largest possible
value that describes a fuzzy event. Each number in the pair-wise
comparison matrix represents the subjective opinion of decision
makers and is an ambiguous concept; fuzzy numbers work best
to consolidate fragmented decision maker opinions.

~wi;j represents the specified TFM function l ~wðxÞ by a triplet (lij,
mij, uij) of two concepts (Ci, Cj), to integrate the multiple decision
maker opinions, the following formulas are applied (Ishikawa
et al., 1993).
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lij ¼ minflk
ijg 8k ¼ 1;2; . . . ;K ð1Þ

mij ¼
1
k

Xk

k¼1

mk
ij 8k ¼ 1;2; . . . ;K ð2Þ

uij ¼ maxfuk
ijg 8k ¼ 1;2; . . . ;K ð3Þ

where lk
ij;m

k
ij; u

k
ij, respectively represent the lower value (Min), aver-

age (Mean) and upper value (Max) of the corresponding TFM func-
tion l(x) measured by a given kth decision maker, where
lij 6mij 6 uij, and K is the total number of decision makers.
Accordingly, the TFM function with lij 6mij 6 uij is given below:

l ~wðxÞ ¼
ðx� lijÞ=ðmij � lijÞ lij � x � mij

ðx� uijÞ=ðuij �mijÞ mij � x � uij

0 x < lij or x > uij

8><
>: ð4Þ

In this step, we specified nine TFM functions associate the nine lin-
guistic terms which are used to assign causal fuzzy weights be-
tween two concepts. They represent the overall suggestion of all
decision makers for this particular causal links associated with
the qualitative term set T(x): {‘‘negative very strong’’–lvs(x), ‘‘nega-
tive strong’’–ls(x), ‘‘negative medium’’–lm(x), ‘‘negative weak’’–
lw(x), ‘‘zero’’–lz(x), ‘‘positive weak’’ lw(x), ‘‘positive medium’’
lm(x), ‘‘positive strong’’ ls(x), ‘‘positive very strong’’ lvs(x)} respec-
tively; x represents the influence degree of a given linguistic term
measured in the interval [�1, 1]. Each element of the fuzzy set cor-
responds to a TFM function as shown in Fig. 4. It can be seen that
these have a finer distinction between grades in the lowest and
highest ends of the influence scale. Table 2 shows the definition
of TFM functions.

ii. Determination of interconnections among the concepts and
assigning causal fuzzy weights to the interconnections by group
decision-making: After specifying fuzzy membership functions,
n transport collaboration. Expert Systems with Applications (2013), http://
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Fig. 4. The nine TFM functions corresponding to each one of the nine-linguistic terms.

Table 2
The definition of TFM functions.

TFM Functions Linguistic Terms Explanation

�lms ¼ �1;�1;� 3
4

� �
Negative very
strong

If Cx inhibits Cy ? the fuzzy set for ‘‘an influence close to -100%’’ with membership functions {�lms} (negative numbers)
( ~wij < 0)

�ls ¼ �1;� 3
4 ;� 1

2

� �
Negative strong If Cx inhibits Cy ? the fuzzy set for ‘‘an influence close to -75%’’ with membership functions {�ls} (negative numbers)

( ~wij < 0)

�lm ¼ � 3
4 ;� 1

2 ;� 1
4

� �
Negative medium If Cx inhibits Cy ? the fuzzy set for ‘‘an influence close to -50%’’ with membership functions {�lm} (negative numbers)

( ~wij < 0)

�lw ¼ � 1
2 ;� 1

4 ;0
� �

Negative weak If Cx inhibits Cy ? the fuzzy set for ‘‘an influence close to -25%’’ with membership functions {�lw} (negative numbers)
( ~wij < 0)

lz ¼ � 1
4 ;0;

1
4

� �
Zero If Cx doesn’t affect Cy ? the fuzzy set for ‘‘an influence close to 0%’’ with membership functions {lz} (neutral) ~wij ¼ 0

lw ¼ 0; 1
4 ;� 1

2

� �
Positive weak If Cx promotes Cy ? the fuzzy set for ‘‘an influence close to 25%’’ with membership functions {lw} (positive numbers)

~wij > 0

lm ¼ 1
4 ;� 1

2 ;
3
4

� �
Positive medium If Cx promotes Cy ? the fuzzy set for ‘‘an influence close to 50%’’ with membership functions {lm} (positive numbers)

~wij > 0

ls ¼ 1
2 ;� 3

4 ;1
� �

Positive strong If Cx promotes Cy ? the fuzzy set for ‘‘an influence close to 75%’’ with membership functions {ls} (positive numbers)
~wij > 0

lms ¼ 3
4 ;1;1
� �

Positive very
strong

If Cx promotes Cy ? the fuzzy set for ‘‘an influence close to 100%’’ with membership functions {lms} (positive numbers)
~wij > 0
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decision makers are asked separately to determine causal links and
to assign causal fuzzy weights ð~wijÞ for every pair of concepts using
if-then rules in questionnaires. Below, questions for every pair of
concepts are listed in the questionnaire in order to understand
their perceptions:

– ‘‘Do you think that the concept x (Cx) affects any other concepts
or is affected by other concepts?’’ if yes, then

– ‘‘How do you assign the causal fuzzy weight between concept x
(Cx) and concept y (Cy) according to linguistic terms?’’

Here, every kth decision maker uses the aforementioned lin-
guistic terms to infer the causal fuzzy weight ð~wk

ijÞ for every pair
of concepts. Every causal fuzzy weight is represented with associ-
ated TFM ~wk

ij ¼ lðxÞ ¼ flij;mij;uijg. After having all decision makers’
perception, the results are discussed in a round table. This process
is continued until a consensus among decision makers is reached.
Three rounds of sessions in FDM were implemented in this study
as recommended in Mullen (2003). Afterwards, the combined fuz-
zy weight ð ~wijÞ for every pair of concepts is calculated according to
Eqs. (1)–(3). ð~wijÞ is now represented by a combined fuzzy mem-
bership function ~lðxÞ within the range [�1, 1]. ~lðxÞ has three
parameters according to computation of ~wij ¼ lðxÞ ¼ f~lij; ~mij; ~uijg.

iii. Defuzzification: Subsequently, the process of defuzzification
can then be conducted. Here, the Center of the Gravity (CoG) meth-
od is employed, as it has been investigated previously as an effi-
cient method to accomplish the quantification of linguistic terms
with high efficiency (Glykas, 2010; Runkler, 1996). This approach
aims to defuzzify the fuzzy weight ~wij of each interconnection to
definite value (i.e., defuzzy value) representing the edge weight
(wij) of each interconnection. This method determines the center
of area of the combined membership function. The following Eq.
(5) is used to calculate the geometric center of this area under
Please cite this article in press as: Kayikci, Y., & Stix, V. Causal mechanism i
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the combined membership function ~lðxÞ (Runkler, 1996) which
gives the final edge weight of each interconnection.

Wij ¼ CoG ¼
R xmax

xmin
~lðxÞ � xdxR xmax

xmin
~lðxÞdx

ð5Þ

iv. Screen evaluation indexes: After defuzzification process, the prop-
er weights can be screened out from the numerous criteria by set-
ting a suitable threshold of S = a by decision makers consensus,
eliminate wij’s having ‘‘S00 less than a. Schematic diagram of FDM
threshold is seen on Fig. 3. The principle of screening is as (6):

S � a; then it is accepted; which is in the evaluation index:
S < a; then it is rejected; delete:

ð6Þ

v. Generation of the edge matrix: Finally, for the sake of simlicity,
the all final edge weights for the causal interference are stored in
an edge matrix E = (wij), wij e E, i, j = 1,2, . . .n as seen in Eq. (1). It
lists all one-edge paths on the cognitive maps. The edge matrix E
is a square n x n fuzzy matrix and the diagonal entries are wii = 0.
n is the total number of concepts, wii is the edge weight from Ci

to Cj.

ð7Þ

The FCM structure is isomorphic to the n x n edge matrix E of causal
edge strength values. The ith row of E lists the causal strength of the
edges from concept Ci to all other concepts. The jth column lists the
causal strength of the edges from all concepts that impinge on Cj.
n transport collaboration. Expert Systems with Applications (2013), http://
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3.2. Step 2: causal inference and computation of the indices

This step is the computation phase of the indices for every con-
cept. A causal mechanism takes place in order to calculate the
reference vector set VREF ¼ fvT

refi
j i ¼ 1; . . . ;n; t 2 R, where v associ-

ates the real value of each concept and T is used to model the
iteration length in cognitive inference. The detailed inference
mechanism of the FCMs was introduced in many publications.
Basically, the following steps are as follows:

i. Calculate the causal inference: the iteration process is carried
out along discrete steps, from t = 0,= 1, t = 2 . . .to t = T based on a
calculated edge matrix E. The value of each concept (vi) is calcu-
lated, computing the influence of other concepts to the specific
concept, by applying the Eq. (8) (Kosko, 1986). Vt

i is the state value
of concept Ci at iteration time t. v t�1

j is the value of interconnected
concept Cj at iteration time t � 1.wji represents the weight of the
interconnection from concept Cj to concept Ci which are set to a
specific value based on the expert’s perception. All concept values
ðv t

i Þ at iteration time t are stored in reference state vector set ðVt
REFÞ,

whereas the edge matrix remains fixed.

Vt
REF ¼ ðv t

i Þ1�n

v t
i ¼ f

Xn

j ¼ 1
j–i

v t�1
j �wji

0
BBBBB@

1
CCCCCA

i; j ¼ 1;2; . . . ; n; t ¼ 0;1;2; . . . ; T

8>>>>>>>><
>>>>>>>>:

ð8Þ

f(vi) is the threshold (transformation) function and it is applied to v t
i

in order to transform the final values to continuous values with the
interval [0, 1] through Eq. (9), where concepts can take values. This
transformation obtains for obtaining a better understanding and
representation of activation levels of concepts. k is a parameter in
determining the degree of fuzzification of the function and
0 6 k 6 1 is used to adjust its inclination. In this study it has been
set as k ¼ 1.

f ðmiÞ ¼
1

1þ e�kmi
ð9Þ

The initial vector values ðv t
inÞ for each concept might be e [0, 1] and

they are listed in the initial state vector set ðVt
IN ¼

fv t
ini
j i ¼ 1; . . . ;n; t ¼ 0gÞ for iteration process might be e [0, 1]. In

this study, v t
in for each concept at iteration time t = 0 are taken as

0.5 in order to avoid the marginal parameters in the reference state
vector set and the numerical weights are set to a specific value
based on the expert’s perception. The initial vector set representa-
tion is V0

IN ¼ f0:5;0:5; . . . ;0:5 j 8v0
in ¼ 0:5g Thereafter, the system

is free to interact. After Tth iteration time step, the new reference
state vector set are computed as Vt

REF ¼ fv t
refi
j i ¼ 1;2; . . . ; n; t ¼

1;2; . . . ; Tg. This reference state vector set represents the reference
vector values of all concepts. In this study, the total iteration time
step is set as T = 20. This interaction continues until the following
requirements on convergence are satisfied:
– A fixed point equilibrium is reached: Vtþ1

REF ¼ Vt
REFðt 2 TÞ, where

Vt
REF is the final state.

– A limited cycle is reached: VtþDT
REF ¼ Vt

REFðt 2 TÞ, where Vt
REF is the

final state and the system falls in a loop of a specific period, and
after a certain number of inference steps, DT, it reaches the
same state Vt

REF .
– Chaotic behavior is exhibited.

After T’th iteration, the calculated reference vector set VT
REF is

stored in a ET
REF matrix, where ET

REF ¼ ½V
T
REF �nxn; n ¼ 11.

ii. Calculate the indices: Every concept is defined by its out-de-
gree od(Ci), in-degree id(Ci) and centrality cen(Ci). Out-degree
(out-arrows) od(Ci) is the absolute row sum of edge weights (wki)
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in the edge matrix and represents the number of concepts, concept
Ci causally interacts on (Eq. (10)). In-degree (in-arrows) id(Ci) is the
absolute column sum of edge weights. (wik) in the edge matrix and
represents the number of concepts causaly interracting on concept
Ci (Eq. (11)). The immediate domain or total degree of a concept is
the sum of its in-degree and out-degree (Eq. (12)), called centrality
cen(Ci). The centrality represents the dominance of concept Ci to
the causal flow on the cognitive map. The more central the concept
in the FCM, the more important the concept is in the decision ma-
ker’s perception.

odðCiÞ ¼
Xn

k¼1

j wki j ð10Þ

idðCiÞ ¼
Xn

k¼1

j wik j ð11Þ

cenðCiÞ ¼ odðCiÞ þ idðCiÞ ð12Þ

The contribution of a concept in a FCM can be interpreted by com-
putation of its centrality; whether it is a transmitter, receiver or or-
dinary concept. Transmitter (forcing functions, givens and tails)
represents a concept whose od(Ci) is positive and id(Ci) is zero. Re-
ceiver (utility variables, ends and heads) represents a concept whose
od(Ci) is zero and id(Ci) is positive. The total number of receiver in a
FCM can be considered an index of its complexity (Vasantha &
Smarandache, 2003). The rest of the concepts, both non-zero od(Ci)
and id(Ci), are ordinary concepts (means). In Fig. 1, from above men-
tioned reasons C4 and C5 represent the transmitter, whereas C2 is
the receiver, the rest of the concepts are called as ordinary concepts.
The hierarchy index (h) is calculated in order to measure the
structure of a complex FCM as seen in Eq. (13) (Ozesmi & Ozesmi,
2004).

h ¼ 12
ðn� 1Þnðnþ 1Þ

X odðCiÞ � ð
P

odðCiÞÞ
n

� �2

j i ¼ 1;2; . . . ; n: ð13Þ

If h is equal to 1, then the FCM is full-hierarchical; and if h is equal
to zero, then the system is full-democratic. Democratic FCM maps
are much more adaptable for heterarchical transport network be-
cause of their high level of integration and dependence. The coali-
tion partners with more democratic maps are more likely to
perceive that the system can be changed and thus these partners
can be starting point for achieving coalition objectives.

3.3. Step 3: calculation of categorical edge weights

In this step, the edge weights among the categories are calcu-
lated. Concepts on FCM are presented as either decomposed or
integrated into certain categories. In order to compute the causal
inference among these categories we used the one of fuzzy subset
aggregation methods. In the literature, some useful fuzzy subset
aggregation methods are presented (Kelman & Yager, 1998; Kosko,
1986): t-norms (triangular-norm) and t-conorms, Ordered
Weighted Averaging (OWA) operators or priority and second order
criteria. In this study we used OWA operator, as this method was
used formerly by Zhang, Liu, and Zhou (2003) to compute the quo-
tient FCM weights. OWA was introduced first by Yager (1988) as an
aggregation technique. The aggregated categorical edge weights
between the pair of groups are associated with a particular posi-
tion in the ordering, rather than being associated with a specific
argument (Yager & Filev, 1999). Nevertheless in this study,
assignments are processed on a system of ‘‘first in first assigned’’
as a rule of thumb. Let the categorical directed edge weight
ðgwij;�1 � gwij � 1Þ between the pair of groups (Gi and Gj; Gi,
Gj ? gwij) and there are l edge weights. fwi1j1 ; . . . ;wiljlg among
these groups. The categorical edge weights can be computed sepa-
rately according to every direction of the number of edge weights
n transport collaboration. Expert Systems with Applications (2013), http://
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and also their causal increase and decrease. That means the cate-
gorical edge weights between Gi and Gj can be positive (+) as well
as negative (�) and bi-directed (gwij, gwji, gwij – gwji).

As seen Eq. (14), an OWA operator (gwij) of dimension l is a
mapping fgw : Rl ! R, that has an associated weight vector Wk of
dimension l having the properties. bk is the kth largest element
of the multi-set. fwi1 j1 ; . . . ;wiljlg

gwij¼ fgwðwi1 j1 ; . . . ;wi1 j1 Þ

gwij¼
Xl

k¼1

W1b1¼W1b1þ���þWlbl

Wk¼
wik jkPl

k¼1
wik jkXl

k¼1

Wk¼ðW1þ���þWlÞ¼1

8>>>>>>>>>>>><
>>>>>>>>>>>>:

i; j¼1;2; . . . ;n; Wk 2 ½0;1�;1� k� l:

ð14Þ

This part can be illustrated by Fig. 5 which shows the categorical
representation of concepts in Fig. 1. Suppose that there are two cat-
egories (G1 and G2) and three edges from G1 to G2 with edge
weights: w1121 ðw62Þ ¼ 0:4;w1222 ðw61Þ ¼ 1:0;w1323 ðw41Þ ¼ 0:6

Then, we obtain Eq. (14):

W1 ¼
0:4
2
¼ 0:2; W2 ¼

1:0
2
¼ 0:5; W3 ¼

0:6
2
¼ 0:3;

Xl

k¼1

Wk ¼W1 þW2 þW3 ¼ 1

Thus, we have:

gw12 ¼ fgwð0:4;1:0;0:6Þ ¼
Xl

k¼1

Wkbk

¼ 0:2� 1:0þ 0:5� 0:6þ 0:3� 0:4 ¼ 0:62
3.4. Step 4: development of decision making rules

In the last step, decision-making thresholds are identified by
using the extended FCM approach. This step examines the changes
in transport collaboration structure. In the extended FCM ap-
proach, a (11 � 11) pair-wise scenario matrix is inserted into the
FCM’s iteration process. This pair-wise scenario matrix can provide
straightforward to causal what-if questions. This process enables
one to run different scenario conditions of two selected concepts
or categories. FCM is already used as a scenario development in
some research (Glykas, 2010; Jetter & Schweinfort, 2011; Van Vilet
et al., 2010). The matrix consists of 121 squares and each square is
called as a scenario condition. Therefore, 121 different scenario
conditions are displayed on the matrix. A scenario condition based
on knowledge and insight into the future possible conditions will
C4

C6 C2

C1

C5

C3

G1 G2

G1 G2

w62

w41

w61

gw12

w46
w32

w53

w13

w31

w12

(a)

(b)

Fig. 5. (a) Categorical disposition of FCM and residual network. (b) Causal inference
of an edge in the categorical FCM.
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be more likely to succeed. It is not a prediction, rather an illumina-
tion of drivers of change; and to understand them gives managers a
better control over their situations.

The association of the pair of concepts under different scenario
conditions might result with the variations in the reference state
vector set ðVT

REFÞ. These variations are displayed with the fuzzily
intersected zones on a graph. The fuzzily intersected zones can
be interpreted for the causal link analysis to estimate the influence
degree of pair concepts on reference state vector set. If there is no
association between two concepts, there will be established no
fuzzily intersected zones on graph. That means that there cannot
be a causal relationship between these criteria. In another word,
that their association cannot change the reference state vector set.

In the extended FCM, the initial vector values ðv t
inÞ of two se-

lected concepts (Cx, Cy) are varied asynchronously on the pair-wise
scenario matrix, when one goes up (or down), the other goes up (or
down) at the same time. Their initial vector values ðv t

inx
;v t

iny
Þ at

iteration time t = 0 range between e [0, 1] by 0.1 interval, this
interval states the scenario conditions on the matrix; whereas
other initial input state vector values ðv t

ini
Þ remain the same for

the all scenario conditions as 0.5. Below some scenario samples
of initial input state vector sets can be seen:

Vt
IN ¼ fv t

ini
gi ¼ 1;2; . . . ;n; t ¼ 0;8v0

ini
2 ½0:5�; v0

inx
;v0

iny

2 f0;0:10;0:20; . . . ;0:90;1:00g

V0
INð0:50;0:50Þ ¼ f0:50;0:50; . . . ;0:50; . . . ;0:50; . . . ;0:50g;

v0
inx
¼ 0:50; v0

iny
¼ 0:50

V0
INð0:10;0:10Þ ¼ f0:50;0:50; . . . ;0:10; . . . ;0:10; . . . ;0:50g;

v0
inx
¼ 0:10; v0

iny
¼ 0:10

V0
INð0:30;0:70Þ ¼ f0:50;0:50; . . . ;0:30; . . . ;0:70; . . . ;0:50g;

v0
inx
¼ 0:30; v0

iny
¼ 0:70

V0
INð0:80;0:20Þ ¼ f0:50;0:50; . . . ;0:80; . . . ;0:20; . . . ;0:50g;

v0
inx
¼ 0:80; v0

iny
¼ 0:20 . . . etc::

The output vector sets ðVT
OUTÞ at iteration time t = T is calculated for

every initial vector value condition ðv t
inx
;v t

iny
Þ of selected two crite-

ria (Cx, Cy), where the initial vector values for v t
inx
;v t

iny
remain same

until end of iteration process therefore; the output vector values for
v t

inx
; v t

iny
should be equal the initial vector values for v t

inx
;v t

iny
:

Vt
OUT ¼ fv t

outi
g; i ¼ 1;2; . . . ;n; t ¼ 1;2; . . . ; T; v0

outx
2 v0

inx
; v0

outy
2 v0

iny

VT
OUTð0:50;0:50Þ ¼ f0:57;0:50; . . . ;0:50; . . . ;0:50; . . . ;0:98g;

v0
outx
¼ 0:50; v0

outy
¼ 0:50

VT
OUTð0:10;0:10Þ ¼ f0:56;0:51; . . . ;0:10; . . . ;0:10; . . . ;0:98g;

v0
outx
¼ 0:10; v0

outy
¼ 0:10

VT
OUTð0:30;0:70Þ ¼ f0:57;0:50; . . . ;0:30; . . . ;0:70; . . . ;0:98g;

v0
outx
¼ 0:30; v0

outy
¼ 0:70

VT
OUTð0:80;0:20Þ ¼ f0:57;0:50; . . . ;0:80; . . . ;0:20; . . . ;0:99g;

v0
outx
¼ 0:80; v0

outy
¼ 0:20

After Tth iteration all computed output vector sets for the selected
vector values vT

x ;vT
y are summed up in an 11 � 11 scenario matrix

ðET
OUTÞ (raw input, Fig. 6a).
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ET
OUT ¼ ½V

T
REFðv0

inx
;v0

iny
Þ�

nxn
;8v0

inx
;v0

iny

2 f0;0:1;0:2;0:3;0:4;0:5;0:6;0:7;0:8;0:9;1:0g; n ¼ 11

The reference vector set VT
REF ¼ fvT

refi
j i ¼ 1; . . . ;n; T 2 Rg, which is

calculated in Step 2 according to initial vector set Vt
IN ¼

fv t
ini
ji ¼ 1; . . . ;n;80:5; t ¼ 0g ,demonstrates the optimal situation of

transport coalition. Let VT
OUT ½v0

inx
; v0

iny
� j v0

inx
; v0

iny
2 ½0;1� the output

vector set for each scenario condition. The difference between
two n-dimensional vectors set for VT

OUT and VT
REF is calculated simply

by using Euclidean distance formulation in Eq. (15):

dðVT
OUT ½v0

inx
;v0

iny
�;VT

REFÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXn

i¼1

ðvT
outi
½v0

inx
; v0

iny
� � vT

refi
Þ2

vuut ð15Þ

The Euclidean distance is a direct measure of similarity between the
outputs vectors set ðVT

OUTÞ that is closest to a reference vector set
ðVT

REFÞ. The least distant one from the reference vector set is the
most similar to the reference vector. The minimum of this distance
suggests the nearest match. Therefore Euclidean distance is useful
in classification algorithms such as vector quantization and neigh-
bor classification (Collins, Brown, & Marshall, 1995). Finally, all cal-
culated distances are listed in dðET

OUT ; E
T
REFÞ matrix (Fig. 6b), where

ET
REF ¼ ½V

T
REF �nxn; n ¼ 11. This comparison matrix is illustrated as a

graphical representation with colors, where every distance from
the reference vector sets is represented in a different color. The ma-
trix consists of 121 squares (11 � 11 matrix). Each element of the
matrix is being the percentage of the corresponding pixel’s area.
The gray-scale representation of such a matrix is shown in Fig. 6c,
mapping 0% coverage of a pixel’s area to black, which means there
is a big difference between VT

REF and VT
OUT , and 100% coverage of area

to white which means VT
REF and VT

OUT are identical or there is a little
difference among their vector series.

If there is no association between the criteria, graph will be
drawn with one color. Fig. 6c displays eleven different zones. Each
zone is drawn by a unique color. In the graphical illustration, the
dark colored zones denote the strong changes (more probable) in
(a)

(b)

(c)

Fig. 6. (a) Raw vector data, (b) matrix representation of vector set differences, (c) gray s
thresholds.
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the vector series whereas the light colored zones represent the
weak changes (less probable); in other word, that the dark colored
zones give the most affected situation, the very light colored zones
the less affected situation in the vector series. Every little change in
criterion Cx and criterion Cy may affect the reference output vector
set ðVT

OUTÞ strong (dark colored) and or weak (light colored). This
can drive the tactical outputs in the transport coalition to make a
decision for the level of collaborative integration. That means that
the probable changes in transport collaboration structure can be
used to predict the future condition ðVT

OUTÞ of the system being
modeled by the FCM for a particular initial condition ðVT

REFÞ. The
used set of scenario conditions provides a stimulus to the FCM,
which may cause structural changes in the future conditions of a
coalition. These zones can be clustered as fuzzily intersected zones
with a coloring scheme. The fuzzily intersected zones in the graph-
ical illustration can be determined by using three thresholds: ‘‘go’’,
‘‘go with conditions’’ and ‘‘no-go’’ as seen in Fig. 6d. These thresh-
olds are determined according to change of VT

OUT from VT
REF . If there

is no change between VT
REF and VT

OUT , then the distance dðVT
OUT ;V

T
REFÞ

should be zero. The distance values for each scenario conditions
are compared and counted into the corresponding thresholds by
using Eq. (16):

ThresholdsðdÞ ¼
go 0:3 � dðVT

OUT ;V
T
REFÞ � 0

goðw=conditionÞ 0:6 � dðVT
OUT ;V

T
REFÞ � 0:3

no� go dðVT
OUT ;V

T
REFÞ > 0:6

8><
>:

ð16Þ

These thresholds are used to analyze the dynamic behavior of
transport collaboration structure. Threshold ‘‘go’’ represents the
light colored and less affected zones; the changes in the pair of cri-
teria up to 30% are acceptable. The coalition has a ‘‘full-integration’’
which refers to strategic partnering at an intensive level of integra-
tion. Each partner considers the other as an extension of itself with
a long-term engagement and no ending date for the respective
partnerships (Kayikci & Zsifkovits, 2012). This integration includes
(d)

cale representation of pair-wise scenario matrix, and (d) representation with three
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a convergence of cost, process and technology. Threshold ‘‘no-go’’
represents the dark colored (black) zones and most affected zones;
the changes in the pair of criteria bigger than 60% are not accept-
able as these may change the transport collaboration structure. It
refers to an arm’s length relationship at the lower integration level;
coalition partners cooperate only on ad-hoc matters involving a
limited number of exchanges. This kind of collaboration is not con-
sidered to be actual collaboration since there is no stable joint
commitment; therefore the coalition has ‘‘no integration’’. No-go
threshold shows the extreme situation which would cause the res-
olution of the coalition. Transport coalition could not continue be-
yond the ‘‘no-go’’ threshold. The ‘‘go with conditions’’ represents
the in-between and middle-affected zones that. The changes in
the pair of criteria bigger than 30% and lesser than 60% may not
be harmful for the collaboration and they enable system compo-
nents to continue under certain circumstances. The coalition has
‘‘partly integration’’, which refers integrated collaboration as well
as limited collaboration in which a long term partnership is not
the goal. It involves the overlapping of functional areas between
coalition partners. A transport coalition could perform over the
‘‘go’’ and ‘‘go with conditions’’. These aforementioned thresholds
related with future possible scenarios may give coalition partners
the perspective of collaborative integration.

4. Case study: causal mechanism in transport collaboration

This research paper is based on sets of scenarios which are
determined in a 11x11 pair wise scenario matrix and their subse-
quent usage as input to coalition building process. In this research,
a real-world transport coalition is selected to examine the applica-
bility of the proposed method and to explain the practical implica-
tions. The coalition was composed of three medium-sized
companies from the Fast Moving Consumer Goods (FMCG) indus-
try and two carriers. Five companies decided to form a coalition
and act conjointly on their outbound transport operations. Their
outbound shipments were staged and handled in the common
market area. In previous research, we investigated 37 criteria and
5 categories to support the transport collaboration structure which
were extracted from intensive literature reviews and numerous
surveys in freight transport industry. We used these criteria and
categories as a FCM toolkit in this research. According to proposed
model, firstly a FDM was conducted using surveys in three rounds
to determine the causal inference and the influence degree of cor-
responding concepts with the group consensus. The coalition part-
ners were assigned five decision makers to participate in the
Delphi study. Decision makers were pooled together and informed
about the procedures of FCM-based model in advance. Each deci-
sion maker had equal voting rights (unweighted case). They agreed
as to which criteria were crucial and representative for the model-
ing of the FCM. Subsequently, they were asked separately to justify
the cause-effect relationship among concepts and infer causal fuz-
zy weights ð~wijÞ for every interconnection using if-then rules in
questionnaires. They were asked to qualitatively assess causal
inference among concepts using the pre-specified nine linguistic
terms, i.e. ‘‘negative very strong’’, ‘‘negative strong’’, ‘‘negative
medium’’, ‘‘negative weak’’, ‘‘zero’’, ‘‘positive weak’’, ‘‘positive med-
ium’’, ‘‘positive strong’’, ‘‘positive very strong’’. After receiving the
first round questionnaires, inconsistency and cycles in database
were detected, as those produce any feedback, therefore they need
to be eliminated from the database. In the responses, no cycles
were detected. In this research, decision makers reached a consen-
sus in advance on the causality direction of the compared pair of
concepts in order to avoid cycles and inconsistency on FCM matrix.
The questionnaires were performed in three rounds until reach the
consensus. Subsequently, the opinions of decision makers in FDM
questionnaires were converted to triangular fuzzy numbers
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according to Eq. (1)–(3) and defuzzified weights were figured out
after calculation according to Eq. (5). These give the final edge
weights (wij). Afterwards all weights were sorted in a list and
screened. The weights should run between �1 6 wij 6 1. The
weights with threshold / equal or above 0.2 were adopted as
important key items whereas the other weights with threshold /
below 0.2 were deleted because those were not relevant for the
study. All selected edge weights after defuzzification and FDM
screening are listed in the decision makers’ respond list shown in
Appendix A. The data collected in the first section were employed
to generate the edge matrix. Consequently all defuzzied edge
weights extracted from the decision makers opinions were
summed up in an 37x37 FCM edge matrix.

Due to computational complexity, an R-Package1 is used for the
simulation experiment, as the maximum number of comparisons is
37 ⁄ 36/2 = 666 and there were 666 ⁄ 121 = 80.586 different scenar-
ios. Every weight had either negative or positive or no causality. As
seen in Appendix A, only 116 pair concepts out of 666 were assigned
with the assigned fuzzy weights. This shows that the number of
interconnections among 37 concepts is 116. 30 out of 116 were eval-
uated with the negative causality (wij < 0) and 86 had positive cau-
sality (wij > 0). The rest of concept pairs had no relationship
(wij = 0), therefore they were taken out of the respond list. For the
iteration process, the initial vector values v t

i at iteration t = 0 are
set as 0.5. For the iteration process, the initial vector values v t

i at iter-
ation t = 0 are set as 0.5. The initial vector set is V0

IN ¼
f0:5;0:5; . . . ;0:5g ; By using R-Package 20 iterations were performed
to calculate the value of each concept (vi) according to Eq. (8) and
subsequently its indices (out-degree od(Ci), in-degree id(Ci) and cen-
trality cen(Ci)) according to Eq. (10)–(12) which are listed in
Appendix B. After 20th iteration the reference vector set is calculated
as V20

REF ¼ fv20
1 ;v20

2 ; . . . ;v20
x ; . . . ; v20

y ; . . . ;v20
i g; i ¼ 1;2; . . . ;m; t ¼ 1;

2; . . . ;20 . Afterwards the fuzzy cognitive maps were drawn with
the aid of visualization software of Pajek2 (Fig. 7) where every per-
spective (sub-category) is shown with different shape and gray color
on the map. The strength of the causality between two concepts is
shown in different gray colors and the sizes of lines. Negative causal-
ity is drawn with dashed lines, whereas positive causality is drawn
with straight lines.

The hierarchy index of FCM is calculated as 0,03615 according
to Eq. (13). This result indicates that the system is democratic that
means the system is based on heterarchical transport collaboration
networks and the coalition partners have same decision right. This
result also shows that a high level of collaborative integration ex-
ists in the coalition.

Causal flows among criteria are demonstrated with three layers
from the lower level to the upper level which consist of a number
of transmitter, receiver or ordinary concepts. The findings appear to
show that there are five transmitters and one receiver on FCM
according to their in-degree and out-degree values (Fig. 7). The
concepts of standardization (C2), technology usage (C10), infrastruc-
ture (C15), management involvement (C23) and variability (C36) are
the transmitters of FCM, therefore their in-degree values are zero,
whereas service level (C37) is the only receiver which is the most
influenced concept in the map and its out-degree value is zero.
The rest of the concepts are the ordinary of the map where both
in-degree and out-degree are non-zero. The results show that the
concept of service level is the most affected concept by the others.
Moreover the performance of service level may be affected heavily
by the changes respectively in technological integration level (C4),
information sharing (C25), technological capabilities (C3), flexibility
in processes (C33), trusting relationship (C28), reliability (C1),
n transport collaboration. Expert Systems with Applications (2013), http://
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Technical Perspective for Criteria 1-7
Risk Perspective for Criteria 8-15

Organizational  Perspective for Criteria 22-28

Financial Perspective for Criteria 16-21
Operational  Perspective for Criteria 29-37

Fig. 7. The causal flows from the lower level to the upper level.

Table 3
Categorical weights of five categories.

Categoryi gwij Categoryj Categoryi gwij Categoryj

Technical 0.66 Risk Financial 0.8 Risk
Technical �0.59 Risk Financial �0.65 Organizational
Technical 0.78 Financial Financial 0.58 Operational
Technical 0.80 Organizational Organizational 0.81 Technical
Technical 0.66 Operational Organizational 0.50 Risk
Risk �0.55 Technical Organizational �0.68 Risk
Risk 0.63 Financial Organizational 0.61 Financial
Risk �0.77 Organizational Organizational �0.65 Financial
Risk �0.80 Operational Organizational 0.67 Operational
Risk 0.52 Operational Operational 0.65 Technical
Financial 0.92 Technical Operational �0.48 Financial
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transparency (C26), capacity (C30) and which occupy the highest
centrality values as seen in Appendix B.

High centrality value of a concept shows its importance in the
entire cognitive model (Kosko, 1986). Those concepts with the
highest centrality values are considered as the most important
concepts on the FCM which may affect the other concepts poten-
tially than others and those should be properly taken into consid-
eration in order to obtain a successful coalition. Since there are a
high number of concepts in this model, we have a complex causal
relationship structure. Therefore, we could only show below some
of causal relationship paths from the FCM which are drawn from
the lesser to higher effected concepts. The beginning of the path
shows the transmitter and the end of the path shows the receiver
like it is determined in Fig. 7.
Table 4
Indices for Categories.

Category od(Ci) id(Ci) cen(Ci) Category value(vi)

Technical 2.92 2.86 5.78 0.93
Risk 2.01 2.61 4.62 0.86
Financial 2.53 2.95 5.48 0.91
Organizational 2.21 2.70 4.92 0.88
Operational 2.57 1.13 3.70 0.91
C2!C3!C4!C5!C25!C37ðþþÞcausality
C2!C3!C26!C28!C4!C1!C25!C29!C34!C33!C37ðþþÞcausality
C36!C31!C33!C37ðþþÞcausality
C10!C12!C37ð��Þcausality
C15!C30!C32!C37ðþþÞcausality
C23!C24!C22!C27!C20!C19!C21!C13!C17!C37ðþþÞcausality
C23!C22!C25!C35!C31!C37ðþ�Þcausality

The chain of causal relations related to concept C37, reveals that the
service level (C37) is influenced by information sharing (C25), flexibility
in processes (C33), lead time (C32), transport cost (C17), transport chain
(C12) and replenishment length (C31). Also the concept of flexibility in
processes C33 is influenced by replenishment length (C31) and carbon
footprint (C34). Consequently, the interrelation of these influence
criteria should be carefully interpreted to reach the group
consensus, before agreeing on the structure of transport collabora-
tion in a coalition. In our ‘‘real world’’ case study the extracted
concepts, as above mentioned have more influences to reach the
better service level in a coalition and also they affect the life cycle
of the coalition.

R-Package computed the edge weights among categories
according to Eq. (14) in Step 3. These are listed in Table 3. Then
the indices were calculated according to Eqs. (8). (10)–(12). The
results were listed in Table 4. They show that technical perspective
in terms of its centrality value has strong influence on other
categories in this coalition. There are only ordinary categories, that
means, all categories are interrelated to each other. The other
categories are listed according to their centrality values respec-
Please cite this article in press as: Kayikci, Y., & Stix, V. Causal mechanism i
dx.doi.org/10.1016/j.eswa.2013.08.053
tively: financial, organizational, risk and operational (see in Ta-
ble 4). Afterwards, the causal flow among categories were drawn,
it is demonstrated in Fig. 8.

In last step, a (11 � 11) pair-wise comparison matrix was in-
serted into the iteration process. Here, every comparison of the
pair of concepts is drawn with a set of scenarios which consists
of 121 sub-scenarios. Every scenario indicates a vector set and
the difference of this vector set from reference vector set is repre-
sented with a unique gray color on the gray scale representation.
During the iteration process, every concept Cx is compared with
the other concept Cy by taking initial values between {0, 1} with
0.1 intervals whereas the other concepts initial values remain same
as 0.5 and the new output vector set ðV20

OUTÞ at iteration time t = 20
was calculated. If V20

OUT differs from V20
REF , then the difference be-

tween V20
OUT and V20

REF is represented with a different color on the
graph, as this process was explained in Step 4. The 666 compari-
sons lead to 15 discrete distance values. That means 15 different
colors were used to demonstrate these vector sets visually on a
gray scale graph.
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We could only show some limited results of this study by
producing some scenarios which are represented in Fig. 9. In this
Fig. 9. Gray scale representation of the reference output vectors used

Please cite this article in press as: Kayikci, Y., & Stix, V. Causal mechanism i
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respect, we use the following key considerations to address when
establishing the FCM-based model:

– How would the changes in information sharing and trust affect
the system components of transport collaboration? (Fig. 9a)

– How would the changes in integration level and technical reli-
ability (track and tracing) affect the system components of
transport collaboration? ((Fig. 9b)

– How would the changes in the technology usage and technical
reliability (track and tracing) affect the system components of
transport collaboration? (Fig. 9c)

– How would the changes in management support and informa-
tion quality affect the system components of transport collabo-
ration? (Fig. 9d)

– How would the changes in information sharing and transporta-
tion cost affect the system components of transport collabora-
tion? (Fig. 9e)

– How would the changes in technical integration level and
service level affect the system components of transport collab-
oration? (Fig. 9f)

No partnership can exist without trust. Trust is a frequently
mentioned construct in many models of long-term business
for classifying digits according to the pair of selected concepts.
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relationships and appears to be the major inhibitor of successful
logistics outsourcing relationships. In this study, we found that in
terms of decision maker’s perception, coalition partners are more
willing to share information when the level of trust is high. The
loss of trust might therefore cause less information sharing in
the coalition. In Fig. 9a the dark colored zones represent the most
affected situations for the criteria trust (C28) and information shar-
ing (C25), there will be no integration if the changes in this pair of
concepts are high. Fig. 9b shows that the high technical reliability
(C1) (track and tracing) can be possible with the high level of tech-
nical integration (C4). The low level of technical integration will af-
fect the components of transport collaboration structure. In this
transport collaboration the high reliability and high technical inte-
gration level are wanted for full-integration. Technical integration
enables an entire shipment to be completed electronically and ini-
tiated, managed, executed and delivered across multiple supply
chains without repeated manual intervention. Fig. 9c demonstrates
the relationship between reliability (C1) and technical usage (C10).
It is interpreted that the extreme scenarios in both technical usage
and reliability will affect the system components. The transport
industry is moving from one-to-one Electronic Data Interchange
(EDI) to collaboration technologies to achieve the high level of sys-
tem reliability, where it is important to enlarge technical usage.
The average level of reliability and technical usage is desired for
full-integration.

Fig. 9d shows that the average level of management involve-
ment (C23) and high level of information quality (C5) will support
full-integration of coalition. Management involvement is also a
key consideration for coalition partners to pursue long lasting rela-
tionships. Top management should understand and communicate
to organizational members that cooperation and competition can
be applied simultaneously, and that both can contribute to achiev-
ing organizational goals. Fig. 9e shows that the fuzzily intersected
zones for the low level of information sharing (C25) vs. the high
transport cost (C17) and the high level of information sharing vs.
the low transport cost are desired conditions so that coalition will
have full-integration. This means that coalition partners cannot ob-
tain high capacity utilization with the less information sharing. The
sharing of transport information is important from a costs perspec-
tive because it can replace unnecessary costs for transport or stor-
age of goods. Fig. 9f denotes that the high level of technical
integration (C4) and the high level of customer service (C37) will
perform very well in this transport coalition in order to obtain
the high level of collaborative integration. The low level of techni-
cal integration as well as customer service will affect the compo-
nents of the system structure and that will result in the
dissolution of the coalition.

For the categorical modeling, the system is run according to cat-
egorical edge weight results. The below scenarios were conducted
which are represented in Fig. 10.
Fig. 10. Gray scale representation of the reference output vectors used
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– How would the changes of categories in technical and
operational perspectives affect the components of transport
collaboration? (Fig. 10a)

– How would the changes of categories in financial and risk
perspectives affect the system categories of transport collabora-
tion? (Fig. 10b)

In Fig. 10a, the low changes in operational perspective and the
low changes in technical perspectives may affect the system
components of transport collaboration. This would show that the
high operational flexibility can be executed in this type of a
coalition. High technical integrity would result in a high level of
operational perspective. Fig. 10b, the resulting configuration
with the low changes in financial situation and risk
perspective would cause the strong cross effect in system
components.
5. Conclusions and perspectives

Research on building transport coalitions is relatively scarce,
and also there is a lack of sufficient analysis of causal mechanisms
for such structural conditions. As a whole, this paper elaborates an
FCM-based model to analyze the causal inference mechanism for
transport collaboration by using a set of scenarios. Using key
operating criteria were previously identified by the authors. The
proposed FCM-based model is applied in a case study of a
medium-sized transport coalition. This research assumed a high
level of collaborative integration for coalition partners. In other
words, that there is a good alignment among the number of
operating criteria in the transport collaboration. This paper
elucidates how the change in criteria interacts with each other
and how this change affects the structure of transport collabora-
tion. The findings of case study were implemented as a predictable
input in a coalition to understand under what scenario conditions
the change of the pair of criteria would affect the transport collab-
oration structure. By this way, FCM-based model gives a cognitive
perspective on strategic decision making in a coalition. This
perspective refers early signals to fledgling coalition partners in
the process of building a coalition by using three threshold values:
‘‘no-go’’, ‘‘go’’ and ‘‘go with conditions’’. We have limited the scope
of our investigation by focusing on operating criteria like trust,
information sharing, management involvement, integration level,
transport cost, service level, system reliability, data standardiza-
tion and so on. An important finding of this study is that generally
speaking, the transport collaboration structure might be heavily
affected by some of the operating criteria that this paper investi-
gated. By using an FCM-based model we can determine the
intensity level of the criteria so that coalition partners can
implement the exact conditions in order to enable long lasting
relationships. However, the findings of the study would not be
for classifying digits according to the pair of selected categories.
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satisfactory in all cases since the sample studied is restricted
considerably with respect to the size of coalition and industry sec-
tor. Therefore the results of this study would have to be carefully
generalized if applied to other applications or scenarios. Nonethe-
less, this study offers a unique perspective to use the FCM-based
model in order to answer the research question: how would every
change in the pair of criteria affect the transport collaboration
structure under a set of scenario conditions?. This approach can be
implemented into different research problems to find out the
causal mechanism between the criteria. Additionally, our results
provide evidence in terms of the pair-wise scenario comparisons
Appendix A. Decision makers’ respond list after FDM screening

wij Ci Cj Min
(lij)

Max
(uij)

Mean
(mij)

De-fuzzy
(wij)

w

w120 C1 C20 0.5 1 0.9 0.80 w
w125 C1 C25 0.75 1 1 0.92 w
w126 C1 C26 0.5 1 0.95 0.82 w
w135 C1 C35 0.25 1 0.75 0.67 w
w137 C1 C37 0.25 1 0.6 0.62 w
w23 C2 C3 0 1 0.55 0.52 w
w25 C2 C5 0.25 1 0.75 0.67 w
w34 C3 C4 0.75 1 1 0.92 w
w36 C3 C6 0.25 1 0.75 0.67 w
w37 C3 C7 0 1 0.65 0.55 w
w311 C3 C11 0 1 0.6 0.53 w
w326 C3 C26 0.75 1 1 0.92 w
w329 C3 C29 0.25 1 0.65 0.63 w
w330 C3 C30 0.25 1 0.85 0.70 w
w333 C3 C33 0.75 1 1 0.92 w
w335 C3 C35 0.25 1 0.65 0.63 w
w337 C3 C37 0.25 1 0.6 0.62 w
w41 C4 C1 0.75 1 1 0.92 w
w45 C4 C5 0.75 1 1 0.92 w
w46 C4 C6 0.75 1 1 0.92 w
w49 C4 C9 0.5 1 0.75 0.75 w
w416 C4 C16 0.5 1 0.8 0.77 w
w422 C4 C22 0.25 1 0.8 0.68 w
w425 C4 C25 0.75 1 1 0.92 w
w426 C4 C26 0 1 0.75 0.58 w
w433 C4 C33 0.25 1 0.65 0.63 w
w435 C4 C35 0 1 0.55 0.52 w
w437 C4 C37 0.75 1 1 0.92 w
w525 C5 C25 0.25 1 0.65 0.63 w
w529 C5 C29 0 1 0.5 0.50 w
w530 C5 C30 0 1 0.5 0.50 w
w69 C6 C9 �1 0 �0.6 �0.53 w
w611 C6 C11 0.25 1 0.85 0.70 w
w614 C6 C14 �1 �0.25 �0.65 �0.63 w
w76 C7 C6 0.5 1 0.9 0.80 w
w814 C8 C14 �1 �0.25 �0.6 �0.62 w
w822 C8 C22 �1 �0.5 �0.9 �0.80 w
w98 C9 C8 �1 �0.5 �0.85 �0.78 w
w912 C9 C12 �1 �0.25 �0.7 �0.65 w
w101 C10 C1 �1 �0.25 �0.6 �0.62 w
w103 C10 C3 �1 �0.25 �0.65 �0.63 w
w107 C10 C7 �1 0 �0.45 �0.48 w
w1012 C10 C12 �1 0 �0.5 �0.50 w
w111 C11 C1 �1 0 �0.4 �0.47 w
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of criteria that transport collaboration in heterarchical transport
networks are superior for transport users and service providers
rather than those who work alone. The appropriate use of proposed
FCM-based model not only provides greatly needed insight into
decision making, but also helps elevate the importance of coalition
structures. Further research is required to develop a tool for trans-
port collaboration metrics in order to create a collaboration profile
for coalition partners. Knowledge of such relationships would help
practitioners in a coalition whether they have suitable technologi-
cal as well as organizational capacity to invest in developing their
resources and collaboration.
ij Ci Cj Min
(lij)

Max
(uij)

Mean
(mij)

De-fuzzy
(wij)

1737 C17 C37 0 1 0.75 0.58
184 C18 C4 0.75 1 1 0.92
1819 C18 C19 0.5 1 0.75 0.75
1916 C19 C16 0 0.75 0.3 0.35
1921 C19 C21 0.25 1 0.8 0.68
2019 C20 C19 0 0.75 0.3 0.35
2113 C21 C13 0.5 1 0.9 0.80
2225 C22 C25 0.5 1 0.85 0.78
2227 C22 C27 0.25 1 0.55 0.60
2314 C23 C14 �1 �0.5 �0.8 �0.77
2322 C23o C22 0.25 1 0.75 0.67
2324 C23 C24 0.25 1 0.75 0.67
2325 C23 C25 0.25 1 0.65 0.63
2327 C23 C27 0 1 0.45 0.48
2422 C24 C22 0.25 1 0.65 0.63
2427 C24 C27 0 0.75 0.45 0.40
2529 C25 C29 0.25 1 0.85 0.70
2530 C25 C30 0.5 1 0.95 0.82
2533 C25 C33 0.25 1 0.75 0.67
2535 C25 C35 0.25 1 0.7 0.65
2537 C25 C37 0.75 1 1 0.92
2612 C26 C12 0 1 0.5 0.50
2614 C26 C14 �1 �0.25 �0.6 �0.62
2620 C26 C20 0.25 1 0.55 0.60
2624 C26 C24 0.25 1 0.65 0.63
2625 C26 C25 0.75 1 1 0.92
2628 C26 C28 0.25 1 0.7 0.65
2720 C27 C20 0.25 1 0.55 0.60
2733 C27 C33 0 0.5 0.25 0.25
284 C28 C4 0.75 1 1 0.92
285 C28 C5 0.25 1 0.75 0.67
2814 C28 C14 �1 �0.25 �0.75 �0.67
2818 C28 C18 �1 �0.25 �0.7 �0.65
2820 C28 C20 0.25 1 0.6 0.62
2825 C28 C25 0.75 1 1 0.92
2827 C28 C27 �1 0 �0.55 �0.52
2837 C28 C37 0.25 1 0.7 0.65
2934 C29 C34 0.25 1 0.75 0.67
304 C30 C4 0.25 1 0.7 0.65
3029 C30 C29 0.5 1 0.9 0.80
3031 C30 C31 0 0.75 0.35 0.37
3032 C30 C32 0 1 0.45 0.48
3033 C30 C33 0.25 1 0.7 0.65
3037 C30 C37 0.25 1 0.7 0.65

(continued on next page)
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Decision makers’ respond list after FDM screening (continued)

wij Ci Cj Min
(lij)

Max
(uij)

Mean
(mij)

De-fuzzy
(wij)

wij Ci Cj Min
(lij)

Max
(uij)

Mean
(mij)

De-fuzzy
(wij)

w114 C11 C4 �1 0 �0.55 �0.52 w3132 C31 C32 �1 �0.25 �0.75 �0.67
w115 C11 C5 �1 �0.25 �0.65 �0.63 w3133 C31 C33 0.25 1 0.65 0.63
w1112 C11 C12 �1 0 �0.5 �0.50 w3134 C31 C34 �1 �0.25 �0.6 �0.62
w1225 C12 C25 �1 �0.75 �1 �0.92 w3137 C31 C37 �1 �0.25 �0.7 �0.65
w1237 C12 C37 �1 �0.5 �0.9 �0.80 w3217 C32 C17 �1 0 �0.45 �0.48
w139 C13 C9 �1 �0.25 �0.7 �0.65 w3237 C32 C37 0.5 1 0.9 0.80
w1317 C13 C17 0.25 1 0.65 0.63 w3332 C33 C32 0.5 1 0.8 0.77
w141 C14 C1 �1 0 �0.45 �0.48 w3337 C33 C37 0.75 1 1 0.92
w1422 C14 C22 �1 �0.25 �0.6 �0.62 w3433 C34 C33 0.25 1 0.6 0.62
w1512 C15 C12 �1 �0.25 �0.7 �0.65 w3531 C35 C31 0.25 1 0.6 0.62
w1530 C15 C30 0 1 0.55 0.52 w3532 C35 C32 0.25 1 0.7 0.65
w1613 C16 C13 0.5 1 0.9 0.80 w3533 C35 C33 0.25 1 0.7 0.65
w1716 C17 C16 0.25 1 0.55 0.60 w3631 C36 C31 0.25 1 0.6 0.62
w1728 C17 C28 �1 �0.25 �0.7 �0.65 w3633 C36 C33 0.25 1 0.65 0.63

Appendix B. FCM criteria and indices

Category Criterion Abbr. code Ci od(Ci) id(Ci) cen(Ci) T R O Concept value (vi)

Technical Reliability RELI C1 3.82 2.48 6.30 1 0.52
Technical Standardization STD C2 1.18 0.00 1.18 1 0.50
Technical Technological capability TECHCAP C3 7.08 1.15 8.23 1 0.49
Technical Integration level INTL C4 8.52 3.92 12.43 1 0.82
Technical Information quality INFQ C5 1.63 2.88 4.52 1 0.73
Technical System performance SPER C6 1.87 2.38 4.25 1 0.81
Technical Flexibility in toolset FLEXT C7 0.80 1.03 1.83 1 0.51
Risk Skill set SKILL C8 1.42 0.78 2.20 1 0.42
Risk Feasibility FEA C9 1.43 1.93 3.37 1 0.42
Risk Technology usage TECHUS C10 2.23 0.00 2.23 1 0.50
Risk Safety and security SASE C11 2.12 1.23 3.35 1 0.70
Risk Transport chain TRCHAIN C12 1.72 2.80 4.52 1 0.31
Risk Profitability PROF C13 1.28 1.60 2.88 1 0.75
Risk Control risk CONT C14 1.10 3.30 4.40 1 0.12
Risk Infrastructure INF C15 1.17 0.00 1.17 1 0.50
Financial Overall efficiency OVEFF C16 0.80 1.72 2.52 1 0.76
Financial Transport cost COST C17 1.83 1.12 2.95 1 0.53
Financial Level of orientation ORIENT C18 1.67 0.65 2.32 1 0.41
Financial Accelerated ROI ROI C19 1.03 1.10 2.13 1 0.65
Financial Cost sharing COSTSHAR C20 0.35 2.62 2.97 1 0.83
Financial Financial performance FINANS C21 0.80 0.68 1.48 1 0.61
Organizational Organizational fit ORGFIT C22 1.38 3.40 4.78 1 0.72
Organizational Management involvement MNG C23 3.22 0.00 3.22 1 0.50
Organizational Openness of communication OPENCOM C24 1.03 1.30 2.33 1 0.70
Organizational Information sharing INFSHAR C25 3.75 6.63 10.38 1 0.97
Organizational transparency TRANS C26 3.92 2.32 6.23 1 0.79
Organizational Leadership LEAD C27 0.85 2.00 2.85 1 0.66
Organizational Trusting relationship TRUST C28 5.60 1.30 6.90 1 0.54
Operational Asset optimization ASSET C29 0.67 2.63 3.30 1 0.88
Operational Capacity CAPA C30 3.60 2.53 6.13 1 0.85
Operational Replenishment length REPLEN C31 2.57 1.60 4.17 1 0.76
Operational Lead time LEADT C32 1.28 2.57 3.85 1 0.77
Operational Flexibility in processes FLEXP C33 1.68 5.65 7.33 1 0.98
Operational Carbon footprint SUST C34 0.62 1.28 1.90 1 0.53
Operational Predictability PREDIC C35 1.92 2.47 4.38 1 0.85
Operational Variability VAR C36 1.25 0.00 1.25 1 0.50
Operational Service level SERV C37 0.00 8.12 8.12 1 0.99

T: Transmitter, R: Receiver, O: Ordinary.
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