## Nonsplit Geodetic Number of a Graph

Tejaswini K M, Venkanagouda M Goudar

Sri Gauthama Research Centre, (Affiliated to Kuvempu University, Shimoga)

Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572 105, Karnataka, India

### Venkatesh

Department of mathematics, Kuvempu University, Shimoga, India

E-mail: tejaswini.ssit@gmail.com, vmgouda@gmail.com vensprema@gmail.com

**Abstract:** Let G be a graph. If  $u, v \in V(G)$ , a u - v geodesic of G is the shortest path between u and v. The closed interval I[u, v] consists of all vertices lying in some u - v geodesic of G. For  $S \subseteq V(G)$  the set I[S] is the union of all sets I[u, v] for  $u, v \in S$ . A set S is a geodetic set of G if I(S) = V(G). The cardinality of a minimum geodetic set of G is the geodetic number of G, denoted by g(G). In this paper, we study the nonsplit geodetic number of a graph  $g_{ns}(G)$ . The set  $S \subseteq V(G)$  is a nonsplit geodetic set in G if S is a geodetic set and  $\langle V(G) - S \rangle$  is connected, nonsplit geodetic number  $g_{ns}(G)$  of G is the minimum cardinality of a nonsplit geodetic set of G. We investigate the relationship between nonsplit geodetic number and geodetic number. We also obtain the nonsplit geodetic number in the cartesian product of graphs.

**Key Words**: Cartesian products, distance, edge covering number, Smarandachely *k*-geodetic set, geodetic number, vertex covering number.

AMS(2010): 05C05, 05C12.

## §1. Introduction

As usual n = |V| and m = |E| denote the number of vertices and edges of a graph G respectively. The graphs considered here are finite, undirected, simple and connected. The distance d(u, v) between two vertices u and v in a connected graph G is the length of a shortest u - v path in G. It is well known that this distance is a metric on the vertex set V(G). For a vertex v of G, the eccentricity e(v) is the distance between v and a vertex farthest from v. The minimum eccentricity among the vertices of G is radius, rad G and the maximum eccentricity is the diameter, diam G. A u - v path of length d(u, v) is called a u - v geodesic. We define I[u, v] to the set (interval) of all vertices lying on some u - v geodesic of G and for a nonempty subset S of V (G),  $I[S] = \bigcup_{u,v \in S} I[u, v]$ . A set S of vertices of G is called a geodetic set in G if I[S] = V(G), and a geodetic set of minimum cardinality is a minimum geodetic set, and generally, if there is a k-subset T of V(G) such that  $I(S) \bigcup T = V(G)$ , where  $0 \le k < |G| - |S|$ , then S is called a Smarandachely k-geodetic set of G. The cardinality of a minimum geodetic set in G is called

<sup>&</sup>lt;sup>1</sup>Received December 3, 2014, Accepted December 6, 2015.

the geodetic number and is denoted by g(G). The concept of geodetic number of a graph was introduced in [1,4,7], further studied in [2,3], and the split geodetic number of a graph was introduced in [10]. It was shown in [7] that determining the geodetic number of a graph is an NP-hard problem.

A set of vertices S in a graph G is a nonsplit geodetic set if S is a geodetic set and the subgraph G[V-S] induced by  $\langle V(G) - S \rangle$  is connected. The minimum cardinality of a nonsplit geodetic set, denoted  $g_{ns}(G)$ , is called the nonsplit geodetic number of G.



Figure 1.1

Consider the graph G of Figure 1.1. For the vertices u and y in G d(u, y) = 3 and every vertex of G lies on an u - y geodesic in G. Thus  $S = \{u, y\}$  is the geodetic set of G and so g(G). Here the induced subgraph  $\langle V(G) - S \rangle$  is connected. So that S is a minimum nonsplit geodetic set of G. Therefore nonsplit geodetic number  $g_{ns}(G) = 2$ .

A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbours is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The minimum number of vertices in a vertex cover of G is the vertex covering number  $\alpha_0(G)$  of G. An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the vertices of G. The edge covering number  $\alpha_1(G)$  of a graph G is the minimum cardinality of an edge cover of G. For any undefined term in this paper, see [1, 6]

#### §2. Preliminary Notes

We need the following results to prove our results.

**Theorem** 2.1 Every geodetic set of a graph contains its extreme vertices.

**Theorem 2.2** For any tree T with k pendant vertices, g(T) = k.

**Theorem 2.3** For any graph G of order n,  $\alpha_1(G) + \beta_1(G) = n$ .

**Theorem** 2.4 For cycle  $C_n$  of order  $n \ge 3$ ,

$$g(C_n) = \begin{cases} 2 & \text{if } n \text{ even} \\ 3 & \text{if } n \text{ odd.} \end{cases}$$

**Theorem 2.5** If G is a nontrivial connected graph, then  $g(G) \leq g(G \times K_2)$ .

## §3. Nonsplit Geodetic Number

**Theorem 3.1** For cycle  $C_n$  of order  $n \ge 3$ ,

$$g_{ns}(C_n) = \begin{cases} \frac{n}{2} + 1 & \text{if } n \text{ is even,} \\ \left\lfloor \frac{n}{2} \right\rfloor + 2 & \text{if } n \text{ is odd.} \end{cases}$$

*Proof* Suppose  $C_n$  be cycle with  $n \ge 3$ , we have the following

**Case 1.** Let *n* be even. Consider  $C_{2p} = \{v_1, v_2, \dots, v_{2p}, v_1\}$  be a cycle with 2p vertices. Then  $v_{p+1}$  is the antipodal vertex of  $v_1$ . Suppose  $S = \{v_1, v_{p+1}\}$  be the geodetic set of G. It is clear that  $\langle V(G) - S \rangle$  is not connected. Thus S is not a nonsplit geodetic set. But  $S' = \{v_1, v_2, \dots, v_{p+1}\}$  is a nonsplit geodetic set of G. So that  $g_{ns}(G) \leq (p+1)$ . If  $S_1$  is any set of vertices of G with  $|S_1| < |S'|$  then  $S_1$  contains at most p-elements. Hence  $V(G) - S_1$  is not connected. This follows that  $g_{ns}(G) = p + 1 = \frac{n}{2} + 1$ .

**Case 2.** Let *n* be odd. Consider  $C_{2p+1} = \{v_1, v_2, \dots, v_{2p+1}, v_1\}$  be a cycle with 2p+1 vertices. Then  $v_{p+1}$  and  $v_{p+2}$  are the antipodal vertices of  $v_1$ . Now consider  $S = \{v_1, v_{p+1}, v_{p+2}\}$  be the geodetic set of *G* and it is clear that  $\langle V(G) - S \rangle$  is not connected. Thus S is not a nonsplit geodetic set. But  $S' = \{v_1, v_2, \dots, v_{p+1}, v_{p+2}\}$  is a nonsplit geodetic set of G so that  $g_{ns}(G) \leq p+2$ . If  $S_1$  is any set of vertices of G with  $|S_1| < |S'|$  then  $S_1$  contains at most p-elements. Hence  $\langle V(G) - S_1 \rangle$  is not connected. This follows that

$$g_{ns}(G) = p + 2 = \left\lfloor \frac{n}{2} \right\rfloor + 2.$$

**Theorem 3.2** For any nontrivial tree T with k-pendant-vertices, then  $g_{ns}(T) = k$ .

Proof Let  $S = \{v_1, v_2, \dots, v_k\}$  be the set containing pendant vertices of a tree T. By Theorem 2.2,  $g(T) \ge |S|$ . On the other hand, for an internal vertex v of T there exist pendant vertices x,y of T such that v lies on the unique x-y geodesic in T. Thus,  $v \in I[S]$  and I[S] = V(T). Then  $g(T) \le |S|$ . Thus S itself a minimum geodetic set of T. Therefore g(T) = |S| = kand  $\langle V - S \rangle$  is connected. Hence  $g_{ns}(T) = k$ .

**Theorem 3.3** For any integers  $r, s \ge 2, g_{ns}(K_{r,s}) = r + s - 1$ .

*Proof* Let  $G = K_{r,s}$ , such that  $U = \{u_1, u_2, \cdots, u_r\}$ ,  $W = \{w_1, w_2, \cdots, w_s\}$  are the partite

sets of G, where  $r \leq s$  and also  $V = U \cup W$ .

Consider  $S = U \cup W - x$  for any  $x \in W$ . Every  $w_k \in W$ ,  $1 \le k \le s - 1$  lies on  $u_i - u_j$ geodesic for  $1 \le i \ne j \le r$ , so that S is a geodetic set of G. Since  $\langle V(G) - S \rangle$  is connected and hence S itself a nonsplit geodetic set of G. Let S' be any set of vertices such that |S'| < |S|. If S' is not a subset of U then  $\langle V(G) - S' \rangle$  is not connected and so S' is not a nonsplit geodetic set of G. If S' is not a subset of W - x, again S' is not a nonsplit geodetic set of G, by a similar argument. If S' = U then S' is a geodetic set but  $\langle V(G) - S' \rangle$  is not connected, so S' is not nonsplit geodetic set. If S' = W - x then S' is not a nonsplit geodetic set of G. From the above argument, it is clear that S is a minimum nonsplit geodetic set of G. Hence  $g_{ns}(Kr, s) = |S| = r + s - 1$ .

**Theorem 3.4** If G is a star then  $g_{ns}(G) = n - 1$ .

Proof Let  $V(G) = \{v_1, v_2, \cdots, v_{n-1}, v_n\}$  and let  $S = \{v_1, v_2, \cdots, v_{n-1}\}$  be the set of pendant vertices of G and is the geodetic set of G. Clearly, the subgraph induced by  $\langle V(G) - S = v_n \rangle$  is connected. Hence  $S = \{v_1, v_2, \cdots, v_{n-1}\}$  is a minimum nonsplit geodetic set of G. Therefore  $g_{ns}(G) = n - 1$ .

**Theorem 3.5** For any nontrivial connected graph G different from star of order n and diameter  $d, g_{ns}(G) \leq n - d + 1$ .

Proof Let u and v be the vertices of G for which d(u, v) = d and let  $u = v_0, v_1, \dots, v_d = v$ be a u - v path of length d. Now  $S = V(G) - \{v_1, v_2, \dots, v_{d-1}\}$  then I[S] = V[G] and consequently  $g_{ns}(G) \le |S| \le n - d + 1$ .

**Theorem 3.6** For any tree T,  $g_{ns}(T) + g(T) < 2m$ .

Proof Suppose  $S = \{v_1, v_2, v_3, \cdots, v_k\}$  be the set of all pendant vertices in T, forms a minimal geodetic set of I[S] = V(T). Further  $\{u_1, u_2, u_3, \cdots, u_l\} \subset V(G) - S$  is the set of internal vertices in T. Then  $\langle V(G) - S \rangle$  forms a minimal non split geodetic set of T, it follows that |S| + |S| < 2m. Hence  $g_{ns}(T) + g(T) < 2m$ .

**Theorem 3.7** For any graph G of order n,  $g_{ns}(G) \leq g_s(G)$ , where G is not a cycle..

Proof Let G be any graph with n vertices. Consider a nonsplit geodetic set  $S = \{v_1, v_2, \dots, v_k\}$  of a graph G. Since  $\langle V(G) - S \rangle$  is connected, the set S is not a split geodetic set of G. Now, we consider a set  $S' = S \cup \{a, b\}$  for any  $a, b \in V(G)$  such that  $\langle V(G) - S' \rangle$  is disconnected. Therefore S' is the split geodetic set of G with minimum cardinality. Thus |S| < |S'|. Clearly  $g_{ns}(G) \leq g_s(G)$ .

**Theorem 3.8** Let G be a cycle of order n then  $g_s(G) \leq g_{ns}(G)$ .

*Proof* Let G be a cycle of order n, we discuss the following cases.

**Case 1.** Suppose *n* is even. Let  $S = \{v_i, v_j\}$  be the split geodetic set of G where  $v_i, v_j$  are the two antipodal vertices of G. The  $v_i - v_j$  geodesic includes all the vertices of G and  $\langle V(G) - S \rangle$ 

is disconnected. But  $S' = \{v_i, v_{i+1}, \dots, v_j\}$  is a nonsplit geodetic set of G and the induced subgraph  $\langle V(G) - S' \rangle$  is connected. Thus  $|S| \leq |S'|$ . Clearly  $g_s(G) \leq g_{ns}(G)$ .

**Case 2.** Suppose *n* is odd. Let  $S = \{v_i, v_j, v_k\}$  be the split geodetic set of G. By the Theorem 2.4, no two vertices of S form a non split geodetic set and  $\langle V(G) - S \rangle$  is disconnected. But  $S' = \{v_i, v_{i+1}, \dots, v_j, v_k\}$  is a nonsplit geodetic set of G and the induced subgraph  $\langle V(G) - S' \rangle$  is connected. Thus  $|S| \leq |S'|$ . Clearly  $g_s(G) \leq g_{ns}(G)$ .

**Theorem 3.9** For the wheel  $W_n = k_1 + C_{n-1}$   $(n \ge 5)$ ,

$$g_{ns}(W_n) = \begin{cases} \frac{n}{2} & \text{if n is even} \\ \frac{n-1}{2} & \text{if n is odd} \end{cases}$$

Proof Let  $W_n = K_1 + C_{n-1}$  and let  $V(W_n) = \{x, u_1, u_2, \dots, u_{n-1}\}$ , where deg(x) = n-1 > 3 and  $deg(u_i) = 3$  for each  $i \in \{1, 2, \dots, n-1\}$ . We discuss the following cases.

Case 1. Let n be even. Consider geodesic

 $P: \{u_1, u_2, u_3\}, Q: \{u_3, u_4, u_5\}, \cdots, R: \{u_{2n-1}, u_{2n}, u_{2n+1}, \}.$ 

It is clear that the vertices  $u_2, u_4 \cdots, u_{2n}$  lies on the geodesic P, Q and R. Also  $u_1, u_3, u_5, \cdots, u_{2n-1}, u_{2n+1}$  is a minimum nonsplit geodetic set such that  $\langle V(G) - S \rangle$  is connected and it has  $\frac{n}{2}$  vertices. Hence  $g_{ns}(W_n) = \frac{n}{2}$ .

Case 2. Let n be odd. Consider geodesic

 $P: \{u_1, u_2, u_3\}, Q: \{u_3, u_4, u_5\}, \cdots, R: \{u_{2n-1}, u_{2n}, u_{2n+1}, \}.$ 

It is clear that the vertices  $u_2, u_4, \dots, u_{2n}$  lies on the geodesic P, Q and R. Also  $u_1, u_3, u_5, \dots, u_{2n-1}, u_{2n+1}$  is a minimum nonsplit geodetic set such that  $\langle V(G) - S \rangle$  is connected and it has  $\frac{n-1}{2}$  vertices. Hence  $g_{ns}(W_n) = \frac{n-1}{2}$ .

**Theorem 3.10** Let G be a graph such that both G and  $\overline{G}$  are connected then  $g_{ns}(G) + g_{ns}(\overline{G}) \le n(n-3) + 2$ .

Proof Since both G and  $\overline{G}$  are connected, we have  $\Delta(G) \cdot \overline{\Delta(G)} < n-1$ . Thus  $\beta_0(G), \beta_0(\overline{G}) \ge 2$ . Hence,

$$g_{ns} \leq n-1 \Rightarrow g_{ns}(G) \leq 2(n-1)-n+1 \Rightarrow g_{ns}(G) \leq 2m-n+1$$

Similarly,  $g_{ns}(\overline{G}) \leq 2\overline{m} - n + 1$ . Thus,

$$g_{ns}(G) + g_{ns}(\overline{G}) \leq 2(m + (\overline{m})) - 2n + 2 \quad \Rightarrow \quad g_{ns}(G) + g_{ns}(\overline{G}) \leq n(n-1) - 2n + 2$$
  
$$\Rightarrow \quad g_{ns}(G) + g_{ns}(\overline{G}) \leq n^2 - n - 2n + 2$$
  
$$\Rightarrow \quad g_{ns}(G) + g_{ns}(\overline{G}) \leq n^2 - 3n + 2$$
  
$$\Rightarrow \quad g_{ns}(G) + g_{ns}(\overline{G}) \leq n(n-3) + 2. \qquad \Box$$

**Theorem 3.11** For any nontrivial tree T,  $g_{ns}(T) \ge \alpha_0(T)$ .

Proof Let S be a minimum cover set of vertices in T. Then S has at least one vertex and every vertex in S is adjacent to some vertices in  $\langle V(G) - S \rangle$ . This implies that S is a nonsplit geodetic set of G. Thus  $g_{ns}(T) \ge \alpha_0(T)$ .

**Theorem 3.12** For any nontrivial tree T with m edges,  $g_{ns}(T) \leq m - \lceil \frac{\alpha_1(T)}{2} \rceil + 2$ , where  $\alpha_1(T)$  is an edge covering number.

Proof Suppose  $S' = \{e_1, e_2, \dots, e_i\}$  be the set of all end edges in T and  $J \subseteq E(T) - S'$ be the minimal set of edges such that  $|S' \cup J| = \alpha_1(T)$ . By the Theorem 2.2 S' is the minimal geodetic set of G. Also it follows that  $\langle V(G) - S' \rangle$  is connected. Clearly,

$$g_{ns}(T) \le |E(T)| - \left| \left\lceil \frac{S' \cup J}{2} \right\rceil \right| + 2 \Rightarrow g_{ns}(T) \le m - \left\lceil \frac{\alpha_1(T)}{2} \right\rceil + 2.$$

**Theorem 3.13** For a cycle  $C_n$  of order n,  $g_{ns}(G) = \alpha_0(C_n) + 1$ .

*Proof* Consider a cycle  $C_n$  of order n. We discuss the following cases.

**Case 1.** Suppose that *n* is even and  $\alpha_0(C_n)$  is the vertex covering number of  $C_n$ . We have by Theorem 3.1,  $g_{ns}(G) = \frac{n}{2} + 1$  and also for an even cycle, vertex covering number  $\alpha_0(C_n) = \frac{n}{2}$ . Hence,

$$g_{ns}(G) = \frac{n}{2} + 1 = \alpha_0(C_n) + 1.$$

**Case 2.** Suppose that *n* is odd and  $\alpha_0(C_n)$  is the vertex covering number of  $C_n$ . We have by Theorem 3.1,  $g_{ns}(G) = \lfloor \frac{n}{2} \rfloor + 2$  and also for an odd cycle, vertex covering number  $\alpha_0(C_n) = \lfloor \frac{n}{2} \rfloor + 1$ . Hence,

$$g_{ns}(G) = \lfloor \frac{n}{2} \rfloor + 2 \Rightarrow g_{ns}(G) = \alpha_0(C_n) + 1.$$

**Theorem 3.14** If is a connected noncomplete graph G of order  $n,g_{ns} \leq (n - \kappa(G)) + 1$ , where  $\kappa(G)$  is vertex connectivity.

Proof Let  $\kappa(G) = k$ . Since G is connected but not complete  $1 \leq \kappa(G) \leq n-2$ . Let  $U = \{u_1, u_2, \dots, u_k\}$  be a minimum cut set of G, let  $G_1, G_2, \dots, G_r (r \geq 2)$  be the components of G - U and let W = V(G) - (U - 1) then every vertex  $u_i (1 \leq i \leq k)$  is adjacent to at least one vertex of  $G_j$  for every  $(i \leq j \leq r)$ . Therefore, every vertex  $u_i$  belongs to a W geodesic path. Thus

$$g_{ns}(G) = |W| \le (V(G) - U) + 1 \le (n - \kappa(G)) + 1.$$

#### §4. Corona Graph

Let G and H be two graphs and let n be the order of G. The corona product  $G \circ H$  is defined as the graph obtained from G and H by taking one copy of G and n copies of H and then joining by an edge, all the vertices from the  $i^{th}$ -copy of H with the  $i^{th}$ -vertex of G.

**Theorem** 4.1 Let G be a connected graph of order n and H be any graph of order m then  $g_{ns}(G \circ H) = nm$ .

Proof Let S be a nonsplit geodetic set in  $G \circ H$ ,  $v_i \in V(G)$ ,  $1 \leq i \leq n$  and  $u_j \in V(H)$ ,  $1 \leq j \leq m$ . For each  $v_i$  there is a copy  $Hv_i$  which contains  $u_j$  vertices. Clearly  $V(Hu_j) \cap S$  is a geodetic set of  $G \circ H$  and  $\langle V(G) - S \rangle$  is connected. Further every  $w_k \in (G \circ H)$  lies on the geodesic path in S. Therefore S is the minimum nonsplit geodetic set. Thus,  $|S| = g_{ns}(G \circ H) = nm$ .

## §5. Adding a Pendant Vertex

An edge e = (u, v) of a graph G with deg(u) = 1 and deg(v) > 1 is called an *pendant edge* and u an pendant vertex.

**Theorem 5.1** Let G' be the graph obtained by adding an pendant edge (u, v) to a cycle  $G = C_n$  of order n > 3, with  $u \in G$  and  $v \notin G$ , then

$$g_{ns}(G') = \begin{cases} 2 & \text{if n is even} \\ 3 & \text{if n is odd} \end{cases}$$

Proof Let  $\{u_1, u_2, u_3, \dots, u_n, u_1\}$  be a cycle with *n* vertices. Let G' be the graph obtained from  $G = C_n$  by adding an pendant edge (u, v) such that  $u \in G$  and  $v \notin G$ . We discuss the following cases.

**Case 1.** For  $G = C_{2n}$ , let  $S = \{v, u_i\}$  be a non split geodetic set of G', where v is the pendant vertex of G' and  $diam(G') = v - u_i$  path, clearly I[S] = V[G']. Also for all  $x, y \in V(G') - S$ ,  $\langle V(G') - S \rangle$  is connected. Hence,  $g_{ns}(G') = 2$ .

**Case 2.** For  $G = C_{2n+1}$ , let  $S = \{v, a, b\}$  be a non split geodetic set of G', where v is the pendant vertex of G' and  $a, b \in G$  such that d(v, a) = d(v, b). Thus I[S] = V[G'] and  $\langle V(G') - S \rangle$  is connected. Hence,  $g_{ns}(G') = 3$ .

**Theorem 5.2** Let G' be the graph obtained by adding a pendant vertex  $(u_i, v_i)$  for  $i = 1, 2, 3, \dots, n$  to each vertex of  $G = C_n$  such that  $u \in G, v_i \notin G$ , then  $g_{ns}(G') = k$ .

Proof Let  $G = C_n = \{u_1, u_2, u_3, \dots, u_n, u_1\}$  be a cycle with n vertices. Let G' be the graph obtained by adding an pendant vertex  $\{u_i, v_i\}, i = 1, 2, 3, \dots, n$  to each vertex of G such that  $u_i \in G$  and  $v_i \notin G$ . Let  $S = \{v_1, v_2, v_3, \dots, v_k\}$  be a non split geodetic set of G'. Clearly  $I[X] \neq V(G')$ . Also,  $x, y \in V(G') - S$  with V(G') - S connected. Thus,  $g_{ns}(G') = k$ .  $\Box$ 

**Theorem 5.3** Let G' be the graph obtained by adding k pendant vertices  $\{(u, v_1), \dots, (u, v_k)\}$ to a cycle  $G = C_n$  of order n > 3, with  $u \in G$  and  $\{v_1, v_2, \dots, v_k\} \notin G$ . Then

$$g_{ns}(G') = \begin{cases} k+1 & \text{if } n \text{ is even} \\ k+2 & \text{if } n \text{ is odd} \end{cases}$$

*Proof* Consider  $\{u_1, u_2, u_3, \dots, u_n, u_1\}$  be a cycle with n vertices. Let G' be the graph

obtained from  $G = C_n$  by adding k pendant edges  $\{u_i v_1, u_i v_2, \dots, u_i v_k\}$  such that  $u_i$  a single vertex of G and  $\{v_1, v_2, v_3, \dots, v_k\}$  does not belongs to G. We discuss the following cases.

**Case 1.** Let  $G = C_{2n}$ . Consider  $X = \{v_1, v_2, v_3, \dots, v_k\} \cup u_i$ , for any vertex  $u_i$  of G. Now  $S = \{X\}$  be a non split geodetic set, such that  $\{v_1, v_2, v_3, \dots, v_k\}$  are the pendant vertices of G' and  $u_j$  is the antipodal vertex of  $u_i$  in G. Thus I[X] = V[G']. Consider  $P = \{v_1, v_2, v_3, \dots, v_k\}$  as a set of pendant vertices such that |P| < |S| is not a non split geodetic set i.e for some vertex  $u_j \in V_{G'}, u_j \notin I[P]$ . If P = X, then P is not nonsplit geodetic set. Thus S is a minimum non split geodetic set of G' and  $\langle V(G') - S \rangle$  is connected. Thus,  $g_{ns}(G') = k + 1$ .

**Case 2.** Let  $G = C_{2n+1}$ . Consider  $S = \{v_1, v_2, v_3, \dots, v_k, a, b\}$  be a non split geodetic set, where  $\{v_1, v_2, \dots, v_k\} \notin G$  are k pendant vertices of G' not in G and  $a, b \in G$  such that d(u, a) = d(u, b). Thus I[S] = V[G']. Also  $x, y \in V(G') - S$  it follows that  $\langle V(G') - S \rangle$  is connected. Therefore,  $g_{ns}(G') = k + 2$ .

### §6. Cartesian Products

The cartesian product of the graphs  $H_1$  and  $H_2$  written as  $H_1 \times H_2$ , is the graph with vertex set  $V(H_1) \times V(H_2)$ , two vertices  $u_1, u_2$  and  $v_1, v_2$  being adjacent in  $H_1 \times H_2$  iff either  $u_1 = v_1$ and  $(u_2, v_2) \in E(H_2)$ , or  $u_2 = v_2$  and  $(u_1, v_1) \in E(H_1)$ .

**Theorem 6.1** Let  $K_2$  and  $G = C_n$  be the graphs then

$$g_{ns}(K_2 \times G) = \begin{cases} 2 & \text{if n is even} \\ 3 & \text{if } n > 5 \text{ is odd} \\ 4 & \text{if } n=3 \end{cases}$$

*Proof* Consider  $G = C_n$ , let  $K_2 \times G$  be graphs formed from two copies  $G_1$  and  $G_2$  of G. Let  $V = \{v_1, v_2, \dots, v_n\}$  be the vertices of  $G_1$  and  $W = \{w_1, w_2, \dots, w_n\}$  be the vertices of  $G_2$  and  $U = V \cup W$ . We consider the following cases.

**Case 1.** Let *n* be even. Consider  $S = \{v_i, w_j\}$  be the non split geodetic of  $K_2 \times G$  such that  $v_i$  to  $w_j$  path is equal to  $diam(K_2 \times G)$  which includes all the vertices of  $K_2 \times G$ . Hence  $\langle U - S \rangle$  is connected. Therefore,  $g_{ns}[K_2 \times G] = 2$ .

**Case 2.** Let n be odd. Consider  $S = \{v_i, w_j, v_k\}$  be the non split geodetic set of  $K_2 \times G$  such that  $v_i$  to  $w_j$  path is equal to  $diam(K_2 \times G)$  and is equal to  $w_j - v_k path$  and also  $v_i - w_j \cup w_j - v_k$  path includes all the vertices of  $K_2 \times G$ . Hence  $\langle U - S \rangle$  is connected. Therefore,  $g_{ns}[K_2 \times G] = 3$ .

**Case 3.** For n = 3, let  $S = \{v_i, w_j, v_k\}$  be the geodetic set of  $K_2 \times G$ , that is  $v_i - w_j$  is equal to  $diam(K_2 \times G)$  and is equal to  $w_j - v_k$  and also  $I[S] = U(K_2 \times G)$ . But  $\langle U - S \rangle$  is not connected. Let  $S' = S \cup \{v_n\} = \{v_i, w_j, v_k, v_n\}$  be the non split geodetic set of  $K_2 \times G$ . Hence,  $\langle U - S' \rangle$  is connected. Therefore,  $g_{ns}[K_2 \times G] = 4$ .

**Theorem 6.2** For any complete graph  $K_n$  of order n,  $g_{ns}[K_2 \times K_n] = n + 1$ .

*Proof* Consider  $K_2 \times K_n$  be graph formed from two copies of  $G_1$  and  $G_2$  of G. Now, let us prove the result by mathematical induction,

For n = 2,  $g_{ns}[k_2 \times K_2] = 3$ , since  $K_2 \times K_2 = C_4$  by Theorem 3.1 we have  $g_{ns}[C_4] = 3$  the result is true.

Let us assume that the result is true for n=m, that is  $g_{ns}[K_2 \times K_m] = m + 1$ .

Now, we shall prove the result for n = m+1. Let  $S = \{v_1, v_2, v_3, \dots, v_{m+2}\}$  be the nonsplit geodetic set formed from some elements in  $G_1$  and the elements which are not corresponds to elements in  $G_1$  of  $K_2 \times K_{m+1}$ . Clearly  $I[S] = V(K_2 \times K_n)$ . Let P be any set of vertices such that |P| < |S|. Suppose  $P = \{v_1, v_2, v_3, \dots, v_m\}$  which is not non split geodetic set, because  $I[P] \neq V[K_2 \times K_{m+1}]$ . So S itself a minimum geodetic set of  $K_2 \times K_{m+1}$ . Hence,  $g_{ns}[K_2 \times K_{m+1}] = m + 1 + 1$ . Thus,  $g_{ns}(K_2 \times K_n) = n + 1$ .

**Theorem 6.3** For any complete graph of order  $n \ge 3$ ,  $g_{ns}(K_n \times K_n) = n$ .

*Proof* We shall prove the result by mathematical induction, For  $n \ge 3$ , let us assume that the result is true for n = m, that is  $g_{ns}(K_m \times K_m) = m$ .

Now, we shall prove the result for n = m + 1. Let  $S = \{v_1, v_2, v_3, \dots, v_{m+1}\}$  be the non split geodetic set formed from some elements in  $G_1$  and the elements which are not corresponds to elements in  $G_1$  of  $K_{m+1} \times K_{m+1}$ . Clearly  $I[S] = V(K_2 \times K_n)$ . Now, consider P be any set of vertices such that |P| < |S|. Suppose  $P = \{v_1, v_2, v_3, \dots, v_m\}$  which is not non split geodetic set, because  $I[P] \neq V(K_{m+1} \times K_{m+1})$ . So S itself a minimum geodetic set of  $K_{m+1} \times K_{m+1}$ . Hence,  $g_{ns}(K_{m+1} \times K_{m+1}) = m + 1$ . Thus  $g_{ns}(K_n \times K_n) = n$ .

**Theorem** 6.4 Let G and H be graphs then  $g_{ns}(G \times H) \ge max\{g(G), g(H)\}$ . Equality holds when G, H are complete graphs and  $n \ge 3$ .

Proof If S is a minimum geodetic set in  $G \times H$  then we have  $I[S] = \bigcup_{a,b \in S} I[a,b] = \bigcup_{a,b \in S} I[a_1,b_1] \times I[a_2,b_2] \subseteq (\bigcup_{a_1,b_1 \in S} I[a_1,b_1]) \times (\bigcup_{a_2,b_2 \in S} I[a_2,b_2]) = I[S_1] \times I[S_2], V(G \times H) = I[S] \subseteq I[S_1] \times I[S_2].$  Therefore  $S_1$  and  $S_2$  geodetic set in G, H respectively, so  $g_{ns}(G \times H) = |S| \ge max\{|s_1|, |s_2|\} \ge max\{g(G), g(H)\}$ , proving the lower bound.

Consider complete graphs G, H with vertex sets  $V(G) = \{u_1, u_2, \dots, u_p\}$  and  $V(H) = \{v_1, v_2, \dots, v_q\}$  where without loss of generality  $p \ge q$ . Then g(G) = p and g(H) = q. Let  $S = \{(u_1, v_2), (u_2, v_2), \dots, (u_q, v_q), (u_{q+1}, v_q), (u_{q+2}, v_q), \dots, (u_p, v_q)\}.$ 

It is straight forward to verify that S is a non split geodetic set for  $G \times H$ . Hence,  $g_{ns}(G \times H) \leq |S| \leq p = max\{g(G), g(H)\} \leq g_{ns}(G \times H)$ , so equality holds.  $\Box$ 

**Theorem 6.5** Let G = T and  $H = K_2$  be the graphs with  $g(G) = p \ge g(H) = q \ge 2$  then  $g_{ns}(G \times H) \le pq - q$ .

*Proof* Set  $X = G \times H$ . Let  $S = \{g_1, g_2, ..., g_p\}$  and  $T = \{h_1, h_2, \cdots, h_q\}$  be the geodetic sets of G and H respectively, and  $U = \{(S \times T) / \bigcup_{i,j=1}^{p,q} \{(g_i, h_j)\}\}.$ 

We claim that  $I_X[U] = V(X)$ . Let (g, h) be an arbitrary vertex of X. Then there exists indices i and i' such that  $g \in I_G[g_i, g_{i'}]$  and there are indices j and j' such that  $h \in I_H[h_j, h_{j'}]$ . Since  $p, q \ge 2$  we may assume that i = i' and j = j'. Indeed, if say  $g = g_i$  then i' to be an arbitrary index from  $\{1, 2, \dots, p\}$  different from *i*. Set  $B = \{(g_i, h_j), (g_i, h_{j'}), (g_{i'}, h_j), (g_{i'}, h_{j'})\}$ .

Suppose that one of the vertices from B is not in U. We may without loss of generality assume  $(g_i, h_j) / inU$ . This means that i = j. Therefore  $i' \neq j$  and  $i \neq j'$ . Then we infer that  $(g, h) \in I_X[(g_i, h_{j'}), (g_{i'}, h_j)]$ . Otherwise, all vertices from B are in U, then  $(g, h) \in I_X[(g_i, h_j), (g_{i'}, h_j)]$ . Hence,  $g_{ns}[G \times H] \leq pq - q$ .

**Theorem 6.6** Let  $K_2$  and T be the graphs then  $g_{ns}(K_2 \times T) = g_{ns}(T)$ .

Proof Consider a tree T. Let  $K_2 \times T$  be a graph formed from two copies  $T_1$  and  $T_2$  of Tand S be a minimum non split geodetic set of  $K_2 \times T$ . Now, we define S' to be the union of those vertices of S in  $T_1$  and the vertices of  $T_1$  corresponding to vertices of  $T_2$  belonging to S. Let  $v \in V(T_1)$  lies on some x - y geodesic, where  $x, y \in S$ . Since S is a non split geodetic set by Theorem 3.2, i.e.,  $g_{ns}(T) = k$  at least one of x and y belongs to  $V_1$ . If both  $x, y \in V_1$  then  $x, y \in S'$ . Hence, we may assume that  $x \in V_1, y \in V_2$ . If y corresponds to x then  $v = x \in S'$ . Hence, we assume that y corresponds to  $y' \in S'$ , where  $y' \neq x$ . Since d(x, y) = d(x, y') + 1 and the vertex v lies on an x - y geodesic in  $K_2 \times G$ . Hence, v lies on x - y geodesic in G that is  $g_{ns}(G) \leq g_{ns}(K_2 \times G)$ .

Conversely, let S contains a vertex with the property that every vertex of  $T_1$  lies on x - w geodesic  $T_1$  for some  $w \in S$ . Let S' consists of x together with those vertices of  $T_2$  corresponding to those  $S - \{x\}$ . Thus, |S'| = |S|. We show that S' is a non split geodetic set of  $K_2 \times T$ . Hence  $g_{ns}(K_2 \times T) \leq g_{ns}(T)$ . Thus,  $g_{ns}(K_2 \times T) = g_{ns}(T)$ .

**Theorem 6.7** Let  $K_2$  and  $G = P_n$  be the two graphs,

$$g_{ns}(K_2 \times G) = \begin{cases} 2 & ifn \ge 3\\ 3 & ifn = 2 \end{cases}$$

*Proof* Consider a trivial graph  $K_1$  as a connected graph. Let  $G_1$  and  $G_2$  be the two copies of G and also  $V(G_1) = \{a_1, a_2, \dots, a_n\}, V(G_2) = \{b_1, b_2, \dots, b_n\}$ . Let  $S = \{a_1, b_n\}$  be the non split geodetic set of  $K_2 \times G$  and also  $d(a_1, b_n) = diam(a_1, b_n)$ . Thus,  $V - S = \{a_2, a_3, \dots, a_n, b_1, b_2, \dots, b_{n-1}\}$  is the induced subgraph and it is connected. Hence  $g_{ns}[K_2 \times G] = 2$ .

Similarly, the result is obvious for n = 2 that is  $g_{ns}[K_2 \times G] = 3$ .

# 

#### §7. Block Graphs

A block graph has a subgraph  $G_1$  of G(not a null graph) such that  $G_1$  is non separable and if  $G_2$  is any other graph of G, then  $G_1 \cup G_2 = G_1$  or  $G_1 \cup G_2$  is separable. For any graph G a complete subgraph of G is called clique of G. The number of vertices in a largest clique of G is called the clique number of G and denoted by  $\omega(G)$ .

**Theorem 7.1** For any block graph G,  $g_{ns}(G) = n - c_i$  where n be the number of vertices and  $c_i$  be the number of cut vertices.

Proof Let  $V = \{v_1, v_2, \dots, v_n\}$  be the number of vertices of G. Consider S be the geodetic set of G and  $\langle V(G) - S \rangle$  is connected. Thus S itself a nonsplit geodetic set of G. Since every geodetic set does not contain any cut vertices. Hence,  $g_{ns}(G) = n - c_i$ .

**Theorem 7.2** For any block graph G,  $g_{ns}(G) \leq \omega(G) + 2c_i$  where  $\omega(G)$  be the clique number and  $c_i$  be the number of cut vertices.

Proof Let  $V = \{v_1, v_2, \dots, v_n\}$  be the number of vertices of G. In a block graph, every geodetic set is a nonsplit geodetic set. Consider S be the geodetic set of G and  $\langle V(G) - S \rangle$  is connected. Thus S itself a nonsplit geodetic set of G. By the definition, the number of vertices in a largest clique of G is  $\omega(G)$  and also every geodetic set does not contain any cut vertices of G. It follows that  $g_{ns}(G) \leq \omega(G) + 2c_i$ .

**Theorem 7.3** For any block graph G,  $g_{ns}(G) = \alpha_0(G) + 1$  where  $\alpha_0(G)$  be the vertex covering number.

*Proof* Let G be a block graph of order n. Now, we prove the result by mathematical induction.

For  $c_i = 1$ , the vertex covering number of G is

$$\alpha_0(G) = n - c_i - 1 \Rightarrow \alpha_0(G) = n - 1 - 1 \Rightarrow \alpha_0(G) + 1 = n - 1,$$

by Theorem 7.1, we have

$$g_{ns}(G) = n - c_i \Rightarrow g_{ns}(G) = n - 1.$$

Therefore,  $g_{ns}(G) = \alpha_0(G) + 1$ . Thus the result is result is true for  $c_i = 1$ . Let us assume that the result is true for  $c_i = m$  that is  $g_{ns}(G) = \alpha_0(G) + 1$ .

Now, we shall prove the result for  $c_i = m + 1$ , where m+1 is the number of cut vertices. Let  $S = \{v_1, v_2, \dots, v_n\}$  be the minimum nonsplit geodetic set of G. Since every geodetic set does not contain any cut vertex, by Theorem 7.1 we have  $g_{ns}(G) = n - m - 1$ . Therefore,

$$\alpha_0(G) = n - c_i - 1 \Rightarrow \alpha_0(G) = (n - m - 1) - 1 \Rightarrow \alpha_0(G) + 1 = n - m - 1.$$

Thus,  $g_{ns}(G) = \alpha_0(G) + 1$ .

## References

- [1] F.Buckley, F.Harary, Distance in Graphs, Addison-Wesley, Redwood City, CA, 1990.
- [2] F.Buckley, F.Harary, L V.Quintas, Extremal results on the geodetic number of a graph, *Scientia* A2, Redwood City,CA, (1988), 17-26.
- [3] G.Chartrand, F.Harary and P.Zhang, On the geodetic number of a graph, *Networks*, 39(1988), 1-6.
- [4] G.Chartrand, E.M.Palmer and P.Zhang , The geodetic number of a graph, A Survey, Congr.Numer., 156(2002) 37-58.

- [5] G.Chartrand and P.Zhang, The forcing geodetic number of a graph, *Discuss.Math, Graph Theory*, 19(1999), 45-58.
- [6] F.Buckley, F.Harary, Graph Theory, Addison-Wesley, 1969.
- [7] F.Harary, E.Loukakis, C.Tsouros, The geodetic number of a graph, *Math. Comput. Modelling*, 17(11)(1993), 89-95.
- [8] P.A.Ostrand, Graphs with specified radius and diameter, Discrete Math., 4(1973), 71-75.
- [9] A.P.Santhakumaran, P.Titus and J.John, On the connected geodetic number of a graph, *Congr.Numer.*, (in press).
- [10] Venkanagouda M Goudar, Ashalatha K S and Venkatesh, Split geodetic number of a graph, Advances and Applications in Discrete Mathematics, Vol.13,(2014), 9-22.