A Note on Prime and Sequential Labelings of Finite Graphs

Mathew Varkey T.K
(Department of Mathematics, T.K.M. College of Engineering, Kollam-5, India)

Sunoj. B.S
(Department of Mathematics, Government Polytechnic College, Ezhukone, Kollam, Kerala, India)
E-mail: mathewvarkeytk@gmail.com, spalazhi@yahoo.com

Abstract

A labeling or valuation of a graph G is an assignment f of labels to the vertices of G that induces for each edge $x y$ a label depending on the vertex labels $f(x)$ and $f(y)$. In this paper, we study some classes of graphs and their corresponding labelings.

Key Words: Labeling, sequential graph, harmonious graph, prime graph, Smarandache common k-factor labeling.

AMS(2010): 05C78

$\S 1$. Introduction

Unless mentioned or otherwise, a graph in this paper shall mean a simple finite graph without isolated vertices. For all terminology and notations in Graph Theory, we follow [5] and all terminology regarding to sequential labeling, we follow [3]. Graph labelings where the vertices are assigned values subject to certain conditions have been motivated by practical problems. Labeled graphs serves as useful mathematical models for a broad range of applications such as coding theory, including the design of good radar type codes, synch-set codes, missile guidance codes and convolutional codes with optimal autoconvolutional properties. They facilitate the optimal nonstandard encodings of integers.

Labeled graphs have also been applied in determining ambiguities in X-ray crystallographic analysis, to design a communication network addressing system, in determining optimal circuit layouts and radio astronomy problems etc. A systematic presentation of diverse applications of graph labelings is presented in [1].

Let G be a (p, q)-graph. Let $V(G), E(G)$ denote respectively the vertex set and edge set of G. Consider an injective function $g: V(G) \rightarrow X$, where $X=\{0,1,2, \cdots, q\}$ if G is a tree and $X=\{0,1,2, \cdots, q-1\}$ otherwise. Define the function $f^{*}: E(G) \rightarrow N$, the set of natural numbers such that $f^{*}(u v)=f(u)+f(v)$ for all edges $u v$. If $f^{*}(E(G))$ is a sequence of distinct consecutive integers, say $\{k, k+1, \cdots, k+q-1\}$ for some k, then the function f is said to be sequential labeling and the graph which admits such a labeling is called a sequential graph.

Another labeling has been suggested by Graham and S Loane [4] named as harmonious

[^0]labeling which is a function $h: V(G) \rightarrow Z_{q}, q$ is the number of edges of G such that the induced edge labeling given by $g^{*}(u v)=[g(u)+g(v)](\bmod q)$ for any edge $u v$ is injective.

The notion of prime labeling of graphs, was defined in [6]. A graph G with n-vertices is said to have a prime labeling if its vertices are labeled with distinct integers $1,2, \cdots, n$ such that for each edge $u v$ the labels assigned to u and v are relatively prime. Such a graph admitting a prime labeling is known as a prime graph. Generally, a Smarandache common k-factor labeling is such a labeling with distinct integers $1,2, \cdots, n$ such that the greatest common factor of labels assigned to u and v is k for $\forall u v \in E(G)$. Clearly, a prime labeling is nothing else but a Smarandache common 1-factor labeling. A graph admitting a Smarandache common k-factor labeling is called a Smarandache common k-factor graph. Particularly, a graph admitting a prime labeling is known as a prime graph in references.

Notation $1.1(a, b)=1$ means that a and b are relatively prime.

§2. Cycle Related Graphs

In [2], showed that every cycle with a chord is graceful. In [9] proved that a cycle C_{n} with a chord joining two vertices at a distance 3 is sequential for all odd $n, n \geqslant 5$. Now, we have the following theorems.

Theorem 2.1 Every cycle C_{n}, with a chord is prime, for all $n \geqslant 4$.
Proof Let G be a graph such that $G=C_{n}$ with a chord joining two non- adjacent vertices of C_{n}, for all n greater than or equal to 4 . Let $\left\{v_{1}, v_{2}, \cdots, v_{n}\right\}$ be the vertex set of G. Let the number of vertices of G be n and the edges be $n+1$. Define a function $f: V(G) \rightarrow$ $\{1,2, \cdots n\}$ such that $f\left(v_{i}\right)=i, i=1,2, \cdots, n$. It is obvious that $\left(f\left(v_{i}\right), f\left(v_{i+1}\right)\right)=1$ for all $i=1,2, \cdots,(n-1)$. Also $(1, n)=1$ for all n greater than 1 . Now select the vertex v_{1} and join this to any vertex of C_{n}, which is not adjacent to v_{1}, G admits a prime labeling.

Theorem 2.2 Every cycle C_{n}, with $\left[\frac{n-1}{2}\right]-1$ chords from a vertex is prime, for all n greater than or equal to 5 .

Proof Let G be a graph such that $G=C_{n}, n$ greater than or equal to 5 . Let $\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ be the vertex set of G. Label the vertices of C_{n} as in Theorem 2.1. Next select the vertex v_{2}. By our labeling $f\left(v_{2}\right)=2$. Now join v_{2} to all the vertices of C_{n} whose f-values are odd. Then it is clear that there exists exactly $\left[\frac{n-1}{2}\right]-1$ chords, and G admits a prime labeling.

Figure 1

Remark 2.1 From Theorem 2.1, it is clear that there is possible to get $n-3$ chords and Theorem 2.2 tells us there are $\left[\frac{n-1}{2}\right]-1$ chords. Thus the bound $n-3$ is best possible and all other possible chords of less than these two bounds.

Example 2.1 Figure 1 gives the prime labeling of C_{11} with 4-chords.

Theorem 2.3 The graph $C_{n}+\bar{K}_{1, t}$ is sequential for all odd $n, n \geqslant 3$.
Proof Let $v_{1}, v_{2}, \cdots, v_{n}$ (n is odd) be the set of vertices of C_{n} and $u, u_{1}, u_{2}, \cdots, u_{t}$ be the $t+1$ isolated vertices of $\bar{K}_{1, t}$. Let $G=C_{n}+\bar{K}_{1, t}$ and note that, G has $n+t+1$ vertices and $n(2+t)$ edges.

Define a function $f: V(G) \rightarrow\left\{0,1,2, \cdots, \frac{n-1}{2}+t n\right\}$ such that
and

$$
\begin{aligned}
f\left(v_{2 i-1}\right) & =i-1, \text { for } i=1,2, \cdots, \frac{n+1}{2} \\
f\left(v_{2 i}\right) & =\frac{n-1}{2}+i, \text { for } i=1,2, \cdots, \frac{n-1}{2} \\
f\left(u_{1}\right) & =\frac{3}{2} n-1 \\
f\left(u_{i}\right) & =\frac{n-1}{2}+n i, i=2,3, \cdots, t
\end{aligned}
$$

We can easily observe that the above defined f is injective. Hence f becomes a sequential labeling of $C_{n}+\bar{K}_{1, t}$. Thus $C_{n}+\bar{K}_{1, t}$ is sequential for all odd $n, n \geqslant 3$.

Corollary 2.4 The graph $C_{n}+\bar{K}_{1, t}$ is harmonious for all odd $n \geqslant 3$.
Proof Any sequential is harmonius implies that $C_{n}+\bar{K}_{1, t}$ is harmonius, $n \geqslant 3$.

Theorem 2.5 The graph $C_{n}+\bar{K}_{1,1, t}$ is sequential and harmonius for all odd $n, n \geqslant 3$.
Theorem 2.6 The graph $C_{n}+\bar{K}_{1,1,1, t}$ is sequential and harmonius for all odd $n, n \geqslant 3$.
Example 2.2 Figure 2 gives the sequential labeling of the graph $C_{5}+\bar{K}_{1,1,1,3}$.

Figure 2

Theorem 2.7 The graph $C_{n}+\bar{K}_{1,1, \ldots, 1, t}$ is sequential as harmonius for odd $n, n \geqslant 3$.

Theorem 2.8 The graph $C_{n}+\bar{K}_{1, m, n}$ is sequential and harmonius for all odd $n, n \geqslant 3, m \geqslant 1$.

§3. On Join of Complete Graphs

In [7], it is shown that $L_{n}+K_{1}$ and $B_{n}+K_{1}$ are prime and join of any two connected graphs are not odd sequential. Now, we have the following.

Theorem 3.1 The graph $K_{1, n}+K_{2}$ is prime for $n \geqslant 4$.

Proof Let $G=K_{1, n}+K_{2}$. We can notice that G has $(n+3)$-vertices and ($3 n+2$)-edges. Let $\left\{w, v_{1}, v_{2}, \cdots, v_{n}\right\}$ be the vertices of $K_{1, n}$ and $\left\{u_{1}, u_{2}\right\}$ be the two vertices of K_{2}. Assign the first two largest primes less than or equal to $n+3$ to the two vertices of K_{2}. Assign 1 to w and remaining n values to the n vertices arbitrarily, we can obtain a prime numbering of $K_{1, n}+K_{2}$.

Corollary 3.1 The graph $K_{1, n}+\bar{K}_{2}$ is prime for all $n \geqslant 4$.

§4. Product Related Graphs

Definition 4.1 Let G and H be graphs with $V(G)=V_{1}$ and $V(H)=V_{2}$. The cartesian product of G and H is the graph $G \square H$ whose vertex set is $V_{1} \times V_{2}$ such that two vertices $u=(x, y)$ and $v=\left(x^{\prime}, y^{\prime}\right)$ are adjacent if and only if either $x=x^{\prime}$ and y is adjacent to y^{\prime} in H or $y=y^{\prime}$ and x is adjacent to x^{\prime} in G. That is, u adj v in $G \square H$ whenever $\left[x=x^{\prime}\right.$ and y adj $\left.y^{\prime}\right]$ or $\left[y=y^{\prime}\right.$ and x adj $\left.x^{\prime}\right]$.

In [8] A.Nagarajan, A.Nellai Murugan and A.Subramanian proved that $P_{n} \square K_{2}, P_{n} \square P_{n}$ are near mean graphs.

Definition 4.2 Let P_{n} be a path on n vertices and K_{4} be a complete graph on 4 vertices. The Cartesian product P_{n} and K_{4} is denoted as $P_{n} \square K_{4}$ with $4 n$ vertices and $10 n-4$ edges.

Theorem 4.1 The graph $P_{n} \square K_{4}$ is sequential, for all $n \geqslant 1$.

Proof Let $G=P_{n} \square K_{4}$. Let $\left\{v_{i, 1}, v_{i, 2}, v_{i, 3}, v_{i, 4} / i=1,2, \cdots, n\right\}$ be the vertex set of G.

Define a function $f: V(G) \rightarrow\{0,1,2, \cdots, 5 n-1\}$ such that

$$
\begin{array}{rlll}
f\left(v_{2 i-1,1}\right)=10 i-6 & ; & 1 \leqslant i \leqslant \frac{n}{2} & \text { if } n \text { is even or } 1 \leqslant i \leqslant \frac{n+1}{2}
\end{array} \quad \text { if } n \text { is odd. } .
$$

and

$$
f\left(v_{2 i, 4}\right)=10 i-5 \quad ; \quad 1 \leqslant i \leqslant \frac{n}{2} \quad \text { if } n \text { is even or } 1 \leqslant i \leqslant \frac{n-1}{2} \quad \text { if } n \text { is odd. }
$$

(a) Clearly we can see that f is injective.
(b) Also, $\max _{v \in V} f(v)=\max \left\{\max _{i} 10 i-6 ; \max _{i} 10(i-1) ; \max _{i} 10 i-9 ; \max _{i} 10 i-8 ; \max _{i} 10 i\right.$ $\left.-4 ; \max _{i} 10 i-1 ; \max _{i} 10 i-3 ; \max _{i} 10 i-5\right\}=5 n-1$. Thus, $f(v)=\{0,1,2, \ldots, 5 n-1\}$. Finally, it can be easily verified that the labels of the edge values are distinct positive integers in the interval $[1,10 n-4]$. Thus, f is a sequential numbering. Hence, the graph G is sequential.

Example 4.1 Figure 4 gives the sequential labeling of the graph $P_{4} \square K_{4}$.

Figure 3

Corollary 4.1 The graph $P_{n} \square K_{4}$ is harmonius, for $n \geqslant 2$.

References

[1] G.S.Bloom and S.W.Golomb, Pro. of the IEEE, 165(4), (1977) 562-70.
[2] C.Delmore, M.Maheo. H.Thuiller, K.M.Koh and H.K.Teo, Cycles with a chord are graceful, Jour. of Graph Theory, 4 (1980) 409-415.
[3] T.Grace, On sequential labeling of graphs, Jour. of Graph Theory, 7 (1983) 195-201.
[4] R.L.Graham and N.J.A.Sloance, On additive bases and harmonious graphs, SIAM, Jour.of.Alg, Discrete Math. 1 (1980) 382-404.
[5] F.Harary, Graph Theory, Addison-Wesley, Reading, Massachussets, USA, 1969.
[6] Joseph A.Gallian, A dynamic survey of Graph labeling, The Electronic J. Combinatorics. 16 (2013) 1-298.
[7] T.K.Mathew Varkey, Some Graph Theoretic Operations Associated with Graph Labelings, Ph.D Thesis, University of Kerala, 2000.
[8] A.Nagarajan, A.Nellai Murugan and A.Subramanian, Near meanness on product graphs, Scientia Magna, Vol.6, 3(2010), 40-49.
[9] G.Suresh Singh, Graph Theory - A study of certain Labeling problems, Ph.D Thesis, University of Kerala, (1993).

[^0]: ${ }^{1}$ Received January 21, 2014, Accepted February 27, 2015.

