
International J.Math. Combin. Vol.2(2016), 109-120

Nonsplit Geodetic Number of a Graph

Tejaswini K M, Venkanagouda M Goudar

Sri Gauthama Research Centre, (Affiliated to Kuvempu University, Shimoga)

Department of Mathematics, Sri Siddhartha Institute of Technology, Tumkur-572 105, Karnataka, India

Venkatesh

Department of mathematics, Kuvempu University, Shimoga, India

E-mail: tejaswini.ssit@gmail.com, vmgouda@gmail.com vensprema@gmail.com

Abstract: Let G be a graph. If u, v ∈ V (G), a u − v geodesic of G is the shortest path

between u and v. The closed interval I[u, v] consists of all vertices lying in some u - v

geodesic of G. For S ⊆ V (G) the set I[S] is the union of all sets I[u, v] for u, v ∈ S . A set S

is a geodetic set of G if I(S) = V (G). The cardinality of a minimum geodetic set of G is the

geodetic number of G, denoted by g(G). In this paper, we study the nonsplit geodetic number

of a graph gns(G). The set S ⊆ V (G) is a nonsplit geodetic set in G if S is a geodetic set and

〈V (G) − S〉 is connected, nonsplit geodetic number gns(G) of G is the minimum cardinality

of a nonsplit geodetic set of G. We investigate the relationship between nonsplit geodetic

number and geodetic number. We also obtain the nonsplit geodetic number in the cartesian

product of graphs.
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§1. Introduction

As usual n = |V | and m = |E| denote the number of vertices and edges of a graph G respectively.

The graphs considered here are finite, undirected,simple and connected. The distance d(u, v)

between two vertices u and v in a connected graph G is the length of a shortest u − v path in

G. It is well known that this distance is a metric on the vertex set V (G). For a vertex v of

G, the eccentricity e (v) is the distance between v and a vertex farthest from v. The minimum

eccentricity among the vertices of G is radius, rad G and the maximum eccentricity is the

diameter, diam G. A u− v path of length d(u, v) is called a u− v geodesic. We define I[u, v] to

the set (interval) of all vertices lying on some u−v geodesic of G and for a nonempty subset S of

V (G), I[S] = ∪u,v∈SI[u, v]. A set S of vertices of G is called a geodetic set in G if I[S] = V (G),

and a geodetic set of minimum cardinality is a minimum geodetic set, and generally, if there is

a k-subset T of V (G) such that I(S)
⋃

T = V (G), where 0 ≤ k < |G| − |S|, then S is called a

Smarandachely k-geodetic set of G. The cardinality of a minimum geodetic set in G is called
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the geodetic number and is denoted by g (G). The concept of geodetic number of a graph was

introduced in [1, 4, 7], further studied in [2, 3], and the split geodetic number of a graph was

introduced in [10]. It was shown in [7] that determining the geodetic number of a graph is an

NP-hard problem.

A set of vertices S in a graph G is a nonsplit geodetic set if S is a geodetic set and the

subgraph G [V − S] induced by 〈V (G) − S〉 is connected. The minimum cardinality of a nonsplit

geodetic set, denoted gns (G), is called the nonsplit geodetic number of G.

w

vu

x

y

Figure 1.1

Consider the graph G of Figure 1.1. For the vertices u and y in G d (u, y) = 3 and every

vertex of G lies on an u − y geodesic in G. Thus S = {u, y} is the geodetic set of G and so

g (G). Here the induced subgraph 〈V (G) − S〉 is connected. So that S is a minimum nonsplit

geodetic set of G. Therefore nonsplit geodetic number gns(G) = 2.

A vertex v is an extreme vertex in a graph G, if the subgraph induced by its neighbours

is complete. A vertex cover in a graph G is a set of vertices that covers all edges of G. The

minimum number of vertices in a vertex cover of G is the vertex covering number α0 (G) of G.

An edge cover of a graph G without isolated vertices is a set of edges of G that covers all the

vertices of G. The edge covering number α1 (G) of a graph G is the minimum cardinality of an

edge cover of G. For any undefined term in this paper, see [1, 6]

§2. Preliminary Notes

We need the following results to prove our results.

Theorem 2.1 Every geodetic set of a graph contains its extreme vertices.

Theorem 2.2 For any tree T with k pendant vertices, g(T ) = k.

Theorem 2.3 For any graph G of order n, α1(G) + β1(G) = n.
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Theorem 2.4 For cycle Cn of order n ≥ 3,

g(Cn) =





2 if n even,

3 if n odd.

Theorem 2.5 If G is a nontrivial connected graph, then g(G) ≤ g(G × K2).

§3. Nonsplit Geodetic Number

Theorem 3.1 For cycle Cn of order n ≥ 3,

gns(Cn) =






n
2 + 1 if n is even,
⌊

n
2

⌋
+ 2 if n is odd.

Proof Suppose Cn be cycle with n ≥ 3, we have the following

Case 1. Let n be even. Consider C2p = {v1, v2, · · · , v2p, v1} be a cycle with 2p vertices.

Then vp+1 is the antipodal vertex of v1. Suppose S = {v1, vp+1} be the geodetic set of G.

It is clear that 〈V (G) − S〉 is not connected. Thus S is not a nonsplit geodetic set. But

S′ = {v1, v2, · · · , vp+1} is a nonsplit geodetic set of G. So that gns(G) ≤ (p + 1). If S1 is any

set of vertices of G with |S1| < |S′| then S1 contains at most p-elements. Hence V (G) − S1 is

not connected. This follows that gns(G) = p + 1 = n
2 + 1.

Case 2. Let n be odd. Consider C2p+1 = {v1, v2, · · · , v2p+1, v1} be a cycle with 2p+1

vertices. Then vp+1 and vp+2 are the antipodal vertices of v1. Now consider S = {v1, vp+1, vp+2}
be the geodetic set of G and it is clear that 〈V (G) − S〉 is not connected. Thus S is not a

nonsplit geodetic set. But S′ = {v1, v2, · · · , vp+1, vp+2} is a nonsplit geodetic set of G so that

gns(G) ≤ p + 2. If S1 is any set of vertices of G with |S1| < |S′| then S1 contains at most

p-elements. Hence 〈V (G) − S1〉 is not connected. This follows that

gns(G) = p + 2 =
⌊n

2

⌋
+ 2. 2

Theorem 3.2 For any nontrivial tree T with k-pendant-vertices, then gns(T ) = k.

Proof Let S = {v1, v2, · · · , vk} be the set containing pendant vertices of a tree T. By

Theorem 2.2, g(T ) ≥ |S|. On the other hand, for an internal vertex v of T there exist pendant

vertices x,y of T such that v lies on the unique x-y geodesic in T. Thus, v ∈ I [S] and I [S] =

V (T ).Then g(T ) ≤ |S|. Thus S itself a minimum geodetic set of T.Therefore g(T ) = |S| = k

and 〈V − S〉 is connected. Hence gns(T ) = k. 2
Theorem 3.3 For any integers r, s ≥ 2,gns(Kr,s) = r + s − 1.

Proof Let G =Kr,s, such that U = {u1, u2, · · · , ur}, W = {w1, w2, · · · , ws} are the partite
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sets of G, where r ≤ s and also V = U ∪ W .

Consider S = U ∪ W − x for any x ∈ W . Every wk ∈ W , 1 ≤ k ≤ s − 1 lies on ui − uj

geodesic for 1 ≤ i 6= j ≤ r, so that S is a geodetic set of G. Since 〈V (G) − S〉 is connected and

hence S itself a nonsplit geodetic set of G . Let S′ be any set of vertices such that |S′| < |S|. If

S′ is not a subset of U then 〈V (G) − S′〉 is not connected and so S′ is not a nonsplit geodetic

set of G. If S′ is not a subset of W − x, again S′ is not a nonsplit geodetic set of G, by a

similar argument.If S′ = U then S′ is a geodetic set but 〈V (G) − S′〉 is not connected, so

S′ is not nonsplit geodetic set. If S′ = W − x then S′ is not a nonsplit geodetic set of G.

From the above argument, it is clear that S is a minimum nonsplit geodetic set of G. Hence

gns(Kr, s) = |S| = r + s − 1. 2
Theorem 3.4 If G is a star then gns(G) = n − 1.

Proof Let V (G) = {v1, v2, · · · , vn−1, vn} and let S = {v1, v2, · · · , vn−1} be the set of pen-

dant vertices of G and is the geodetic set of G. Clearly, the subgraph induced by 〈V (G) − S = vn〉
is connected. Hence S = {v1, v2, · · · , vn−1} is a minimum nonsplit geodetic set of G. Therefore

gns(G) = n − 1. 2
Theorem 3.5 For any nontrivial connected graph G different from star of order n and diameter

d, gns(G) ≤ n − d + 1.

Proof Let u and v be the vertices of G for which d(u, v) = d and let u = v0, v1, · · · , vd = v

be a u − v path of length d. Now S = V (G) − {v1, v2, · · · , vd−1} then I[S] = V [G] and

consequently gns(G) ≤ |S| ≤ n − d + 1. 2
Theorem 3.6 For any tree T , gns(T ) + g(T ) < 2m.

Proof Suppose S = {v1, v2, v3, · · · , vk} be the set of all pendant vertices in T , forms a

minimal geodetic set of I [S] = V (T ) . Further {u1, u2, u3, · · · , ul} ⊂ V (G) − S is the set of

internal vertices in T . Then 〈V (G) − S〉 forms a minimal non split geodetic set of T , it follows

that |S| + |S| < 2m . Hence gns(T ) + g(T ) < 2m. 2
Theorem 3.7 For any graph G of order n, gns(G) ≤ gs(G), where G is not a cycle..

Proof Let G be any graph with n vertices. Consider a nonsplit geodetic set S = {v1, v2, · · · , vk}
of a graph G. Since 〈V (G) − S〉 is connected, the set S is not a split geodetic set of G. Now,

we consider a set S′ = S ∪ {a, b} for any a, b ∈ V (G) such that 〈V (G) − S′〉 is disconnected.

Therefore S′ is the split geodetic set of G with minimum cardinality. Thus |S| < |S′|. Clearly

gns(G) ≤ gs(G). 2
Theorem 3.8 Let G be a cycle of order n then gs(G) ≤ gns(G).

Proof Let G be a cycle of order n, we discuss the following cases.

Case 1. Suppose n is even. Let S = {vi, vj} be the split geodetic set of G where vi, vj are the

two antipodal vertices of G. The vi − vj geodesic includes all the vertices of G and 〈V (G) − S〉
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is disconnected. But S′ = {vi, vi+1, · · · , vj} is a nonsplit geodetic set of G and the induced

subgraph 〈V (G) − S′〉 is connected. Thus |S| ≤ |S′|. Clearly gs(G) ≤ gns(G).

Case 2. Suppose n is odd. Let S = {vi, vj , vk} be the split geodetic set of G. By the Theorem

2.4, no two vertices of S form a non split geodetic set and 〈V (G) − S〉 is disconnected. But

S′ = {vi, vi+1, · · · , vj , vk} is a nonsplit geodetic set of G and the induced subgraph 〈V (G) − S′〉
is connected. Thus |S| ≤ |S′|. Clearly gs(G) ≤ gns(G). 2
Theorem 3.9 For the wheel Wn = k1 + Cn−1 (n ≥ 5),

gns(Wn) =






n
2 if n is even

n−1
2 if n is odd

Proof Let Wn = K1+Cn−1 and let V (Wn)={x, u1, u2, · · · , un−1}, where deg(x) = n−1 >

3 and deg(ui) = 3 for each i ∈ {1, 2, · · · , n − 1}. We discuss the following cases.

Case 1. Let n be even. Consider geodesic

P : {u1, u2, u3} , Q : {u3, u4, u5} , · · · , R : {u2n−1, u2n, u2n+1, }.
It is clear that the vertices u2, u4 · · · , u2n lies on the geodesic P, Q and R. Also u1, u3, u5, · · · ,

u2n−1, u2n+1 is a minimum nonsplit geodetic set such that 〈V (G) − S〉 is connected and it has
n
2 vertices. Hence gns(Wn) = n

2 .

Case 2. Let n be odd. Consider geodesic

P : {u1, u2, u3} , Q : {u3, u4, u5} , · · · , R : {u2n−1, u2n, u2n+1, }.
It is clear that the vertices u2, u4, · · · , u2n lies on the geodesic P, Q and R. Also u1, u3, u5,

· · · , u2n−1, u2n+1 is a minimum nonsplit geodetic set such that 〈V (G) − S〉 is connected and it

has n−1
2 vertices. Hence gns(Wn) = n−1

2 . 2
Theorem 3.10 Let G be a graph such that both G and G are connected then gns(G)+gns(G) ≤
n(n − 3) + 2.

Proof Since both G and G are connected , we have ∆(G)·∆(G) < n−1.Thus β0(G), β0(G) ≥
2. Hence,

gns ≤ n − 1 ⇒ gns(G) ≤ 2(n − 1) − n + 1 ⇒ gns(G) ≤ 2m − n + 1.

Similarly, gns(G) ≤ 2m − n + 1. Thus,

gns(G) + gns(G) ≤ 2(m + (m)) − 2n + 2 ⇒ gns(G) + gns(G) ≤ n(n − 1) − 2n + 2

⇒ gns(G) + gns(G) ≤ n2 − n − 2n + 2

⇒ gns(G) + gns(G) ≤ n2 − 3n + 2

⇒ gns(G) + gns(G) ≤ n(n − 3) + 2. 2
Theorem 3.11 For any nontrivial tree T , gns(T ) ≥ α0(T ).
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Proof Let S be a minimum cover set of vertices in T . Then S has at least one vertex and

every vertex in S is adjacent to some vertices in 〈V (G) − S〉. This implies that S is a nonsplit

geodetic set of G. Thus gns(T ) ≥ α0(T ). 2
Theorem 3.12 For any nontrivial tree T with m edges, gns(T ) ≤ m−⌈α1(T )

2 ⌉+2,where α1(T )

is an edge covering number.

Proof Suppose S′ = {e1, e2, · · · , ei} be the set of all end edges in T and J ⊆ E(T ) − S′

be the minimal set of edges such that |S′ ∪ J | = α1(T ). By the Theorem 2.2 S′ is the minimal

geodetic set of G. Also it follows that 〈V (G) − S′〉 is connected. Clearly,

gns(T ) ≤ |E(T )| −
∣∣∣∣

⌈
S′ ∪ J

2

⌉∣∣∣∣+ 2 ⇒ gns(T ) ≤ m −
⌈

α1(T )

2

⌉
+ 2. 2

Theorem 3.13 For a cycle Cn of order n, gns(G) = α0(Cn) + 1.

Proof Consider a cycle Cn of order n. We discuss the following cases.

Case 1. Suppose that n is even and α0(Cn) is the vertex covering number of Cn. We have by

Theorem 3.1, gns(G) = n
2 + 1 and also for an even cycle, vertex covering number α0(Cn) = n

2 .

Hence,

gns(G) =
n

2
+ 1 = α0(Cn) + 1.

Case 2. Suppose that n is odd and α0(Cn) is the vertex covering number of Cn. We have by

Theorem 3.1, gns(G) = ⌊n
2 ⌋ + 2 and also for an odd cycle, vertex covering number α0(Cn) =

⌊n
2 ⌋ + 1. Hence,

gns(G) = ⌊n

2
⌋ + 2 ⇒ gns(G) = α0(Cn) + 1. 2

Theorem 3.14 If is a connected noncomplete graph G of order n,gns ≤ (n− κ(G)) + 1, where

κ(G) is vertex connectivity.

Proof Let κ(G) = k. Since G is connected but not complete 1 ≤ κ(G) ≤ n − 2. Let

U = {u1, u2, · · · , uk} be a minimum cut set of G, let G1, G2, · · · , Gr(r ≥ 2) be the components

of G − U and let W = V (G) − (U − 1) then every vertex ui(1 ≤ i ≤ k) is adjacent to at least

one vertex of Gj for every (i ≤ j ≤ r). Therefore, every vertex ui belongs to a W geodesic

path. Thus

gns(G) = |W | ≤ (V (G) − U) + 1 ≤ (n − κ(G)) + 1. 2
§4. Corona Graph

Let G and H be two graphs and let n be the order of G. The corona product G◦H is defined as

the graph obtained from G and H by taking one copy of G and n copies of H and then joining

by an edge, all the vertices from the ith-copy of H with the ith-vertex of G.

Theorem 4.1 Let G be a connected graph of order n and H be any graph of order m then

gns(G ◦ H) = nm.
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Proof Let S be a nonsplit geodetic set in G ◦H , vi ∈ V (G), 1 ≤ i ≤ n and uj ∈ V (H), 1 ≤
j ≤ m. For each vi there is a copy Hvi which contains uj vertices. Clearly V (Huj) ∩ S is a

geodetic set of G ◦ H and 〈V (G) − S〉 is connected. Further every wk ∈ (G ◦ H) lies on the

geodesic path in S. Therefore S is the minimum nonsplit geodetic set. Thus, |S| = gns(G◦H) =

nm. 2
§5. Adding a Pendant Vertex

An edge e = (u, v) of a graph G with deg(u) = 1 and deg(v) > 1 is called an pendant edge and

u an pendant vertex.

Theorem 5.1 Let G′ be the graph obtained by adding an pendant edge (u, v) to a cycle G = Cn

of order n > 3, with u ∈ G and v /∈ G, then

gns(G
′) =





2 if n is even

3 if n is odd

Proof Let {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the graph obtained

from G = Cn by adding an pendant edge (u, v) such that u ∈ G and v /∈ G. We discuss the

following cases.

Case 1. For G = C2n, let S = {v, ui} be a non split geodetic set of G′ , where v is the pendant

vertex of G′ and diam(G′) = v − ui path , clearly I[S] = V [G′]. Also for all x, y ∈ V (G′) − S,

〈V (G′) − S〉 is connected. Hence, gns(G
′) = 2.

Case 2. For G = C2n+1, let S = {v, a, b} be a non split geodetic set of G′ , where v is

the pendant vertex of G′ and a, b ∈ G such that d(v, a) = d(v, b). Thus I[S] = V [G′] and

〈V (G′) − S〉 is connected. Hence, gns(G
′) = 3. 2

Theorem 5.2 Let G′ be the graph obtained by adding a pendant vertex (ui, vi)for i = 1, 2, 3, · · · , n

to each vertex of G = Cn such that u ∈ G,vi /∈ G, then gns(G
′) = k.

Proof Let G = Cn = {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the

graph obtained by adding an pendant vertex {ui, vi}, i = 1, 2, 3, · · · , n to each vertex of G such

that ui ∈ G and vi /∈ G. Let S = {v1, v2, v3, · · · , vk} be a non split geodetic set of G′. Clearly

I[X ] 6= V (G′). Also, x, y ∈ V (G′) − S with V (G′) − S connected. Thus, gns(G
′) = k. 2

Theorem 5.3 Let G′ be the graph obtained by adding k pendant vertices {(u, v1), · · · , (u, vk)}
to a cycle G = Cn of order n > 3, with u ∈ G and {v1, v2, · · · , vk} /∈ G. Then

gns(G
′) =





k + 1 if n is even

k + 2 if n is odd

Proof Consider {u1, u2, u3, · · · , un, u1} be a cycle with n vertices. Let G′ be the graph
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obtained from G = Cn by adding k pendant edges {uiv1, uiv2, · · · , uivk} such that ui a single

vertex of G and {v1, v2, v3, · · · , vk} does not belongs to G. We discuss the following cases.

Case 1. Let G = C2n. Consider X = {v1, v2, v3, · · · , vk} ∪ ui , for any vertex ui of G . Now

S = {X} be a non split geodetic set , such that {v1, v2, v3, · · · , vk} are the pendant vertices of G′

and uj is the antipodal vertex of ui in G. Thus I[X ] = V [G′]. Consider P = {v1, v2, v3, · · · , vk}
as a set of pendant vertices such that |P | < |S| is not a non split geodetic set i.e for some vertex

uj ∈ VG′ ,uj /∈ I[P ]. If P = X , then P is not nonsplit geodetic set. Thus S is a minimum non

split geodetic set of G′ and 〈V (G′) − S〉 is connected. Thus, gns(G
′) = k + 1.

Case 2. Let G = C2n+1. Consider S = {v1, v2, v3, · · · , vk, a, b} be a non split geodetic set,

where {v1, v2, · · · , vk} /∈ G are k pendant vertices of G′ not in G and a, b ∈ G such that

d(u, a) = d(u, b). Thus I[S] = V [G′]. Also x, y ∈ V (G′) − S it follows that 〈V (G′) − S〉 is

connected. Therefore, gns(G
′) = k + 2. 2

§6. Cartesian Products

The cartesian product of the graphs H1 and H2 written as H1 × H2, is the graph with vertex

set V (H1) × V (H2), two vertices u1, u2 and v1, v2 being adjacent in H1 × H2 iff either u1 = v1

and (u2, v2) ∈ E(H2), or u2 = v2 and (u1, v1) ∈ E(H1).

Theorem 6.1 Let K2 and G = Cn be the graphs then

gns(K2 × G) =






2 if n is even

3 if n > 5 is odd

4 if n=3

Proof Consider G = Cn, let K2 × G be graphs formed from two copies G1 and G2 of G.

Let V = {v1, v2, · · · , vn} be the vertices of G1 and W = {w1, w2, · · · , wn} be the vertices of G2

and U = V ∪ W . We consider the following cases.

Case 1. Let n be even. Consider S = {vi, wj} be the non split geodetic of K2×G such that vi

to wj path is equal to diam(K2 ×G) which includes all the vertices of K2 ×G. Hence 〈U − S〉
is connected. Therefore, gns[K2 × G] = 2.

Case 2. Let n be odd. Consider S = {vi, wj , vk} be the non split geodetic set of K2 ×G such

that vi to wj path is equal to diam(K2×G) and is equal to wj−vkpath and also vi−wj∪wj−vk

path includes all the vertices of K2×G. Hence 〈U − S〉 is connected. Therefore, gns[K2×G] = 3.

Case 3. For n = 3, let S = {vi, wj , vk} be the geodetic set of K2 × G, that is vi − wj is

equal to diam(K2 ×G) and is equal to wj − vk and also I[S] = U(K2 ×G). But 〈U − S〉 is not

connected. Let S′ = S ∪{vn} = {vi, wj , vk, vn} be the non split geodetic set of K2 ×G. Hence,

〈U − S′〉 is connected. Therefore, gns[K2 × G] = 4. 2
Theorem 6.2 For any complete graph Kn of order n, gns[K2 × Kn] = n + 1.
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Proof Consider K2 × Kn be graph formed from two copies of G1 and G2 of G. Now, let

us prove the result by mathematical induction,

For n = 2 , gns[k2 ×K2] = 3, since K2 ×K2 = C4 by Theorem 3.1 we have gns[C4] = 3 the

result is true.

Let us assume that the result is true for n=m,that is gns[K2 × Km] = m + 1.

Now, we shall prove the result for n = m+1. Let S = {v1, v2, v3, · · · , vm+2} be the nonsplit

geodetic set formed from some elements in G1 and the elements which are not corresponds to

elements in G1 of K2 × Km+1. Clearly I[S] = V (K2 × Kn). Let P be any set of vertices

such that |P | < |S|. Suppose P = {v1, v2, v3, · · · , vm} which is not non split geodetic set,

because I[P ] 6= V [K2 × Km+1]. So S itself a minimum geodetic set of K2 × Km+1. Hence,

gns[K2 × Km+1] = m + 1 + 1. Thus, gns(K2 × Kn) = n + 1. 2
Theorem 6.3 For any complete graph of order n ≥ 3 , gns(Kn × Kn) = n.

Proof We shall prove the result by mathematical induction, For n ≥ 3, let us assume that

the result is true for n = m, that is gns(Km × Km) = m.

Now, we shall prove the result for n = m + 1. Let S = {v1, v2, v3, · · · , vm+1} be the non

split geodetic set formed from some elements in G1 and the elements which are not corresponds

to elements in G1 of Km+1 × Km+1. Clearly I[S] = V (K2 × Kn) . Now, consider P be any set

of vertices such that |P | < |S|. Suppose P = {v1, v2, v3, · · · , vm} which is not non split geodetic

set, because I[P ] 6= V (Km+1 × Km+1). So S itself a minimum geodetic set of Km+1 × Km+1.

Hence, gns(Km+1 × Km+1) = m + 1. Thus gns(Kn × Kn) = n. 2
Theorem 6.4 Let G and H be graphs then gns(G × H) ≥ max{g(G), g(H)}.Equality holds

when G,H are complete graphs and n ≥ 3.

Proof If S is a minimum geodetic set in G × H then we have I[S] = ∪a,b∈SI[a, b] =

∪a,b∈SI[a1, b1]× I[a2, b2] ⊆ (∪a1,b1∈SI[a1, b1])× (∪a2,b2∈SI[a2, b2]) = I[S1]× I[S2],V (G×H) =

I[S] ⊆ I[S1] × I[S2]. Therefore S1 and S2 geodetic set in G, H respectively, so gns(G × H) =

|S| ≥ max{|s1|, |s2|} ≥ max{g(G), g(H)}, proving the lower bound.

Consider complete graphs G, H with vertex sets V (G) = {u1, u2, · · · , up} and V (H) =

{v1, v2, · · · , vq} where without loss of generality p ≥ q. Then g(G) = p and g(H) = q. Let

S = {(u1, v2), (u2, v2), · · · , (uq, vq), (uq+1, vq), (uq+2, vq), · · · , (up, vq)}.
It is straight forward to verify that S is a non split geodetic set for G × H . Hence,

gns(G × H) ≤ |S| ≤ p = max{g(G), g(H)} ≤ gns(G × H), so equality holds. 2
Theorem 6.5 Let G = T and H = K2 be the graphs with g(G) = p ≥ g(H) = q ≥ 2 then

gns(G × H) ≤ pq − q.

Proof Set X = G × H . Let S = {g1, g2, ..., gp} and T = {h1, h2, · · · , hq} be the geodetic

sets of G and H respectively, and U = {(S × T )/ ∪p,q
i,j=1 {(gi, hj)}}.

We claim that IX [U ] = V (X). Let (g, h) be an arbitrary vertex of X.Then there exists

indices i and i′ such that g ∈ IG[gi, gi′ ] and there are indices j and j′ such that h ∈ IH [hj , hj′ ].

Since p, q ≥ 2 we may assume that i = i′ and j = j′. Indeed ,if say g = gi then i′ to be an
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arbitrary index from {1, 2, · · · , p} different from i. Set B = {(gi, hj), (gi, hj′), (gi′ , hj), (gi′ , hj′)}.
Suppose that one of the vertices from B is not in U. We may without loss of generality

assume (gi, hj) 6 inU . This means that i = j. Therefore i′ 6= j and i 6= j′. Then we infer

that (g, h) ∈ IX [(gi, hj′), (gi′ , hj)]. Otherwise, all vertices from B are in U, then (g, h) ∈
IX [(gi, hj), (gi′ , hj′)]. Hence, gns[G × H ] ≤ pq − q. 2
Theorem 6.6 Let K2 and T be the graphs then gns(K2 × T ) = gns(T ).

Proof Consider a tree T . Let K2 × T be a graph formed from two copies T1 and T2 of T

and S be a minimum non split geodetic set of K2 × T . Now, we define S’ to be the union of

those vertices of S in T1 and the vertices of T1 corresponding to vertices of T2 belonging to S.

Let v ∈ V (T1) lies on some x − y geodesic,where x, y ∈ S.Since S is a non split geodetic set

by Theorem 3.2, i.e., gns(T ) = k at least one of x and y belongs to V1. If both x, y ∈ V1 then

x, y ∈ S′. Hence, we may assume that x ∈ V1, y ∈ V2. If y corresponds to x then v = x ∈ S′.

Hence, we assume that y corresponds to y′ ∈ S′,where y′ 6= x. Since d(x, y) = d(x, y′) + 1 and

the vertex v lies on an x − y geodesic in K2 × G. Hence, v lies on x − y geodesic in G that is

gns(G) ≤ gns(K2 × G).

Conversely, let S contains a vertex with the property that every vertex of T1 lies on x−w

geodesic T1 for some w ∈ S. Let S′ consists of x together with those vertices of T2 corresponding

to those S − {x}. Thus, |S′| = |S|. We show that S′ is a non split geodetic set of K2 × T .

Hence gns(K2 × T ) ≤ gns(T ). Thus, gns(K2 × T ) = gns(T ). 2
Theorem 6.7 Let K2 and G = Pn be the two graphs,

gns(K2 × G) =





2 ifn ≥ 3

3 ifn = 2

Proof Consider a trivial graph K1 as a connected graph. Let G1 and G2 be the two

copies of G and also V (G1) = {a1, a2, · · · , an}, V (G2) = {b1, b2, · · · , bn}. Let S = {a1, bn}
be the non split geodetic set of K2 × G and also d(a1, bn) = diam(a1, bn). Thus, V − S =

{a2, a3, · · · , an, b1, b2, · · · , bn−1} is the induced subgraph and it is connected. Hence gns[K2 ×
G] = 2.

Similarly,the result is obvious for n = 2 that is gns[K2 × G] = 3. 2
§7. Block Graphs

A block graph has a subgraph G1 of G(not a null graph) such that G1 is non separable and if

G2 is any other graph of G, then G1 ∪ G2 = G1 or G1 ∪ G2 is separable. For any graph G a

complete subgraph of G is called clique of G. The number of vertices in a largest clique of G is

called the clique number of G and denoted by ω(G).

Theorem 7.1 For any block graph G, gns(G) = n − ci where n be the number of vertices and

ci be the number of cut vertices.
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Proof Let V = {v1, v2, · · · , vn} be the number of vertices of G. Consider S be the geodetic

set of G and 〈V (G) − S〉 is connected. Thus S itself a nonsplit geodetic set of G. Since every

geodetic set does not contain any cut vertices. Hence, gns(G) = n − ci. 2
Theorem 7.2 For any block graph G, gns(G) ≤ ω(G) + 2ci where ω(G) be the clique number

and ci be the number of cut vertices.

Proof Let V = {v1, v2, · · · , vn} be the number of vertices of G. In a block graph, every

geodetic set is a nonsplit geodetic set. Consider S be the geodetic set of G and 〈V (G) − S〉 is

connected. Thus S itself a nonsplit geodetic set of G. By the definition, the number of vertices

in a largest clique of G is ω(G) and also every geodetic set does not contain any cut vertices of

G. It follows that gns(G) ≤ ω(G) + 2ci. 2
Theorem 7.3 For any block graph G, gns(G) = α0(G) + 1 where α0(G) be the vertex covering

number.

Proof Let G be a block graph of order n. Now, we prove the result by mathematical

induction.

For ci = 1, the vertex covering number of G is

α0(G) = n − ci − 1 ⇒ α0(G) = n − 1 − 1 ⇒ α0(G) + 1 = n − 1,

by Theorem 7.1, we have

gns(G) = n − ci ⇒ gns(G) = n − 1.

Therefore, gns(G) = α0(G) + 1. Thus the result is result is true for ci = 1. Let us assume that

the result is true for ci = m that is gns(G) = α0(G) + 1.

Now, we shall prove the result for ci = m + 1, where m+1 is the number of cut vertices.

Let S = {v1, v2, · · · , vn} be the minimum nonsplit geodetic set of G. Since every geodetic set

does not contain any cut vertex, by Theorem 7.1 we have gns(G) = n − m − 1. Therefore,

α0(G) = n − ci − 1 ⇒ α0(G) = (n − m − 1) − 1 ⇒ α0(G) + 1 = n − m − 1.

Thus, gns(G) = α0(G) + 1. 2
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