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Abstract

A loop (Q, ·, \, /) is called a middle Bol loop if it obeys the identity x(yz\x) =
(x/z)(y\x). In this paper, some new algebraic properties of a middle Bol loop are
established. Four bi-variate mappings fi, gi, i = 1, 2 and four j-variate mappings
αj , βj , φj , ψj , j ∈ N are introduced and some interesting properties of the former are
found. Neccessary and sufficient conditons in terms of fi, gi, i = 1, 2, for a middle Bol
loop to have the elasticity property, RIP, LIP, right alternative property (RAP) and left
alternative property (LAP) are establsihed. Also, neccessary and sufficient conditons
in terms of αj , βj , φj , ψj , j ∈ N, for a middle Bol loop to have power RAP and power
LAP are establsihed. Neccessary and sufficient conditons in terms of fi, gi, i = 1, 2
and αj, βj , φj , ψj , j ∈ N, for a middle Bol loop to be a group, Moufang loop or extra
loop are established. A middle Bol loop is shown to belong to some classes of loops
whose identiites are of the J.D. Phillips’ RIF-loop and WRIF-loop (generalizations of
Moufang and Steiner loops) and WIP power associative conjugacy closed loop types if
and only if some identities defined by g1 and g2 are obeyed.

1 Introduction

Let G be a non-empty set. Define a binary operation (·) on G. If x ·y ∈ G for all x, y ∈ G,
then the pair (G, ·) is called a groupoid or Magma.
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If each of the equations:

a · x = b and y · a = b

has unique solutions in G for x and y respectively, then (G, ·) is called a quasigroup.
If there exists a unique element e ∈ G called the identity element such that for all x ∈ G,

x · e = e · x = x, (G, ·) is called a loop. We write xy instead of x · y, and stipulate that · has
lower priority than juxtaposition among factors to be multiplied. For instance, x · yz stands
for x(yz).

Let x be a fixed element in a groupoid (G, ·). The left and right translation maps of G,
Lx and Rx respectively can be defined by

yLx = x · y and yRx = y · x.

It can be seen that a groupoid (G, ·) is a quasigroup if it’s left and right translation mappings
are bijections or permutations. Since the left and right translation mappings of a loop are
bijective, then the inverse mappings L−1

x and R−1
x exist. Let

x\y = yL−1
x = yLx = xRy and x/y = xR−1

y = xRy = yLx

and note that

x\y = z ⇐⇒ x · z = y and x/y = z ⇐⇒ z · y = x.

Hence, (G, \) and (G, /) are also quasigroups. Using the operations (\) and (/), the definition
of a loop can be stated as follows.

Definition 1.1. A loop (G, ·, /, \, e) is a set G together with three binary operations (·),
(/), (\) and one nullary operation e such that

(i) x · (x\y) = y, (y/x) · x = y for all x, y ∈ G,

(ii) x\(x · y) = y, (y · x)/x = y for all x, y ∈ G and

(iii) x\x = y/y or e · x = x for all x, y ∈ G.

We also stipulate that (/) and (\) have higher priority than (·) among factors to be
multiplied. For instance, x · y/z and x · y\z stand for x(y/z) and x(y\z) respectively.

In a loop (G, ·) with identity element e, the left inverse element of x ∈ G is the element
xJλ = xλ ∈ G such that

xλ · x = e

while the right inverse element of x ∈ G is the element xJρ = xρ ∈ G such that

x · xρ = e.

For an overview of the theory of loops, readers may check [2, 3, 4, 7, 11, 16, 20, 25].
A loop (G, ·) is said to be a power associative loop if < x > is a subgroup for all x ∈ G

and a diassociative loop if < x, y > is a subgroup for all x, y ∈ G.
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Definition 1.2. Let (G, ·) be a loop. G is said to be a left alternative property loop (LAPL)
if for all x, y ∈ G, x · xy = xx · y, a right alternative property loop (RAPL)if for all
x, y ∈ G, yx · x = y · xx, and an alternative loop if it is both left and right alternative.

A power associative loop (G, ·) is said to be a power left alternative property loop (PLAPL)
if for all x, y ∈ G, x(· · · (x(x

︸ ︷︷ ︸

n−times

y)) · · · ) = xny and a power right alternative property loop

(PRAPL)if for all x, y ∈ G, (· · · ((y x)x) · · · )x
︸ ︷︷ ︸

n−times

= yxn.

A loop (G, ·) is called a flexible or an elastic loop if the flexibility or elasticity property

xy · x = x · yx

holds for all x, y ∈ G.
(G, ·) is said to have the left inverse property (LIP) if for all x, y ∈ G, xλ · xy = y, the

right inverse property (RIP) if for all x, y ∈ G, yx · xρ = y and the inverse property if it has
both left and right inverse properties.

There are some classes of loops which do not have the inverse property but have properties
which can be considered as variations of the inverse property.

A loop (G, ·) is called a weak inverse property loop (WIPL) if and only if it obeys the
identity

x(yx)ρ = yρ or (xy)λx = yλ (1)

for all x, y ∈ G.

Definition 1.3. A loop (G, ·) is called a cross inverse property loop(CIPL) if it obeys the
identity

xy · xρ = y or x · yxρ = y or xλ · (yx) = y or xλy · x = y (2)

for all x, y,∈ G.
A loop (G, ·) is called an automorphic inverse property loop(AIPL) if it obeys the identity

(xy)ρ = xρyρ or (xy)λ = xλyλ (3)

for all x, y,∈ G.
A loop (G, ·) is called an anti-automorphic inverse property loop(AAIPL) if it obeys the

identity
(xy)ρ = yρxρ or (xy)λ = yλxλ (4)

for all x, y,∈ G.
A loop (G, ·) is called a semi-automorphic inverse property loop(SAIPL) if it obeys the

identity
(xy · x)ρ = xρyρ · xρ or (xy · x)λ = xλyλ · xλ (5)

for all x, y,∈ G.
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A loop satisfying the identical relation

(xy · z)y = x(yz · y) (6)

is called a right Bol loop (Bol loop). A loop satisfying the identical relation

(x · yx)z = x(y · xz) (7)

is called a left Bol loop.
A loop (Q, ·) is called a middle Bol if it satisfies the identity

x(yz\x) = (x/z)(y\x) (8)

It is known that the identity (8) is universal under loop isotopy and that the universality
of (8) implies the power associativity of the middle Bol loops (Belousov [1]). Furthermore,
(8) is a necessary and sufficient condition for the universality of the anti-automorphic inverse
property (Syrbu [23]). Middle Bol loops were originally introduced in 1967 by Belousov [1]
and were later considered in 1971 by Gwaramija [10], who proved that a loop (Q, ◦) is middle
Bol if and only if there exists a right Bol loop (Q, ·) such that

x ◦ y = (y · xy−1)y, for every x, y ∈ Q. (9)

This result of Gwaramija [10] is formally stated below:

Theorem 1.1. If (Q, ·) is a left (right) Bol loop then the groupoid (Q, ◦), where x ◦ y =
y(y−1x · y) (respectively, x ◦ y = (y · xy−1)y), for all x, y ∈ Q , is a middle Bol loop and,
conversely, if (Q, ◦) is a middle Bol loop then there exists a left(right) Bol loop (Q, ·) such
that x ◦ y = y(y−1x · y) (respectively, x ◦ y = (y · xy−1)y), for all x, y ∈ Q.

Remark 1.1. Theorem 1.1 implies that if (Q, ·) is a left Bol loop and (Q, ◦) is the
corresponding middle Bol loop then x ◦ y = x/y−1 and x · y = x//y−1 , where ”/” (”//”) is
the right division in (Q, ·) (respectively, in (Q, ◦)). Similarly, if (Q, ·) is a right Bol loop and
(Q, ◦) is the corresponding middle Bol loop then x ◦ y = y−1\y and x · y = y//x−1 , where
”\” (”//”) is the left (right) division in (Q, ·) (respectively, in (Q, ◦)). Hence, a middle Bol
loops are isostrophs of left and right Bol loops.

If (Q, ◦) is a middle Bol loop and (Q, ·) is the corresponding left Bol loop, then (Q, ∗),
where x ∗ y = y · x, for every x, y ∈ Q, is the corresponding right Bol loop for (Q, ◦). So,
(Q, ·) is a left Bol loop, (Q, ∗) is a right Bol loop and

x ◦ y = y(y−1x · y) = [y ∗ (x ∗ y−1)] ∗ y,

for every x, y ∈ Q.

After then, middle Bol loops resurfaced in literature not until 1994 and 1996 when Syrbu
[21, 22] considered them in-relation to the universality of the elasticity law.

In 2003, Kuznetsov [25], while studying gyrogroups (a special class of Bol loops) estab-
lished some algebraic properties of middle Bol loop and designed a method of constructing a
middle Bol loop from a gyrogroup. According to Gwaramija [10], in a middle Bol loop (Q, ·)
with identity element e, the following are true.
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1. The left inverse element xλ and the right inverse xρ to an element x ∈ Q coincide :
xλ=xρ.

2. If (Q, ·, e) is a left Bol loop and ”/” is the right inverse operation to the operation ” · ”
, then the operation x ◦ y = x/y−1 is a middle Bol loop (Q, ◦, e), and every one middle
Bol loop can be obtained in a similar way from some left Bol loop.

These confirm the observations of earlier authors mentioned above.
In 2010, Syrbu [23] studied the connections between structure and properties of middle

Bol loops and of the corresponding left Bol loops. It was noted that two middle Bol loops
are isomorphic if and only if the corresponding left (right) Bol loops are isomorphic, and
a general form of the autotopisms of middle Bol loops was deduced. Relations between
different sets of elements, such as nucleus, left (right,middle) nuclei, the set of Moufang
elements, the center, e.t.c. of a middle Bol loop and left Bol loops were established.

In 2012, Grecu and Syrbu [8] proved that two middle Bol loops are isotopic if and only if
the corresponding right (left) Bol loops are isotopic. They also proved that a middle Bol loop
(Q, ◦) is flexible if and only if the corresponding right Bol loop (Q, ·) satisfies the identity

(yx)−1 ·
(
x−1 · y−1

)
−1
x = x.

In 2012, Drapal and Shcherbacov [5] rediscovered the middle Bol identities in a new way.
In 2013, Syrbu and Grecu [24] established a necessary and sufficient condition for the

quotient loops of a middle Bol loop and of its corresponding right Bol loop to be isomorphic.
In 2014, Grecu and Syrbu [9] established:

1. that the commutant (centrum) of a middle Bol loop is an AIP-subloop and

2. a necessary and sufficient condition when the commutant is an invariant under the
existing isostrophy between middle Bol loop and the corresponding right Bol loop.

In 1994, Syrbu [21], while studying loops with universal elasticity (xy · x = x · yx)
established a necessary and sufficient condition (xy/z)(b\xz) = x(b\[(by/z)(b\xz)]) for a
loop (Q, ·, \, /) to be universally elastic. Furthermore, he constructed some finite examples
of loops in which this condition and the middle Bol identity x(yz\x) = (x/z)(y\x) are
equivalent, and then posed an open problem of investigating if these two identities are also
equivalent in all other finite loops.

In 2012, Drapal and Shcherbacov [5] reported that Kinyon constructed a non-flexible
middle Bol loop of order 16. This necessitates a reformulation of the Syrbu’s open problem.
Although the above authors also reported that Kinyon reformulated the Syrbu’s open prob-
lem as follows: Let Q be a loop such that every isotope of Q is flexible and has the AAIP.
Must Q be a middle Bol loop? This study prepares the ground for different reformulation of
Syrbu’s open problem based on the fact that the algebraic properties and structural proper-
ties of middle Bol loops have been studied in the past relative to their corresponding right
(left) Bol loop. Our envisioned reformulation of the equivalence of the universal elasticity
condition (UEC) and the middle Bol identity (MBI) is by searching for an additional iden-
tity (AI) such that UEC = MBI+AI. In this work, we prepare a good ground to reformulate
Syrbu’s question:
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1. by establishing some new algebraic properties of a middle Bol loop;

2. by investigating the relationship between a middle Bol loop and some inverse property
loops like WIPLs, CIPLs, AIPLs, SAIPLs, RIPLs and IPLs;

3. by establishing necessary and sufficient condition(s) for a middle Bol loop to be a
Moufang loop or an extra loop or a group.

Definition 1.4. Let (Q, ·) be a loop and let w1(q1, q2, · · · , qn) and w2(q1, q2, · · · , qn) be words
in terms of variables q1, q2, · · · , qn of the loop Q with equal lengths N(N ∈ N, N > 1)
such that the variables q1, q2, · · · , qn appear in them in equal number of times. Q is called a
Nm1,m2,··· ,mn

w1(r1,r2,··· ,rn)=w2(r1,r2,··· ,rn)
loop if it obeys the identity w1(q1, q2, · · · , qn) = w2(q1, q2, · · · , qn)

where m1, m2, · · · , mn ∈ N represent the number of times the variables q1, q2, · · · , qn ∈ Q
respectively appear in the word w1 or w2 such that the mappings q1 7→ r1, q2 7→ r2, · · · , qn 7→
rn are assumed, r1, r2, · · · rn ∈ N.

Remark 1.2. The notation in Definition 1.4 was used in the study of the universality of
Osborn loops in Jaiyéo. lá and Adéńıran [12] when N=4. In Phillips [17], the case when

N=5 surfaced in the characterization of WIP power-associative conjugacy closed loops with
the two identities: LWPC-(xy · x)(xz) = x((yx · x)z) and RWPC-(zx)(x · yx) = (z(x · xy))x.
Kinyon et. al. [13] introduced two classes of loops that generalize Moufang and Steiner loop,
namely:

• RIF loop-this is an IPL that obeys the identity (xy)(z · xy) = (x · yz)x · y; and

• WRIF loop-this is a flexible loop that satisfies the identitiesW1 : (zx)(yxy) = z(xyx)·y
and W2 : (yxy)(xz) = y · (xyx)z.

They showed that a WRIF loop is a dissociative loop and a RIF is a WRIF loop. It clear
that these two loops are described by identities of the type N=5.

In 1968, Fenyves [6] obtained sixty identities of Bol-Moufang type. These identities have
four variables on each side of the equations in the same order with one element repeating
itself. Fenyves [6], Kinyon and Kunen [14], and Phillips and Vojtěchovský [18] found some of
these identities to be equivalent to associativity in (loops) and others to describe extra, Bol,
Moufang, central, flexible loops. Some of these sixty identities are given below following the
labelling in Fenyves [6].

F1: xy · zx = (xy · z)x (Associativity)

F2: xy · zx = (x · yz)x (Moufang identity)

F3: xy · zx = x(y · zx) (Associativity)

F4: xy · zx = x(yz · x) (Moufang identity)

F11: xy · xz = (xy · x)z (Associativity)

F12: xy · xz = (x · yx)z (Associativity)

F13: xy · xz = x(yx · z) (extra identity)

F14: xy · xz = x(y · xz) (Associativity)

F21: yx · zx = (yx · z)x (Associativity)

F22: yx · zx = (y · xz)x (extra identity)
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F23: yx · zx = y(xz · x) (Associativity)

F24: yx · zx = y(x · zx) (Associativity)

F31: yx · xz = (yx · x)z (Associativity)

F32: yx · xz = (y · xx)z (Associativity)

F33: yx · xz = y(xx · z) (Associativity)

F34: yx · xz = y(x · xz) (Associativity)

2 Main Results

Lemma 2.1. Let (Q, ·, \, /) be a middle Bol loop. Then

(a) (yz)ρ = zλ · yρ and zρ = zλ i.e. (Q, ·) is an AAIPL.

(b) yx\x = x\(y\x).

(c) (yx)u = x⇔ y(xu) = x and RuLy = I ⇔ I = LyRu.

(d) xz\x = x\(x/z).

(e) (xz)u = x⇔ (xu)z = x and RzRu = I ⇔ RuRz = I.

(f) x(z\x) = (x/z)x.

(g) xx = (x/z)(zλ\x), xx = (x/yρ)(y\x).

(h) |x| = 2 ⇔ (x/z)−1 = z−1\x. Hence, (Q, /) ≡ (Q, (\)∗).

(i) (x/yz)x = (x/z)(y\x).

(j) (Q, ·) is a CIPL iff (Q, ·) is a commutative WIPL iff (Q, ·) is a commutative IPL iff (Q, ·)
is commutative LIPL iff (Q, ·) is commutative RIPL. Hence, (Q, ·) is a commutative
Moufang loop.

(k) (Q, ·) is a SAIPL iff (Q, ·) is flexible.

(l) (Q, ·) is a AIPL iff (Q, ·) is commutative. Hence, (Q, ·) is an isostroph of a Bruck loop.

(m) The following are equivalent:

1. (Q, /) ≡ (Q, \).

2. x(yx\x) = y(yx\y).

3. (x/yx)x = y(yx\y).

4. x(yx\x) = (y/yx)y.

5. (x/yx)x = (y/yx)y.

Proof. (a) Since (Q, ·, \, /) is a middle Bol loop, then

x(yz\x) = (x/z)(y\x). (10)

Let x = e, then, e(yz\e) = (e/z)(y\e). Let yz\e = u, then e = yz · u =⇒ u = (yz)ρ.
Let e/z = v, then e = v · z ⇒ v = zλ and let y\e = w, then e = y · w =⇒ w = yρ.
So (yz\e) = (e/z)(y\e),=⇒ (yz)ρ = zλ · yρ. Let y = e, then (ez)ρ = zλ · eρ implies
zρ = zλ.
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(b) Put z = x in (10), then x(yx\x) = (x/x)(y\x) = e(y\x) ⇒ x(yx\x) = y\x. Thus,
(yx)\x = x\(y\x).

(c) From (b), let u = (yx)\x⇔ (yx) · u = x⇔ (yx)u = x. Let x\(y\x) = u⇔ y\x = xu⇔
x = y(x · u). Then, y(xu) = x ⇔ RuLy = I. Also, (yx)u = x ⇔ LyRu = I. Therefore,
(yx)u = x⇔ y(xu) = x and RuLy = I ⇔ LyRu = I.

(d) Put y = x in (10), then x(xz\x) = (x/z)(x\x) = (x/z)e and x(xz\x) = x/z. Therefore,
xz\x = x\(x/z).

(e) From (d), let u = xz\x ⇔ (xz)u = x and let u = x\(x/z) ⇔ xu = x/z ⇔ (xu)z = x,
that is (xz)u = x ⇔ (xu)z = x. Then, RzRu = I ⇔ RuRz = I. Therefore, RzRu =
I ⇔ RuRz = I.

(f) Put y = e in (10), then x(ez\x) = (x/z)(e\x) ⇒ x(z\x) = (x/z)x.

(g) Put y = zλ in (10), then x(zλz\x) = (x/z)(zλ\x) ⇒ x(e\x) = (x/z)(zλ\x).

(h) Also, put z = yρ in (10), then x(yyρ\x) = (x/yρ)(y\x) ⇒ x(e\x) = (x/yρ)(y\x). This
implies that xx = (x/yρ)(y\x). So, (x/z)(zλ\x) = (x/yρ)(y\x).

(i) Assuming x2 = e, then e = (x/yρ)(y\x) ⇒ e/(y\x) = x/yρ ⇒ (y\x)λ = x/yρ, implies
(y\x)−1 = x/y−1. Likewise, assuming that x2 = e, then e = (x/z)(zλ\x) ⇒ (x/z)\e =
(zλ\x), therefore, (x/z)ρ = zλ\x, that is, (x/z)−1 = z−1\x ⇒ x/z = z\x. |x| = 2 ⇔
(x/z)−1 = z−1\x and x/z = z\x ⇔ x/z = x(\)∗z ⇒ (Q, /) ≡ (Q, (\)∗).

(j) Again, in a MBL, CIP⇔ WIP and AIP ⇔ IP and (xy)−1 = x−1y−1 ⇔ IP and y−1x−1 =
x−1y−1 ⇔ IP and (y−1)−1(x−1)−1 = (x−1)−1(y−1)−1 ⇔ IP and yx = xy ⇔IP and
commutativity.

(k) SAIPL ⇔ ((xy) ·x)ρ = (xρ · yρ)xρ ⇔ x−1(xy)−1 = (x−1 · y−1)x−1 ⇔ x−1 · y−1x−1 = (x−1 ·
y−1)x−1 ⇔ (x−1)−1 · (y−1)−1(x−1)−1 = ((x−1)−1 · (y−1)−1)(x−1)−1 ⇔ x · yx = (x · y)x⇔
flexibility.

(l) xy = yx⇔ (xy)−1 = (yx)−1 ⇔ (xy)−1 = x−1y−1 ⇔ AIPL.

(m) From (b) and (d), y\x = x(yx\x) and x/z = x(xz\x). Thus, (Q, /) ≡ (Q, \) if and
only if x(yx\x) = y(yx\y). The equivalence to the others follow from (f).

Lemma 2.2. Let (Q, ·, \, /) be a middle Bol loop. Let f1, g1 : Q
2 → Q. Then:

1. f1(x, y) = yx\x⇔ f1(x, y) = x\(y\x);

(a) f1(x, e) = e.

(b) f1(x
−1, e) = e.

(c) f1(e, e) = e.

(d) f1(e, x) = x−1.

(e) f1(x, x) = x−1.

(f) f1(x
−1, x) = x−1.

(g) f1(e, x
−1) = x.

(h) f1(x, x
−1) = x.
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2. g1(x, y) = xy\x⇔ g1(x, y) = x\(x/y);

(a) g1(x, e) = e.

(b) g1(x
−1, e) = e.

(c) g1(e, e) = e.

(d) g1(e, x) = x−1.

(e) g1(x, x) = x−1.

(f) g1(x
−1, x) = x−1.

(g) g1(e, x
−1) = x.

(h) g1(x, x
−1) = x.

3. f1(x, y) = g1(x, y) ⇔ (Q, ·) is commutative.

4. f1(x, y) = g1(x, y) ⇔ (Q, (\)∗) ≡ (Q, /) ⇔ (Q, \) ≡ (Q, (/)∗).

5. f1(x, y) = g1(x, y) ⇔ yx\x = x\(x/y) ⇔ xy\x = x\(y\x).

6. x = y · (x/y) ⇔ (y\x) · y = x

Proof. 1. From Lemma 2.1(b), yx\x = x\(y\x). So, f1(x, y) = yx\x ⇔ f1(x, y) =
x\(y\x).

2. From Lemma 2.1(d), xz\x = x\(x/z). So, g1(x, z) = xz\x ⇔ g1(x, z) = x\(x/z).

3. Since f1(x, y) = yx\x ⇔ f1(x, y) = x\(y\x) and g1(x, y) = xy\x ⇔ g1(x, y) =
x\(x/y), then, f1(x, y) = g1(x, y) ⇔ yx\x = xy\x ⇔ yx = xy ⇔ (Q, ·) is com-
mutative.

4. f1(x, y) = g1(x, y) ⇔ x\(y\x) = x\(x/y) ⇔ y\x = x/y ⇔ y\x = x/y ⇔ y\x =
y(/)∗x ⇐⇒ x(\)∗y = x/y ⇔ (Q, (\)∗) ≡ (Q, /) ⇔ (Q, \) ≡ (Q, (/)∗).

5. f1(x, y) = g1(x, y) ⇔ xy\x = x\(x/y) and yx\x = x\(y\x). By equating the LHS, we
have xy\x = yx\x ⇐⇒ x\(x/y) = x\(y\x) ⇐⇒ x/y = y\x.

∴ f1(x, y) = g1(x, y) ⇐⇒ xy\x = x\(x/y) ⇐⇒ yx\x = x\(y\x).

6. Therefore, y\x = x/y ⇔ x = y · (x/y) or (y\x) · y = x.

Theorem 2.1. Let (Q, ·, \, /) be a middle Bol loop and let f1, g1 : Q
2 → Q and αi, βi : Q

i →
Q be defined as:

f1(x, y) = yx\x or f1(x, y) = x\(y\x) and g1(x, y) = xy\x or g1(x, y) = x\(x/y),

αi(x1, x2, . . . , xi) = (. . . (((x1x2)x3)x4) . . . xi−1)xi and

βi(x1, x2, . . . , xi) = x1\(x2\(x3\(· · ·xi−2\(xi−1\xi) · · · ))) ∀ i ∈ N.

The following are true.

1. f1
(
x, αn(y, x, x, . . . , x)

)
= βn

(
x, x, . . . , x, f1(x, y)

)
.

2. f1
(
x, αn+1(x, y, x, x, . . . , x)

)
= βn+1

(
x, x, x, . . . , x, g1(x, y)

)
.
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3. (Q, ·) has the RAP if and only if f1(x, y) = x[(yx2)\x].

4. (Q, ·) has the PRAP if and only if yxn · βn
(
x, x, . . . , x, f1(x, y)

)
= x.

5. If (Q, ·) has the RAP, then (Q, ·) is of exponent 2 if and only if f1(x, y) = x(y\x).

6. If (Q, ·) has the PRAP, then (Q, ·) is of exponent n if and only if

y · βn
(
x, x, . . . , x, f1(x, y)

)
= x.

Proof. 1. By Lemma 2.1(b), yx\x = x\(y\x) ⇒ (yx)Rx = (y\x)Lx ⇒ RxRx = RxLx ⇒

Rx = RxLxR
−1
x (11)

By equation (11)

R2
x = RxRx = RxLxR

−1
x RxLxR

−1
x = RxL

2
xR

−1
x ,

R3
x = R2

xRx = RxL
2
xR

−1
x RxLxR

−1
x = RxL

3
xR

−1
x ,

R4
x = RxL

3
xR

−1RxLxR
−1
x = RxL

4
xR

−1
x .

Therefore, we claim that: Rn
x = RxL

n−1
x R−1

x RxLxR
−1
x = RxL

n
xR

−1
x , n ≥ 0. Thus, for

all y ∈ Q,
(· · · ((y x · x)x · x)x · · · )x

︸ ︷︷ ︸

n-times

\x = (x\ · · · (x\(x
︸ ︷︷ ︸

(n− 1)-times

\(y\x))) · · · ) (12)

Equation (12) implies that f1
(
x, αn(y, x, x, . . . , x)

)
= βn

(
x, x, . . . , x, f1(x, y)

)
.

2. By Lemma 2.1(d), xz\x = x\(x/z) ⇒ (xz)Rx = (x/z)Lx ⇒ zLxRx = zLxLx ⇒
LxRx = LxLx ⇒

Lx = LxLxR
−1
x (13)

By equation (11) and equation (13),

LxRx = LxLxR
−1
x RxLxR

−1
x = LxLxLxR

−1
x = LxL

2
xR

−1
x .

LxR
2
x = LxL

2
xR

−1
x RxLxR

−1
x = LxL

3
xR

−1
x .

LxR
3
x = LxL

3
xR

−1
x RxLxR

−1
x = LxL

4
xR

−1
x .

Therefore, LxR
n
x = LxL

(n+1)
x R−1

x , n ≥ 1. Thus, for all y ∈ Q,

(· · · ((xy · x)x · x)x · · · )x
︸ ︷︷ ︸

n-times

\x = (x\ · · · (x\(x
︸ ︷︷ ︸

(n+ 1)-times

\(x/y))) · · · ) (14)

Equation (14) implies that f1
(
x, αn+1(x, y, x, x, . . . , x)

)
= βn+1

(
x, x, x, . . . , x, g1(x, y)

)
.

3. This follows from 1. when n = 2.

4. This follows from 1.
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5. This follows from 3.

6. This follows from 4.

Lemma 2.3. Let (Q, ·, \, /) be a loop. The following are equivalent.

1. (Q, ·, \, /) be a middle Bol loop.

2. x(yz\x) = (x/z)(y\x) for all x, y, z ∈ Q.

3. (x/yz)x = (x/z)(y\x) for all x, y, z ∈ Q.

Proof. From Lemma 2.1(f), x(z\x) = (x/z)x. On another hand, if (x/yz)x = (x/z)(y\x) is
true, then x(y\x) = (x/y)x. So, 1., 2. and 3. are equivalent.

Theorem 2.2. Let (Q, ·, \, /) be a middle Bol loop and let f1, g1, f2, g2 : Q
2 → Q be defined

as:

f1(x, y) = yx\x or f1(x, y) = x\(y\x) and g1(x, y) = xy\x or g1(x, y) = x\(x/y),

f2(x, y) = x/(xy) or f2(x, y) = (x/y)/x and g2(x, y) = x/(yx) or g2(x, y) = (y\x)/x.

Then:

(a) x/yx = (y\x)/x.

(b) z(yx) = x⇔ y(zx) = x and LyLz = I ⇔ LzLy = I.

(c) x/(xz) = (x/z)/x.

(d) (yx)u = x⇔ y(xu) = x and RuLy = I ⇔ I = LyRu.

(e) f2(x, y) = x/(xy) ⇔ f2(x, y) = (x/y)/x.

(f) g2(x, y) = x/(yx) ⇔ g2(x, y) = (y\x)/x.

(g) The following are equivalent:

1. (Q, /) ≡ (Q, \).

2. [x/(xy)]x = [y/(xy)]y.

3. x[(xy)\x] = [y/(xy)]y.

4. [x/(xy)]x = y[(xy)\y].

5. x[(xy)\x] = y[(xy)\y].

(i) yx · z = x⇔ xz = [x/(yx)]x⇔ y · xz = x.

(j) (Q, ·) is a CIPL if and only if xy−1 = [x/(yx)]x.

(k) yx · z = x⇔ xz = g2(x, y) · x⇔ y · xz = x.

(l) (Q, ·) is a CIPL if and only if xy−1 = g2(x, y) · x.

11



(m) z · xy = x⇔ zx = x[(xy)\x] ⇔ zx · y = x.

(n) (Q, ·) is a CIPL if and only if y−1x = x[(xy)\x].

(o) z · xy = x⇔ zx = x · g1(x, y).

(p) (Q, ·) is a CIPL if and only if y−1x = x · g1(x, y).

(q) z · yx = x⇔ zx = x[(yx)\x] ⇔ y · zx = x.

(r) (Q, ·) is a LIPL if and only if y−1x = x[(yx)\x].

(s) z · yx = x⇔ zx = x · f1(x, y).

(t) (Q, ·) is a LIPL if and only if y−1x = x · f1(x, y).

(u) xy · z = x⇔ xz = [x/(xy)]x.

(v) (Q, ·) is a RIPL if and only if xy−1 = [x/(xy)]x.

(w) xy · z = x⇔ xz = f2(x, y) · x.

(x) (Q, ·) is a RIPL if and only if xy−1 = f2(x, y) · x.

Proof. This is achieved by using the identity in 3. of Lemma 2.3 i.e.

(x/yz)x = (x/z)(y\x) (15)

the ways in which the identity in 2. of Lemma 2.3 was used to prove the results in Lemma 2.1.

(a) Substitute z = x in (15).

(b) Use (a).

(c) Substitute y = x in (15).

(d) Use (c).

(e) Follows from (c).

(f) Follows from (a).

(g) From (a) and (c), x\y = (y/xy)y and x/z = (x/xz)x. So, (Q, \) ≡ (Q, /) ⇔ [x/(xy)]x =
[y/(xy)]y. The equivalence to the others follows from Lemma 2.1(f).

(i) Let z = yx\x, then yx · z = x. So, xz = [x/(yx)]x. Using Lemma 2.1(c) in addition,
yx · z = x⇔ xz = [x/(yx)]x⇔ y · xz = x.

(j) Apply (i).

(k) Use (i).
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(l) Apply (k).

(m) Let z = x/xy, then z · xy = x. So, zx = x[(xy)\x]. Using Lemma 2.1(c) in addition,
z · xy = x⇔ zx = x[(xy)\x] ⇔ zx · y = x.

(n) Apply (m).

(o) Use (m).

(p) Apply (o).

(q) Let z = x/yx, then z · yx = x. So, zx = x[(yx)\x]. Using (b) in addition, z · yx = x⇔
zx = x[(yx)\x] ⇔ y · zx = x.

(r) Apply (q).

(s) Use (q).

(t) Apply (s).

(u) Let z = xy\x, then xy · z = x. So, zx = x[(yx)\x]. Using Lemma 2.1(e) in addition,
xy · z = x⇔ xz = [x/(xy)]x⇔ xz · y = x.

(v) Apply (u).

(w) Use (u).

(x) Apply (w)(Q, ·) is a RIPL if and only if xy−1 = f2(x, y) · x.

Lemma 2.4. Let (Q, ·, \, /) be a middle Bol loop and let f1, g1, f2, g2 : Q
2 → Q.

1. f2(x, y) = x/(xy) ⇔ f2(x, y) = (x/y)/x;

(a) f2(x, x) = f2(e, x) = f2(x
−1, x) = x−1.

(b) f2(x, x
−1) = f2(e, x

−1) = x.

(c) f2(x, e) = f2(x
−1, e) = f2(e, e) = e.

2. g2(x, y) = x/(yx) ⇔ g2(x, y) = (y\x)/x;

(a) g2(x, x) = g2(e, x) = g2(x
−1, x) = x−1.

(b) g2(x, x
−1) = g2(e, x

−1) = x.

(c) g2(x, e) = g2(x
−1, e) = g2(e, e) = e.

3. The following are equivalent:
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(a) f2(x, y) = g2(x, y).

(b) (Q, ·) is commutative.

(c) (Q, (\)∗) ≡ (Q, /).

(d) (Q, \) ≡ (Q, (/)∗).

(e) x/xy = (y\x)/x.

(f) x/yx = (x/y)/x.

4. The following are equivalent:

(a) f1(x, y) = f2(x, y).

(b) (yx\x)(xy) = x.

(c) (yx)(x/xy) = x.

(d) x\(y\x) = (x/y)/x.

5. The following are equivalent:

(a) g1(x, y) = g2(x, y).

(b) (xy\x)(yx) = x.

(c) (xy)(x/yx) = x.

(d) x\(x/y) = (y\x)/x.

6. The following are equivalent:

(a) f1(x, y) = g2(x, y).

(b) (yx)(x/yx) = x.

(c) (yx\x)(yx) = x.

(d) x[(y\x)/x] = y\x.

(e) [(y\x)/x]x = y\x.

7. The following are equivalent:

(a) f2(x, y) = g1(x, y).

(b) (xy\x)(xy) = x.

(c) (yx\x)(yx) = x.

(d) x[(x/y)/x] = x/y.

(e) [x\(x/y)]x = x/y.

8. f2(x, y)f1(x, z) = x
[
(zx)(xy)\x

]
=

[
x/(zx)(xy)

]
x.

9. [(x/y)/x][x\(z\x)] = x
[
(zx)(xy)\x

]
=

[
x/(zx)(xy)

]
x.

10. g2(x, y)g1(x, z) = x
[
(xz)(yx)\x

]
=

[
x/(xz)(yx)

]
x.

11.
[
(y\x)/x

][
x\(x/z)] = x

[
(xz)(yx)\x

]
=

[
x/(xz)(yx)

]
x.

12. f2(x, y)g1(x, z) = x
[
(xz)(xy)\x

]
=

[
x/(xz)(xy)

]
x.

13.
[
(x/y)/x

][
x\(x/z)] = x

[
(xz)(xy)\x

]
=

[
x/(xz)(xy)

]
x.

14. g2(x, y)f1(x, z) = x
[
(xz)(yx)\x

]
=

[
x/(xz)(yx)

]
x.

15.
[
(y\x)/x

][
x\(z\x)] = x

[
(xz)(yx)\x

]
=

[
x/(xz)(yx)

]
x.

Proof. Use Theorem 2.2 and the hypothetic definitions of fi, gi, i = 1, 2.

14



Theorem 2.3. Let (Q, ·, \, /) be a middle Bol loop and let f2, g2 : Q
2 → Q and φi, ψi : Q

i →
Q be defined as:

f2(x, y) = x/(xy) or f2(x, y) = (x/y)/x and g2(x, y) = x/(yx) or g2(x, y) = (y\x)/x,

φi(x1, x2, . . . , xi) = xi(xi−1(. . . (x5(x4(x3(x2x1)))) . . .)) and

ψi(x1, x2, . . . , xi) = ((. . . ((x1/x2)/x3) . . .)/xi−1)/xi ∀ i ∈ N.

The following are true.

1. f2
(
x, φn(y, x, x, . . . , x)

)
= ψn

(
f2(x, y), x, x, . . . , x

)
.

2. f2
(
x, φn+1(x, y, x, x, . . . , x, x)

)
= ψn+1

(
g2(x, y), x, x, . . . , x

)
.

3. (Q, ·) has the LAP if and only if f2(x, y) = [x/(x2y)]x.

4. (Q, ·) has the PLAP if and only if ψn

(
f2(x, y), x, x, . . . , x

)
· xny = x.

5. If (Q, ·) has the LAP, then (Q, ·) is of exponent 2 if and only if f2(x, y) = (x/y)x.

6. If (Q, ·) has the PLAP, then (Q, ·) is of exponent n if and only if

ψn

(
f2(x, y), x, . . . , x

)
· y = x.

Proof. This is very much similar to the proof of Theorem 2.1.

1. From the identity in Lemma 2.1(c), we get

Lx = LxRxL
−1
x (16)

By equation (16), we claim that: Ln
x = LxR

n
xL

−1
x , n ≥ 0. Thus, for all y ∈ Q,

x/[x(· · ·x(x(x · x
︸ ︷︷ ︸

n-times

y))) · · · ] = ((((x/y)/ x)/x)/x · · · )/x
︸ ︷︷ ︸

n-times

(17)

Equation (17) implies that f2
(
x, φn(y, x, x, . . . , x)

)
= ψn

(
f2(x, y), x, x, . . . , x

)
.

2. From the identity in Lemma 2.1(c), we get

Rx = RxRxL
−1
x (18)

Therefore, by equation (16) and equation (18), RxL
n
xLx = RxR

(n+1)
x , n ≥ 1. Thus, for

all y ∈ Q,
x/[x(· · ·x(x(x

︸ ︷︷ ︸

n-times

·yx))) · · · ] = ((((y\x)/ x)/x)/x · · · )/x
︸ ︷︷ ︸

(n+ 1)-times

(19)

Equation (19) implies that f2
(
x, φn+1(x, y, x, x, . . . , x, x)

)
= ψn+1

(
g2(x, y), x, x, . . . , x

)
.

3. This follows from 1. when n = 2.
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4. This follows from 1.

5. This follows from 3.

6. This follows from 4.

Theorem 2.4. Let (Q, ·, \, /) be a middle Bol loop and let f1, g1, f2, g2 : Q2 → Q and
αi, βi, φi, ψi : Q

i → Q be defined as:

f1(x, y) = yx\x or f1(x, y) = x\(y\x) and g1(x, y) = xy\x or g1(x, y) = x\(x/y),

f2(x, y) = x/(xy) or f2(x, y) = (x/y)/x and g2(x, y) = x/(yx) or g2(x, y) = (y\x)/x,

αi(x1, x2, . . . , xi) = (. . . (((x1x2)x3)x4) . . . xi−1)xi,

βi(x1, x2, . . . , xi) = x1\(x2\(x3\(· · ·xi−2\(xi−1\xi) · · · ))),

φi(x1, x2, . . . , xi) = xi(xi−1(. . . (x5(x4(x3(x2x1)))) . . .)) and

ψi(x1, x2, . . . , xi) = ((. . . ((x1/x2)/x3) . . .)/xi−1)/xi ∀ i ∈ N.

1. The following are equivalent.

(a) (Q, ·) is a group.

(b) x/y =
[
f2(x, y)f1(x, z)

]
/β4(x, x, z, x).

(c) x/y =
[
f2(x, y)f1(x, z)

]
/β2

(
φ3(x, x, z), x

)
.

(d) z\x = ψ2

(
x, α3(x, x, y)

)
\
[
f2(x, y)f1(x, z)

]
.

(e) z\x = ψ4(x, y, x, x)\
[
f2(x, y)f1(x, z)

]
.

(f) α3(x, z, y) · g2(x, y)g1(x, z) = x.

(g) g2(x, y)g1(x, z) · φ3(x, z, y) = x.

(h) f2(x, y)g1(x, z) = α2

(
f2(x, y), x

)
β2
(
x, g1(x, z)

)
.

(i) f2(x, y)g1(x, z) · φ3(x, y, z) = x.

(j) α3(z, x, y) · g2(x, y)f1(x, z) = x.

(k) g2(x, y)f1(x, z) = ψ2

(
g2(x, y), x

)
φ2

(
f1(x, z), x

)
.

2. If (Q, ·) is of exponent 2, then (Q, ·) is a group if and only if (x/y)(z\x) =
f2(x, y)f1(x, z).

3. If (Q, ·) is flexible, then (Q, ·) is a group if and only if f2(x, y)g1(x, z) =
φ2

(
x, f2(x, y)

)
ψ2

(
g2(x, z),

)
.

4. The following are equivalent.
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(a) (Q, ·) is a Moufang loop.

(b) φ3(z, y, x) · g2(x, y)g1(x, z) = x.

(c) g2(x, y)g1(x, z) · α3(y, z, x) = x.

5. The following are equivalent.

(a) (Q, ·) is an extra loop.

(b) f2(x, y)g1(x, z) · α3(z, x, y) = x.

(c) φ3(y, x, z) · g2(x, y)f1(x, z) = x.

Proof. 1. (a)⇔(b) Using F31 and 8. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)f1(x, z) = x
[
(zx · x)y\x

]
= (x/y)

[
(zx · x)\x

]
= (x/y)

[
x\(x\(z\x))

]
⇐⇒

x/y =
[
f2(x, y)f1(x, z)

]
/β4(x, x, z, x).

(a)⇔(c) Using F32 and 8. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)f1(x, z) = x
[
(z · xx)y\x

]
= (x/y)

[
(z · xx)\x

]
⇐⇒

x/y =
[
f2(x, y)f1(x, z)

]
/β2

(
φ3(x, x, z), x

)
.

(a)⇔(d) Using F33 and 8. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)f1(x, z) = x
[
z(xx · y)\x

]
=

(
x/(xx · y)

)
(z x) ⇐⇒

z\x = ψ2

(
x, α3(x, x, y)

)
\
[
f2(x, y)f1(x, z)

]
.

(a)⇔(e) Using F34 and 8. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)f1(x, z) = x
[
z(x · xy)\x

]
=

(
x/(x · xy)

)
(z x) =

[(
(x/y)/x

)
/x

]
(z x) ⇐⇒

z\x = ψ4(x, y, x, x)\
[
f2(x, y)f1(x, z)

]
.

(a)⇔(f) Using F1 and 10. of Lemma 2.4, (Q, ·) is a group if and only if

g2(x, y)g1(x, z) = x
[
(xz · y)x\x

]
= (xz · y)\x⇐⇒

α3(x, z, y) · g2(x, y)g1(x, z) = x.

(a)⇔(g) Using F3 and 10. of Lemma 2.4, (Q, ·) is a group if and only if

g2(x, y)g1(x, z) = x
[
x(y · zx)\x

]
= x/(y · zx) ⇐⇒

g2(x, y)g1(x, z) · φ3(x, z, y) = x.

(a)⇔(h) Using F11 and 12. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)g1(x, z) = x
[
(xz · x)y\x

]
= (x/y)

[
(xz · x)\x

]
= (x/y)

[
(x\(x\(x/z)))

]
⇐⇒

f2(x, y)g1(x, z) =
(
f2(x, y) · x

)(
x g1(x, z)

)

f2(x, y)g1(x, z) = α2

(
f2(x, y), x

)
β2
(
x, g1(x, z)

)
.
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(a)⇔(i) Using F14 and 12. of Lemma 2.4, (Q, ·) is a group if and only if

f2(x, y)g1(x, z) = x
[
x(zx · y)\x

]
= x/(z · xy) ⇐⇒

f2(x, y)g1(x, z) · φ3(x, y, z) = x.

(a)⇔(j) Using F21 and 14. of Lemma 2.4, (Q, ·) is a group if and only if

g2(x, y)f1(x, z) = x
[
(zx · y)x\x

]
= (zx · y\x) ⇐⇒

α3(z, x, y) · g2(x, y)f1(x, z) = x.

(a)⇔(k) Using F24 and 14. of Lemma 2.4, (Q, ·) is a group if and only if

g2(x, y)f1(x, z) = x
[
(z(x · yx)\x

]
=

[
x/(x · yx)

]
(z\x) =

[(
(y\x)/x

)
/x

]
(z\x) ⇐⇒

g2(x, y)f1(x, z) =
(
g2(x, y)/x

)(
x · f1(x, z)

)
⇐⇒

g2(x, y)f1(x, z) = ψ2

(
g2(x, y), x

)
φ2

(
f1(x, z), x

)
.

2. Apply 1.(c)

3. Using F23 and 14. of Lemma 2.4, if (Q, ·) is flexible, then (Q, ·) is a group if and only
if

g2(x, y)f1(x, z) = x
[
(z(xy · x)\x

]
=

[
x/(xy · x)

]
(z\x) =

[
x/

(
x · yx)

]
(z\x) ⇐⇒

g2(x, y)f1(x, z) =
[(
(y\x)/x

)
/x

]
(z\x) ⇐⇒

g2(x, y)f1(x, z) =
(
g2(x, y)/x

)(
x · f1(x, z)

)
⇐⇒

g2(x, y)f1(x, z) = ψ2

(
g2(x, y), x

)
φ2

(
f1(x, z), x

)
.

4. (a)⇔(b) Using F2 and 10. of Lemma 2.4, (Q, ·) is a Moufang loop if and only if

g2(x, y)g1(x, z) = x
[
(x · yz)x\x

]
= (x · yz)\x⇐⇒

φ3(z, y, x) · g2(x, y)g1(x, z) = x.

(a)⇔(c) Using F4 and 10. of Lemma 2.4, (Q, ·) is a Moufang loop if and only if

g2(x, y)g1(x, z) = x
[
x(yz · x)\x

]
= x/(yz · x) ⇐⇒

g2(x, y)g1(x, z) · α3(y, z, x) = x.

5. (a)⇔(b) Using F13 and 12. of Lemma 2.4, (Q, ·) is an extra loop if and only if

f2(x, y)g1(x, z) = x
[
x(zx · y)\x

]
= x/(zx · y) ⇐⇒

f2(x, y)g1(x, z) · α3(z, x, y) = x.
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(a)⇔(c) Using F22 and 14. of Lemma 2.4, (Q, ·) is an extra loop if and only if

g2(x, y)f1(x, z) = x
[
(z · xy)x\x

]
= (z · xy) ⇐⇒

φ3(y, x, z) · g2(x, y)f1(x, z) = x.

We shall now establish some necessary and sufficient conditions for some identities of the
typeN=3,4,5,6 to be true in a middle loop. Of course, these identities are obviously true
in a dissociative loop, hence, a RIF or WRIF loop has them.

Theorem 2.5. Let (Q, ·, \, /) be a middle Bol loop and let g1 : Q2 → Q be defined as:
g1(x, y) = xy\x or g1(x, y) = x\(x/y).

1. (Q, ·) is a 32,1
12·1=1·21 loop if and only if g1(x, y) = x · g1(x, yx).

2. (Q, ·) is a 43,1
(12·1)1=1·(21·1) loop if and only if g1(x, y) = x ·

(
x · g1(x, yx · x)

)
.

3. (Q, ·) is a 43,1
(12·1)1=1·(2·11) loop if and only if g1(x, y) = x ·

(
x · g1(x, y · xx)

)
.

4. If (Q, ·) is a 31,2
12·2=1·22 loop, the following are equivalent:

(a) (Q, ·) is a 43,1
(12·1)1=1·(21·1) loop.

(b) (Q, ·) is a 43,1
(12·1)1=1·(2·11) loop.

(c) (Q, ·) is a 43,1
12·11=1·(2·11) loop.

Proof. We shall often use Equation (14).

1. (Q, ·) is a 32,1
12·1=1·21 loop if and only if xy · x = x · yx

⇔ (xy · x)\x = (x · yx)\x⇔ x\(x\(x/y)) = (x · yx)\x⇔ g1(x, y) = x · g1(x, yx).

2. (Q, ·) is a 43,1
(12·1)1=1·(21·1) loop if and only if (xy · x)x = x · (yx · x)

⇔ [(xy · x)x]\x = [x · (yx · x)]\x⇔ x\(x\(x\(x/y))) = [x · (yx · x)]\x ⇔

g1(x, y) = x ·
(
x · g1(x, yx · x)

)
.

3. (Q, ·) is a 43,1
(12·1)1=1·(2·11) loop if and only if (xy · x)x = x · (y · xx)

⇔ (xy · x)x\x = x · (y · xx)\x ⇔ x\(x\(x\(x/y))) = g1(x, y · xx) ⇔

g1(x, y) = x ·
(
x · g1(x, y · xx)

)
.

4. This is achieved by assuming the hypothesis that (Q, ·) is a 31,2
12·2=1·22 loop and using

2. and 3..
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Theorem 2.6. Let (Q, ·, \, /) be a middle Bol loop and let g1 : Q2 → Q be defined as:
g1(x, y) = xy\x or g1(x, y) = x\(x/y).

1. (Q, ·) is a 54,1
(12·1)1·1=1·(21·1)1 loop if and only if g1(x, y) = x

[
x ·

(
x · g1(x, (yx · x)x)

)]
.

2. (Q, ·) is a 54,1
(12·1)1·1=1·(21·11) loop if and only if g1(x, y) = x

[
x ·

(
x · g1(x, yx · xx)

)]
.

3. (Q, ·) is a 54,1
(12·1)1·1=1·(2·11)1 loop if and only if g1(x, y) = x

[
x ·

(
x · g1(x, (y · xx)x)

)]
.

4. The following are equivalent:

(a) (Q, ·) is a 54,1
(12·1)1·1=1·2(11·1) loop.

(b) (Q, ·) is a 54,1
(12·1)1·1=1·2(1·11) loop.

(c) (Q, ·) is a 54,1
(12·1)1·1=1·2(111) loop.

(d) g1(x, y) = x
[
x ·

(
x · g1(x, yx

3)
)]
.

5. If (Q, ·) is a 31,2
12·2=1·22 loop, then the following are equivalent:

(a) (Q, ·) is a 54,1
(12·1)1·1=1·(21·1)1 loop.

(b) (Q, ·) is a 54,1
(12·1)1·1=1·(21·11) loop.

(c) (Q, ·) is a 54,1
(12·1)1·1=1·(2·11)1 loop .

6. If (Q, ·) is a 31,3
(1·22)2=1·(22·2) loop, then the following are equivalent:

(a) (Q, ·) is a 54,1
(12·1)1·1=1·(2·11)1 loop.

(b) (Q, ·) is a 54,1
(12·1)1·1=1·2(11·1) loop.

(c) (Q, ·) is a 54,1
(12·1)1·1=1·2(1·11) loop .

7. If (Q, ·) is a 31,3
12·22=1·(2·22) loop, the following are equivalent:

(a) (Q, ·) is a 54,1
(12·1)1·1=1·(21·11) loop.

(b) (Q, ·) is a 54,1
(12·1)1·1=1·(2·11)1 loop.

(c) (Q, ·) is a 54,1
(12·1)1·1=1·2(11·1) loop.

8. If (Q, ·) is a 31,2
12·2=1·22 loop, 31,3

(1·22)2=1·(22·2) loop and 31,3
12·22=1·(2·22) loop, then the following

are equivalent:

(a) (Q, ·) is a 54,1
(12·1)1·1=1·(21·1)1 loop.

(b) (Q, ·) is a 54,1
(12·1)1·1=1·(21·11) loop.

(c) (Q, ·) is a 54,1
(12·1)1·1=1·(2·11)1 loop.

(d) (Q, ·) is a 54,1
(12·1)1·1=1·2(11·1) loop.

(e) (Q, ·) is a 54,1
(12·1)1·1=1·2(1·11) loop.

(f) (Q, ·) is a 54,1
12·111=1·2(111) loop.

9. (Q, ·) is a 65,1[
(12·1)1·1

]
1=1·

[
(21·1)1

]
1
loop if and only if

g1(x, y) = x · x
[
x ·

(
x · g1(x, (yx · x)x · x)

)]
.
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Proof. This is similar to the proof of Theorem 2.5.

Theorem 2.7. Let (Q, ·, \, /) be a middle Bol loop and let g2 : Q2 → Q be defined as:
g2(x, y) = x\yx or g2(x, y) = (y\x)/x.

1. (Q, ·) is a 32,1
12·1=1·21 loop if and only if g2(x, y) = g2(x, xy) · x.

2. (Q, ·) is a 43,1
1·(1·21)=(1·12)1 loop if and only if g2(x, y) = g2(x, x · xy)x · x.

3. (Q, ·) is a 43,1
1·(1·21)=(11·2)1 loop if and only if g2(x, y) = g2(x, xx · y)x · x.

4. If (Q, ·) is a 32,1
11·2=1·12 loop, then the following are equivalent:

(a) (Q, ·) is a 43,1
(1·12)1=1·(1·21) loop.

(b) (Q, ·) is a 43,1
(11·2)1=1·(1·21) loop.

(c) (Q, ·) is a 43,1
11·21=(11·2)1 loop.

Proof. This is similar to the proof of Theorem 2.5 with the aid of Equation (19).

Theorem 2.8. Let (Q, ·, \, /) be a middle Bol loop and let g1 : Q2 → Q be defined as:
g1(x, y) = xy\x or g1(x, y) = x\(x/y).

1. (Q, ·) is a 54,1
1·1(1·21)=1(1·12)·1 loop if and only if g2(x, y) =

(
g2(x, x(x · xy))x · x

)
x.

2. (Q, ·) is a 54,1
1·1(1·21)=(11·12)1 loop if and only if g2(x, y) =

(
g2(x, xx · xy)x · x

)
x.

3. (Q, ·) is a 54,1
1·1(1·21)=1(11·12)·1 loop if and only if g2(x, y) =

(
g2(x, x(xx · y))x · x

)
x.

4. The following are equivalent:

(a) (Q, ·) is a 54,1
1·1(1·21)=(1·11)2·1 loop.

(b) (Q, ·) is a 54,1
1·1(1·21)=(11·1)2·1 loop.

(c) (Q, ·) is a 54,1
1·1(1·21)=(111)2·1 loop.

(d) g2(x, y) =
(
g2(x, x

3y))x · x
)
x.

5. If (Q, ·) is a 32,1
1·12=11·2 loop, then the following are equivalent:

(a) (Q, ·) is a 51·1(1·21)=1(1·12)·1 loop.

(b) (Q, ·) is a 54,1
1·1(1·21)=(11·12)1 loop.

(c) (Q, ·) is a 54,1
1·1(1·21)=1(11·12)·1 loop .

6. If (Q, ·) is a 33,1
1(11·2)2=(1·11)2 loop, then the following are equivalent:

(a) (Q, ·) is a 54,1
1·1(1·21)=1(11·2)·1 loop.

(b) (Q, ·) is a 54,1
1·1(1·21)=(1·11)2·1 loop.

(c) (Q, ·) is a 54,1
1·1(1·21)=(11·1)2·1 loop .

7. If (Q, ·) is a 33,1
11·12=(11·1)2 loop, the following are equivalent:
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(a) (Q, ·) is a 54,1
1·1(1·21)=(11·12)1 loop.

(b) (Q, ·) is a 54,1
1·1(1·21)=1(11·2)·1 loop.

(c) (Q, ·) is a 54,1
1·1(1·21)=(1·11)2·1 loop.

8. If (Q, ·) is a 32,1
1·12=11·2 loop, 3

3,1
1(11·2)2=(1·11)2 loop and 33,1

11·12=(11·1)2 loop, then the following
are equivalent:

(a) (Q, ·) is a 54,1
1·1(1·21)=1(1·12)·1 loop.

(b) (Q, ·) is a 54,1
1·1(1·21)=(11·12)·1) loop.

(c) (Q, ·) is a 54,1
1·1(1·21)=1(11·2)·1 loop.

(d) (Q, ·) is a 54,1
1·1(1·21)=(1·11)2·1) loop.

(e) (Q, ·) is a 54,1
1·1(1·21)=(11·1)2·1 loop.

(f) (Q, ·) is a 54,1
111·21=(111)2·1 loop.

9. (Q, ·) is a 65,1
1[1·1(1·21)]=1[1(1·12)]·1 loop if and only if

g2(x, y) = [[[g2(x, (yx · x(x(x · xy))))x·]x]x]x.

Proof. This is similar to the proof of Theorem 2.5.
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