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Abstract

In this paper, the notions of Q-Smarandache fuzzy commutative

ideal and Q-Smarandache fuzzy sub-commutative ideal of a Q-Smarandache

BH-Algebra are introduced, examples and related properties are inves-

tigated. Also, the relationships among these notions and other types of

Q-Smarandache fuzzy ideal of a Q-Smarandache BH-Algebra are stud-

ied.
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1 Introduction

The concept of BCK-algebra was introduced by Y. Imai and K. Iseki

[18]. In 1995 the concept of n-fold commutative BCK-algebras has been in-

troduced [7]. In 1998, Y.B. Jun, E.H. Roh and H.S. Kim introduced the
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notion of BH-algebra, which is a generalization of BCH/BCI/BCK-algebra

[15]. In 2005, Y.B. Jun introduced the notion of a Smarandache BCI-algebra,

Smarandache ideal of a Smarandache BCI-algebra [13]. In 2009, A.B. Saeid

and A. Namdar, introduced the notion of a Q-Smarandache BCH-algebra and

Q-Smarandache ideal of Q-Smarandache BCH-algebra [1]. In 2015, H.H. Ab-

bass and H.K. Gatea introduced the notion Q-Smarandache Sub-Commutative

ideal of a Q-Smarandache BH-Algebra [4]. In this paper we introduce the no-

tion of Q-Smarandache fuzzy Commutative ideal and Q-Smarandache fuzzy

Sub-Commutative ideal of a Q-Smarandache BH-Algebra. In this paper X

denotes Q-Smarandache BH-Algebra.

2 Preliminary Notes

In this section, some basic concepts about a BH-algebra, a Q-Smarandache

BH-algebra, a Q-Smarandach ideal in ordinary and fuzzy sences, Q-Smarandache

sub-commutative ideal and Q-Smarandache commutative ideal of a Q-Smarandache

BH-algebra are given.

Definition 2.1. [14]. A BCI-algebra is an algebra (X, ∗, 0) of type (2, 0),

where X is a nonempty set, ∗ is a binary operation and 0 is a constant, satis-

fying the following axioms: for all x, y, z ∈ X:

i. ((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0,

ii. (x ∗ (x ∗ y)) ∗ y = 0,

iii. x ∗ x = 0,

iv. x ∗ y = 0 and y ∗ x = 0 imply x = y.

Definition 2.2. [11]. BCK-algebra is a BCI-algebra satisfying the axiom:

0 ∗ x = 0 for all x ∈ X.

Definition 2.3. [15]. A BH-algebra is a nonempty set X with a constant

0 and a binary operation * satisfying the following conditions:

i. x ∗ x = 0, ∀ x ∈ X.

ii. x ∗ y = 0 and y ∗ x = 0 imply x = y, ∀ x, y ∈ X.

iii. x ∗ 0 = x, ∀ x ∈ X.

Definition 2.4. [2].

A BCK-algebra X is called commutative if x ∗ (x ∗ y) = y ∗ (y ∗ x),∀ x, y ∈ X.
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Lemma 2.5. [2]

In a BCI-algebra X the following conditions are equivalent:

i. x ∗ y = x ∗ (y ∗ (y ∗ x)), ∀x, y ∈ X.

ii. X is a commutative BCK-algebra

Definition 2.6. [6]. A Q-Smarandache BH-algebra is defined to be a BH-

algebra X in which there exists a proper subset Q of X such that

i. 0 ∈ Q and |Q| ≥ 2.

ii. Q is a BCK-algebra under the operation of X.

Definition 2.7. [4] A Q-Smaradache BH-algebra is said to be a Q-Smaradache

implicative BH- algebra if it satisfies the condition, (x∗(x∗y))∗(y∗x)=y∗(y∗x).

∀ x, y ∈ Q

Definition 2.8. [4] A Q-Smarandache BH-algebra X is called a Q-Smarandache

medial BH-algebra if x ∗ (x ∗ y) = y, ∀x, y ∈ Q

Definition 2.9. [6]. A nonempty subset I of X is called a Q-Smarandache

ideal of X, denoted by a Q-S.I of X if it satisfies:

(J1) 0 ∈ I.

(J2) ∀ y ∈ Iand x ∗ y ∈ I =⇒ x ∈ I,∀ x ∈ Q.

Definition 2.10. [4].A subset I of a BH-algebra X is called commutative

ideal of X if it satisfies (J1) and :

(J3) (x ∗ y) ∗ z ∈ Iand z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I,∀x , y , z ∈ X.

Definition 2.11. [4]. A subset I of a Q-Smarandache BH-algebra X is

called a Q- Smarandache commutative ideal of X if it satisfies (J1) and :

(J4) (x ∗ y) ∗ z ∈ I and z ∈ I ⇒ x ∗ (y ∗ (y ∗ x)) ∈ I,∀ x , y ∈ Q and z ∈ X.

Definition 2.12. [4].

A nonempt subset I of a Q-Smarandache BH -algebra X is called a Q-Smarandache

sub-commutative ideal of X if it satisfies (J1) and :

(J6) (y∗(y∗(x∗(x∗y))))∗z ∈ Iand z ∈ I imply x∗(x∗y) ∈ I,∀x, y ∈ Q, z ∈ X

Definition 2.13. [12] A fuzzy subset A of a BH-algebra X is said to be a

fuzzy ideal if and only if:
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(I1) A(0) ≥ A(x), ∀ x ∈ X.

(I2) A(x) ≥ min{A(x ∗ y), A(y)}, ∀ x, y ∈ X.

Definition 2.14. [16] Let X be a BCK-algebra. A fuzzy set A in X is called

a fuzzy commutative ideal of X if it satisfies(I1)and

(I3) A((x ∗ (y ∗ (y ∗ x))) ≥ min{((x ∗ y) ∗ z), (z)} ∀ x, y, z ∈ X.

We generalize the concept of a Q-Smarandache fuzzy commutative ideal

to the Q-Smarandache BH-algebra.

Definition 2.15. A fuzzy subset A of a BH-algebra X is called a fuzzy

commutative ideal of X, denoted by a F.C.I if it satisfies(I1)and

(I4) A((x ∗ (y ∗ (y ∗ x))) ≥ min{((x ∗ y) ∗ z), (z)} ∀ x, y, z ∈ X.

Definition 2.16. [10]. Let A be a fuzzy set in X, ∀ α ∈ [0, 1], the set.

Aα={x ∈ X, A(x) ≥ α} is called a level subset of A.

Note that, Aα is a subset of X in the ordinary sense.

Definition 2.17. [6]. A fuzzy subset A of X is said to be a Q-Smarandache

fuzzy ideal of X, denoted by a Q-S.F.I of X:

(F1) A(0) ≥ A(x), ∀ x ∈ X.

(F2) A(x) ≥ min{A(x ∗ y), A(y)}, ∀ x,∈ Q, y ∈ X.

3 Main results

In this section, we introduce the concepts of a Q-Smarandache fuzzy

commutative ideal and Q-Smarandache fuzzy sub-commutative ideal of a Q-

Smarandache BH-algebra, and also we study some properties of them.

Definition 3.1. A fuzzy subset A of a X is called a Q-Smarandache fuzzy

commutative ideal of X, denoted by a Q-S.F.C.I if it satisfies (F1) and,

(F3) A(x ∗ (y ∗ (y ∗ x))) ≥ min{A((x ∗ y) ∗ z), A(z)}, for all x, y ∈ Q, z ∈ X.

Example 3.2. Consider X = {0, 1, 2, 3} with binary operation ′′∗′′ defined

by the following table:

* 0 1 2 3

0 0 0 0 3

1 1 0 2 3

2 2 2 0 3

3 3 3 3 0
where Q = {0, 1} is a BCK-algebra. The fuzzy subset A defined by

A(0) = A(1) = A(2) = 0.6 and A(3) = 0.3 .
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Proposition 3.3. Every Q-S.F.C.I of X is Q-S.F.I of X

Proof. Let A be Q-S.F.C.I of X ,to prove that A is a Q-S.F.I. by Definition

(3.1) the condition (F1) is satisfied .Now, let x ∈ Q and y ∈ X. we have

x = x ∗ (0 ∗ (0 ∗ x))it follows that A(x) = A(x ∗ (0 ∗ (0 ∗ x))) ≥ min{A(x ∗ 0) ∗
y), A(y)}[by 0*x=0 and x ∗ 0 = x] implies that A(x) ≥ min{A(x ∗ y), A(y)}.
Hence A is Q-S.F.I of X.

Remark 3.4. In the following example, we see that the converse of theorem

3.3 may not be true in general.

Example 3.5. Consider X = {0, 1, 2, 3, 4} with binary operation ′′∗′′ de-

fined by the following table:

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 0 1 0

2 2 2 0 0 0

3 3 3 3 0 0

4 4 4 4 4 0
Where Q={0,2,3} is a BCK-algebra. The fuzzy subset A defined by

A(0) = 0.7, A(1) = 0.5 and A(2) = A(3) = A(4) = 0.3 A is a Q-S.F.I of X,

but A is not a Q-S.F.C.I since if if x=2, y=3, z=0, then

A(2 ∗ (3 ∗ (3 ∗ 2))) = 0.3 � min{A((2 ∗ 3) ∗ 0), A(0)} = 0.7

Theorem 3.6. Let A be a Q-S.F.I of X. Then A is a Q-S.F.C.I of X if

and only if the level subset Aαis a Q-S.C.I of X, ∀ α ∈ [ 0, A(0)], such that

A(0) = supx∈X A(x)

Proof. Let A be a Q-S.F.C.I of X and α ∈ [0, A(0)]. To prove Aα is a Q-

S.C.I of X.It is clear that A(0) ≥ α . So 0 ∈ Aα. Hence Aα satisfies I1 .Now,

let x, y ∈ Q, z ∈ X such that (x ∗ y) ∗ z ∈ Aα and z ∈ Aα, it follows that

A((x ∗ y) ∗ z) ≥ α and A(z) ≥ α thus min{A((x ∗ y) ∗ z), A(z)} ≥ α. But

A(x ∗ (y ∗ (y ∗ x))) ≥ min{A((x ∗ y) ∗ z), A(z)} [Since A is a Q-S.F.C.I of X.

By definition 3.1(F3)] so A(x ∗ (y ∗ (y ∗ x))) ≥ α ⇒ (x ∗ (y ∗ (y ∗ x))) ∈ Aα
Therefore, Aα is a Q-S.C.I of X.

Conversely,

Let Aα be a Q-S.C.I. of X,and ∀ α ∈ [ 0, A(0)]. It is clear that A(0) ≥
A(x) ∀ x ∈ X. Now, Let x, y ∈ Q, z ∈ X α = min{A((x ∗ y) ∗ z), A(z)} .Then

A((x∗y)∗z) ≥ αandA(z) ≥ α , it follows that ((x∗y)∗z) ∈ Aα andz ∈ Aα,
thus (x∗(y∗(y∗x))) ∈ Aα[ Since Aα is a Q-S.C.I of X]⇒ A(x∗(y∗(y∗x))) ≥
α, we get A(x ∗ (y ∗ (y ∗ x))) ≥ min{A((x ∗ y) ∗ z), A(z)}. Therefore, A is a

Q-S.F.C.I of X.
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Proposition 3.7. Let A be a Q-S.F.I of X .Then A is a Q-S.F.C.I if and only

if ∀ x, y ∈ Q; A(x ∗ (y ∗ (y ∗ x)) ≥ A(x ∗ y) (b1)

Proof. Let A be a Q-S.F.C.I.Then A(x∗(y∗(y∗x) ≥ min{A((x∗y)∗0), A(0)}.
[By definition3.1(F3)]. We obtain A(x ∗ (y ∗ (y ∗ x) ≥ A(x ∗ y)[Since x ∗ 0 =

x and A(0) ≥ A(x) ∀x ∈ X]. Hence the condition (b1) is satisfied

Conversely,

Let A be a Q-S.F.I and x, y ∈ Q, z ∈ X.Then A(x∗y) ≥ min{A(x∗y)∗z), A(z)}
[A is a Q-S.F.I ] ⇒ A(x ∗ (y ∗ (y ∗ x)) ≥ min{A(x ∗ y) ∗ z), A(z)} [By condition

(b1)] . Therefore, A is a Q-S.F.C.I of X .

Theorem 3.8. Let A be a Q-S.F.I of a commutative Q- Smarandache BH-

algebra X such that Q is a commutative BCK-algebra . Then A is a Q-S.F.C.I

of X.

Proof. Let A be a Q-S.F.I of X.To prove that A is Q-S.F.C.I. By Definition

(2.17) the condition (F1) is satisfied. Now, let x, y ∈ Q and z ∈ X. Then

A(x ∗ y) ≥ min{A((x ∗ y) ∗ z), A(z)}[From Definition 2.17(F2)] implies that

A(x ∗ (y ∗ (y ∗ x))) ≥ min{A((x ∗ y) ∗ z), A(z)} [Since Q is commutative

BCK-algebra,by Lemma 2.5(i) ].HenceA is a Q-S.F.C.I of X.

Definition 3.9. Let n be a positive integer. A nonempty subset I of X

is called a Q-Smarandache n-fold commutative ideal of X. denoted by a Q-S

.n-fold C.I of X if it satisfies (J1) and :

(J5) (x∗yn)∗z ∈ I and z ∈ I ⇒ x∗ (yn ∗ (yn ∗x)) ∈ I,∀ x , y ∈ Qand z ∈ X.

Example 3.10. Consider X = {0, 1, 2, 3, 4} with binary operation ′′∗′′
defined by the following table:

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 2 4 0
where Q={0,1} is a BCK-algebra . Then I = {0, 1, 2} is A is a Q-S.2-

fold.C.I

Definition 3.11. Let n be a positive integer. A fuzzy subset A of a X is

called a Q-Smarandache fuzzy n-fold commutative ideal of X, denoted by a

Q-S.F .n-fold.C.I of X if it satisfies (F1) and,

(F4). A(x ∗ (yn ∗ (yn ∗ x)) ≥ min{A(x ∗ yn) ∗ z), A(z)}, for all x, y ∈ Q, z ∈ X
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Example 3.12. Consider X = {0, 1, 2, 3, 4} with binary operation ′′∗′′
defined by the following table:

* 0 1 2 3 4

0 0 0 0 0 0

1 1 0 1 0 1

2 2 2 0 2 0

3 3 1 3 0 3

4 4 4 2 4 0

where Q={0,1} is a BCK-algebra. The fuzzy subset A defined by .

A(0) = A(1) = A(2) = 0.8 and A(3) = A(4) = 0.5 A is a Q-S.F.2-fold.C.I.

Proposition 3.13. Every Q-S.n-fold.F.C.I of X is Q-S.F.I of X

Proof. let A Q-S.F.C.I of X To prove that A is Q-S.F.I. by Defintion (3.11)

the condition (F1) is satisfied .Now, let x ∈ Q and y ∈ X. we have x =

(x∗ (0n ∗ (0n ∗x)) it follows that A(x) = A(x∗ (0n ∗ (0n ∗x)) ≥ min{A(x∗ 0n)∗
y), A(y)}[by 0∗x = 0 and x∗ 0 = x] implies that A(x) ≥ min{A(x∗ y), A(y)}.
Hence A is Q-S.F.I of X.

Remark 3.14. In the following example, we see that the converse of Propo-

sition 3.13 may not be true in general.

Example 3.15. Consider X = {0, 1, 2, 3, 4} with binary operation ′′∗′′
defined by the following table:

* 0 1 2 3 4

0 0 0 0 0 4

1 1 0 0 0 4

2 2 2 0 1 4

3 3 3 3 0 4

4 4 4 4 4 0

where Q={0,1,2} is a BCK- algebra. The fuzzy subset A defined by .

A(0) = 0.8 andA(1) = A(2) = A(3) = A(4) = 0.5 Is Q-S.F.I of X, but it is

not 1-fold Q-S.F.C.I of X. Since x=1, y=2, z=0

A(1 ∗ (2 ∗ (2 ∗ 1) = 0.5 � min{A((1 ∗ 2) ∗ 0), A(0)} = 0.8

Theorem 3.16. Let A be a Q-S.F.I of X .Then A is a Q-S.F.n-fold C.I if

and only if

∀x, y ∈ Q, A(x ∗ (yn ∗ (yn ∗ x))) ≥ A(x ∗ yn) (b2)
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Proof. Let A be a Q-S.F.n-fold C.I of X and x, y ∈ Q

A(x ∗ (yn ∗ (yn ∗ x) ≥ min{A((x ∗ yn) ∗ 0), A(0)}.[By definition 3.11 (F4)]

=⇒ A(x ∗ (yn ∗ (yn ∗ x) ≥ A(x ∗ yn)[Since x ∗ 0 = x,A(0) ≥ A(x).∀x ∈ X)]

=⇒ The condition (b2) is satisfied.

Conversely,

let A be a Q-S.F.I of X, x, y ∈ Q and x ∈ X. Then

A(x ∗ yn) ≥ min{A((x ∗ yn) ∗ z), A(z)}[Since A is a Q-S.F.I of X ]

=⇒ A(x ∗ (yn ∗ (yn ∗ x)) ≥ minA{((x ∗ yn) ∗ z), A(z)} [By condition(b2)]

Therefore, A is a Q-S.F.n-fold .C.I of X

Definition 3.17. A fuzzy subset A of X is called a Q-Smarandache fuzzy

sub-commutative ideal of X, denoted by a Q-S.F.S.C.I of X if it satisfies (F1)

and,

(F5) A(x∗(x∗y)) ≥ min{A(y∗(y∗(x∗(x∗y)))∗z), A(z)} ∀ x, y ∈ Q, z ∈ X.

Example 3.18. ConsiderX = {0, 1, 2, 3} with binary operation ′′∗′′ defined

by the following table:

* 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 1 0 2

3 3 3 3 0

where Q={0,1} is a BCK-algebra. The fuzzy subset A defined by

A(0) = A(1) = A(2) = 0.6 and A(3) = 0.3 A is Q-S.F.C.I of X .

Theorem 3.19. Let A be a Q-S.F.S.C.I of X. Then A is a Q-S.F.I of X.

Proof. Let A be a Q-S.F.S.C.I of X.It is clear that the condition (F1) is satisfied

.Now, let x ∈ Q and y ∈ X, we have A(x ∗ (x ∗ x)) ≥ min{A(x ∗ (x ∗ (x ∗ (x ∗
x)))∗y), A(y)},[ By Definition 3.17(F5)] it follows that A(x∗0) ≥ min{A(x∗
(x ∗ (x ∗ 0) ∗ y), A(y)}[Since Q is a BCK-algebra x ∗x = 0] implies that A(x) ≥
min{A(x ∗ y), A(y)}[Since Q is a BCK-algebra x ∗ 0 = x] . HenceA is a

Q-S.F.I of X.

Remark 3.20. In the following example shows that the converse of theorem

3.19 may not be true in general.
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Example 3.21. ConsiderX = {0, 1, 2, 3} with binary operation ′′∗′′ defined

by the following table:

* 0 1 2 3

0 0 0 0 0

1 1 0 0 1

2 2 2 0 1

3 3 3 3 0

Where Q={0,1,2} is a BCK-algebra. The fuzzy subset A defined by

A(0) = A(3) = 0.9, andA(1) = A(2) = 0.5 A is a Q-S.F.I of X, but it is not

a Q-S.F.S.C.I. Since, x=1, y=2, z=0

A(1 ∗ (1 ∗ 2)) � min{A(2 ∗ (2 ∗ (1 ∗ (1 ∗ 2))) ∗ 0), A(0)}

Theorem 3.22. Let A be a Q-S.F.I of X. Then A is a Q-S.F.S.C.I of X if

and only if it is ∀ x, y ∈ Q, A(x ∗ (x ∗ y)) ≥ A(y ∗ (y ∗ (x ∗ (x ∗ y))) (b3)

Proof. Suppose A is a Q-S.F.S.C.I of X. Let x, y ∈ Q.Then A(x ∗ (x ∗ y)) ≥
min{A(y ∗ (y ∗ (x ∗ (x ∗ y)) ∗ 0)), A(0)} [By definition 3.17(F5)]it follows that

A(x ∗ (x ∗ y)) = min{A(y ∗ (y ∗ (x ∗ (x ∗ y)))), A(0)} [Since X ;x ∗ 0 = x]implies

that A(x ∗ (x ∗ y)) ≥ A(y ∗ (y ∗ (x ∗ (x ∗ y))) [ A(0) ≥ A(x) ∀x ∈ X]. By

definition 3.17(F1)]. Hence The condition (b3) is satisfied.

Conversely,

Let A be a Q-S.F.I of X and the condition (b2) satisfied.To prove that A

is Q-S.F.S.C.I. By Definition (2.17) the condition (F2) is satisfied. Now, let

x, y ∈ Q and z ∈ X we have A(y ∗ (y ∗ (x ∗ (x ∗ y)))) ≥ min{A(y ∗ (y ∗ (x ∗
(x ∗ y))) ∗ z), A(z)}[Since A is a Q-S.F.I of X, by Definition 2.17 (F2)] implies

that A(x ∗ (x ∗ y)) ≥ min{A(y ∗ (y ∗ (x ∗ (x ∗ y))) ∗ z), A(z)}[By(b3) ].Hence A

is a Q-S.F. S.C.I of X.
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