On a Q- Smarandache Implicative Ideal with Respect to an Element of a Q-Smarandache BH-algebra

Q- سمرندش الاستناجية بالنسبة الى عنصر في جبر -QH سمرندش -Q المثالية

Assist.prof. Husein Hadi Abbass
University of Kufa Faculty of Education for Girls
Department of Mathematics
husseinh.abbas@uokufa.edu.iq

Hayder Kareem Gatea University of Kufa Faculty of Education for Girls Department of Mathematics haidarkarime@gmail.com

Abstract

In this paper, we define the concept of a Q-Smarandache implicative ideal with respect to an element of a Q-Smarandache BH-algebra. We state and prove some theorems which determine the relationships among this notion and other types of ideals of a Q-Smarandache BH-algebra.

الخلاصة
عرفنا في هذا البحث مفووم(المثالية Q- سمرنش الاستناجية بالنسيه لعنصر في جبر-BH سمرنش-Q Q , وأعطنيا وبر هنا بعض المبر هنات التي تحدد العلاقة بين هنا المفوه مع بعض أنواع المثاليات في جبر -BH سمرندش-Q Q .

1. INTRODUCTION

The notion of BCK-algebra and BCI-algebra was formulated first in 1966 by Y.Imai and K.Iseki as a generalization of the concept of set-theoretic difference and propositional calculus [4]. In 1983, Q.P.Hu and X.Li introduced the ntion of BCH-algebra which are generalization of BCK\BCI -algebra [5]. In 1998, Y. B. Jun, E. H. Roh and H.S. Kim introduced the notion of BHalgebra, which is a generalization of BCH-algebra [7]. In 2009, A.B.Saeid and A.Namdar introduced the notion of a Q-Smarandache BCH-algebra and Q-Smarandache ideal of a QSmarandache BCH-algebra, these notion were generalized to BH -algebra in 2012 by H.H.Abass and S.J.Mohammed[2]. In 2014, H. H. Abbass and S. A. Neamah introduced the notion of an implicative ideal with respect to an element of a BH-algebra[1]. In this paper, a new type of a QSmarandache ideal of Q-Smarandache BH- algebra, namely a Q-Smarandache implicative ideal with respect to an element is introduced some related properties investigated.

2. PRELIMINARIES

In this section, we review some basic concepts about a BCK-algebra, BCI- algebra, BCHalgebra, BH -algebra, Smarandache BH -algebra, (ideal, positive implicative and implicative ideal with respect to an element) of a BH -algebra and Q -Smarandach ideal of a Q -Smaradache $\mathrm{BH}-$ algebra, with some theorems and propositions .

Definition (2.1) :[8]
A BCI-algebra is an algebra $(X, *, 0)$, where X is a nonempty set, ${ }^{*} *$ " is a binary operation and 0 is a constant, satisfying the following axioms:

Journal of Kerbala University, Vol. 14 No. 1 Scientific . 2016

i. $\left(\left(x^{*} y\right) *\left(x^{*} z\right)\right)^{*}\left(z^{*} y\right)=0$, for all $x, y, z \in X$.
ii. $(x *(x * y)) * y=0$, for all $x, y \in X$.
iii. $x * x=0$, for all $x \in X$.
iv. $x * y=0$ and $y * x=0$ imply $x=y$, for all $x, y \in X$.

Definition (2.2) :[4]

A BCK-algebra is a BCI-algebra satisfying the axiom: $0 * \mathrm{x}=0$, for all $\mathrm{x} \in \mathrm{X}$.
Definition(2.3):[5]
A BCH-algebra is an algebra ($\mathrm{X}, *, 0$), where X is a nonempty set,"*" is a binary operation and 0 is a constant, satisfying the following axioms:
i. $\mathrm{x} * \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{X}$.
ii. $x * y=0$ and $y * x=0$ imply $x=y, \forall x, y \in X$.
iii. $(\mathrm{x} * \mathrm{y}) * \mathrm{z}=(\mathrm{x} * \mathrm{z}) * \mathrm{y}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Definition (2.4) :[7]
A BH-algebra is a nonempty set X with a constant 0 and a binary operation"*" satisfying the following conditions:
i. $\quad x^{*} x=0, \forall x \in X$.
ii. $\quad x * y=0$ and $y^{*} x=0$ imply $x=y, \forall x, y \in X$.
iii. $\mathrm{x}^{*} 0=\mathrm{x}, \forall \mathrm{x} \in \mathrm{X}$.

Definition (2.5) :[3]

A bounded BCK-algebra satisfying the identity $x *(y * x)=x, \forall x, y \in X$.

Definition (2.6) :[7]

Let I be a nonempty subset of a BH-algebra X . Then I is called an ideal of X if it satisfies:
i. $\quad 0 \in \mathrm{I}$.
ii. $\quad x^{*} y \in I$ and $y \in I$ imply $x \in I$.

Definition (2.7):[1]

A nonempty subset I of a BH -algebra X is called an implicative ideal with respect to an element b of a BH-Algebra (or briefly b-implicative ideal), $b \in X$. if
i. $0 \in \mathrm{I}$.
ii. $\left(\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z}\right) * \mathrm{~b} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}, \forall \mathrm{x}, \mathrm{y}, \mathrm{z} \in \mathrm{X}$.

Definition(2.8):[6]

A BH-algebra $(X, *, 0)$ is said to be a positive implicative if it satisfies for all x, y and $z \in X$, $\left(\mathrm{x}^{*} \mathrm{z}\right)^{*}\left(\mathrm{y}^{*} \mathrm{z}\right)=(\mathrm{x} * \mathrm{y}) * \mathrm{z}$.

Definition(2.9):[2]

A Smarandache BH-algebra is defined to be a BH-algebra X in which there exists a proper subset Q of X such that :
i. $0 \in \mathrm{Q}$ and $|\mathrm{Q}| \geq 2$.
ii. Q is a BCK-algebra under the operation of X .

Definition(2.10):[2]

Let X be a Smarandache BH-algebra. A nonempty subset I of X is called a Smarandache ideal of \mathbf{X} related to \mathbf{Q} (or briefly, \mathbf{Q}-Smarandache ideal of X) if it satisfies:
i. $0 \in \mathrm{I}$.
ii. $\forall \mathrm{y} \in \mathrm{I}$ and $\mathrm{x} * \mathrm{y} \in \mathrm{I} \Rightarrow \mathrm{x} \in \mathrm{I}, \forall \mathrm{x} \in \mathrm{Q}$.

Journal of Kerbala University, Vol. 14 No. 1 Scientific . 2016

Proposition(2.11):[2]
$\operatorname{Let}\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a family of Q-Smarandache ideals of a Smarandache BH-algebra X. Then $\bigcap_{i \in \lambda} I_{i}$ is a Q-Smarandache ideal of X .
Proposition(2.12): [2]
$\operatorname{Let}\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ be a chain of a Q-Smarandache ideals of a Smarandache BH-algebra X. Then $\bigcup_{i \in \lambda} I_{i}$ is a Q-Smarandache ideal of X .
Proposition (2.13):[2]
Let X be a Smarandache BH -algebra . Then every ideal of X is a Q -Smarandache ideal of X .

Theorem (2.14):[2]

Let Q_{1} and Q_{2} be BCK -algebras contained in a Smarandache BH - algebra X and $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$. Then every Smarandache ideal of X related to Q_{2} is a Smarandache ideal of X related to Q_{1}.

3. THE MAIN RESULTS

In this section, we introduce the concept of a Q-Smarandache implicative ideal of a QSmarandache BH-algebra. Also, we state and prove some theorems and examples about these concepts.

Definition (3.1):

Let I be a Q-Smarandach ideal of a Q-Smarandache BH-algebra X and $b \in X$. Then I is called a Q-Smarandache implicative ideal with respect to b (denoted by a \mathbf{Q} - Smarandache bimplicative ideal) if :
$\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)^{*} \mathrm{~b} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$ imply $\mathrm{x} \in \mathrm{I}, \forall \mathrm{x}, \mathrm{y} \in \mathrm{Q}$.

Example (3.2):

Consider the Q-Saramdache BH-algebra $\mathrm{X}=\{0,1,2,3\}$ with the binary operation " $*$ " defined by the following table:

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$

where $\mathrm{Q}=\{0,2\}$ is a BCK- algebra .
The Q -Smarandache ideal $\mathrm{I}=\{0,1\}$ is a Q -Smarandache 0 -implicative ideal of X , so I be a Q Smarandache 1,3-implicative ideal of X , but it is not a Q- Smarandache 2-implicative ideal of X. Since, $x=2, y=2, z=0,((2 *(2 * 2)) * 0) * 2=((2 * 0) * 2=2 * 2=0 \in I$, but $x=2 \notin I$.

Proposition (3.3) :

Let X be a Q-Smarandache BH-algebra. Then every b- implicative ideal of X is a Q-Smarandache b-implicative ideal of $X, \forall b \in X$.

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

Proof:

Let I is b - implicative ideal of $\mathrm{X}, \forall \mathrm{b} \in \mathrm{X}$.
Now, let $x, y \in Q$ and $z \in I$ such that $\left(\left(x^{*}\left(y^{*} x\right)\right) * z\right)^{*} b \in I$ and $z \in I$.
Since $\mathrm{x}, \mathrm{y} \in \mathrm{Q} \Rightarrow \mathrm{x}, \mathrm{y} \in \mathrm{X}$. [Since $\mathrm{Q} \subseteq \mathrm{X}]$
Now, we have
$\left(\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right)^{*} \mathrm{z}\right) * \mathrm{~b} \in \mathrm{I}$ and $\mathrm{z} \in \mathrm{I}$.
$\Rightarrow x \in I$. [Since I is b - implicative ideal of X, by Definition (2.7) (ii)]
Therefore, I is a Q -Smarandache b - implicative ideal of X .

Remark (3.4) :

The follwing example shows that converse of Proposition(3.3) is not correct in general .

Example (3.5) :

Consider the Q -Smarandache BH -algebra $\mathrm{X}=\{0,1,2,3\}$ with binary operation "*" defind by the following table:

*	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{3}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{3}$	$\mathbf{2}$	$\mathbf{0}$

where $\mathrm{Q}=\{0,1\}$ a is BCK - algebra.
The Q -Smarandache ideal $\mathrm{I}=\{0,2\}$ is a Q -Smarandache 2- implicative ideal of X , but it is not an 2 implicative ideal of BH- algebra. Since, $x=3, y=0, z=2,((3 *(0 * 3)) * 2) * 2=((3 * 3) * 2) * 2=(0 * 2) * 2=$ $2 * 2=0 \in \mathrm{I}$, but $3 \notin \mathrm{I}$.

Theorem (3.6) :

Let $(\mathrm{N}, *)$ be a Q -Smarandache BH -algebra, where $\mathrm{N}=\{0,1,2, \ldots$.$\} , " * " be a binary operation$ defind on N by :
$x^{*} y=\left\{\begin{array}{ccc}x & \text { if } & x \neq y \\ 0 & \text { if } & x=y\end{array}, \forall x, y \in N\right.$
, and $\mathrm{Q}=\{4 \mathrm{k}, \mathrm{k} \in \mathrm{N}\}$ is a BCK - algebra. Then $\mathrm{I}=\{2 \mathrm{k}, \mathrm{k} \in \mathrm{N}\}$ is a Q -Smarandache b - implicative ideal of $\mathrm{N}, \forall \mathrm{b} \in \mathrm{I}$.

Proof:

It is clear I is a $\mathrm{Q}-$ Smarandache ideal of N .
Now, let $x, y \in Q$ and $z, b \in I$ such that $\left(\left(x^{*}\left(y^{*} x\right)^{*} z\right) * b \in I\right.$ and $z \in I$.
$\Rightarrow\left(x^{*}\left(y^{*} \mathrm{x}\right)^{*} \mathrm{z} \in \mathrm{I}\right.$. [Since I is a Q-Smarandache ideal of X]
$\Rightarrow\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right.$. [Snce I is a Q -Smarandache ideal of X]
Case 1: if $\mathrm{x}=\mathrm{y}$,then $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)=\mathrm{x}^{*}\left(\mathrm{x}^{*} \mathrm{x}\right)=\mathrm{x}^{*} 0=\mathrm{x}$
[Since Q is a BCK- algebra; $\mathrm{x} * \mathrm{x}=0$ and $\mathrm{x} * 0=\mathrm{x}, \forall \mathrm{x} \in \mathrm{Q}$]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [Since $\left.\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right]$
Case 2: if $x \neq y$, then $x^{*}\left(y^{*} x\right)=x^{*} y=x$. [Since $x * y=x$]

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

$\Rightarrow \mathrm{x} \in \mathrm{I}$. [Since $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}$ and $\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)=\mathrm{x}$]
Therefore, I is a Q-Smarandach b-implicative ideal of $\mathrm{X}, \forall \mathrm{b} \in \mathrm{I}$.

Theorem (3.7) :

Let Q_{1} and Q_{2} be a two BCK-algebras contained in Q_{2}-Smarandache BH -algebra X Such that $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$ and $\mathrm{b} \in \mathrm{X}$. Then every a Q_{2}-Smarandache b-implicative ideal of X is a Q_{1}-Smarandache b- implicative ideal of X .

Proof :

Let I be a Q_{2} - Smarandache b - implicative ideal of X .
\Rightarrow I is a Q_{2} - Smarandache ideal of X . [By Definition (3.1)]
\Rightarrow I is a Q_{1} - Smarandache ideal of X. [By Theorem (2.14)]
Now, let $x, y \in Q_{1}$ and $z \in I$ such that $\left(\left(x^{*}\left(y^{*} x\right)\right) * z\right)^{*} b \in I$.
Since $x, y \in Q_{1} \Longrightarrow x, y \in Q_{2}$. [Since $Q_{1} \subseteq Q_{2}$]
Now, we have
$\left.\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)^{*} \mathrm{~b}\right) \in \mathrm{I}$ and $\mathrm{x}, \mathrm{y} \in \mathrm{Q}_{2}, \mathrm{z} \in \mathrm{I}$.
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [Since I is a Q_{2} - Smarandache b - implicative ideal of X]
Therefore, I is a $\mathrm{Q}_{1}-$ Smarandache b - implicative ideal of X .

Remark (3.8) :

The converse of Theorem (3.7) is not correct in general as in the follwing example.

Example (3.9) :

Consider the Q-Smarandache BH-algebra $\mathrm{X}=\{0,1,2,3,4\}$ with binary operation "*" defind by the following table:

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$
$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{2}$	$\mathbf{2}$	$\mathbf{2}$	$\mathbf{0}$	$\mathbf{2}$	$\mathbf{0}$
$\mathbf{3}$	$\mathbf{3}$	$\mathbf{1}$	$\mathbf{3}$	$\mathbf{0}$	$\mathbf{3}$
$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{0}$

where $\mathrm{Q}_{1}=\{0,1\}, \mathrm{Q}_{2}=\{0,1,3\}$ are two $B C K$-algebras such that $\mathrm{Q}_{1} \subseteq \mathrm{Q}_{2}$. The Q -Smarandache ideal $\mathrm{I}=\{0,1,4\}$ is a Q_{1}-Smarandache 4- implicative ideal of X , but it is not Q_{2}-Smarandache 4implicative ideal of X. Since, $x=3, y=0, z=1,((3 *(0 * 3)) * 1) * 4=((3 * 0) * 1)^{*} 4=(3 * 1) * 4=1 * 4=1 \in I$, but $\mathrm{x}=3 \notin \mathrm{I}$.

Theorem (3.10):

Let I be a Q-Smarandache ideal of a Q-Smarandache BH-algebra X. Then I is a Q-Smarandache $b-$ implicative ideal of X if and only if for all $x, y \in X$ and $b \in I, x^{*}\left(y^{*} x\right) \in I$ imply $x \in I$.

Journal of Kerbala University, Vol. 14 No. 1 Scientific . 2016

Proof:

Let I be a Q- Smarandache b- implicative ideal of $X, \forall b \in I$.
Now, let $x^{*}\left(y^{*} x\right) \in I$.
Then $x^{*}\left(y^{*} \mathrm{x}\right)=\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right) * 0=\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * 0\right) * 0$.
[Since Q is a BCK-algebra; $\mathrm{x} * 0=\mathrm{x}, \forall \mathrm{x} \in \mathrm{Q}$]
Then, we have
$\left.\left(\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right) * 0\right)\right) * 0 \in \mathrm{I}$ and $0 \in \mathrm{I}$ implies that $\mathrm{x} \in \mathrm{I}$. [Since I is a $\mathrm{Q}-$ Smarandache 0 - implicative ideal of X]

Conversely, suppose that I is a Q-Smarandache ideal of X and the condition is satisfied.
Let $x, y \in Q$ and $z, b \in I$ such that $((x *(y * x) * z) * b \in I$.
$\Rightarrow\left(x^{*}\left(y^{*} x\right)\right)^{*} z \in I$. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]
$\Rightarrow x^{*}\left(y^{*} x\right) \in I$. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [By hypothesis]
Therefore, I is a Q-Smarandache b-implicative ideal of X .

Theorem (3.11) :

Let X be a positive implicative Q-Smarandache BH -algebra and I be a Q-Smarandache ideal of X such that $\mathrm{Q} * \mathrm{I} \subseteq \mathrm{I}$. Then I is a Q -Smarandache b - implicative ideal of $\mathrm{X}, \forall \mathrm{b} \in \mathrm{I}$.

Proof:

Let I be a Q-Smarandache ideal of X such that $\mathrm{Q} * \mathrm{I} \subseteq \mathrm{I}$.
Now, let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$ and $\mathrm{z}, \mathrm{b} \in \mathrm{I}$ such that $\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right)^{*} \mathrm{z}\right)^{*} \mathrm{~b} \in \mathrm{I}$.
$\Rightarrow\left(x^{*}\left(y^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}$. [Since I is a Q-Smarandache ideal of X, by Definition (2.10)(ii)]
But $\left(x^{*}\left(y^{*} x\right)\right)^{*} z=\left(x^{*} z\right) *\left(\left(y^{*} x\right)^{*} z\right)$. [Since X is a positive implicative BH-algebra]
Now $x, y \in Q \Rightarrow y^{*} x \in Q$, so $\left(y^{*} x\right)^{*} z \in I$. [Since $\left.Q^{*} I \subseteq I\right]$
So, we have
$\left(\mathrm{x}^{*} \mathrm{z}\right) *\left((\mathrm{y} * \mathrm{x})^{*} \mathrm{z}\right) \in \mathrm{I}$ and $\left(\left(\mathrm{y}^{*} \mathrm{x}\right)^{*} \mathrm{z}\right) \in \mathrm{I}$.
$\Rightarrow x^{*} \mathrm{z} \in \mathrm{I}$. [Since I is Q -Smarandache ideal of X]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [Since I is Q -Smarandache ideal of X]
Therefore, I is a Q-Smarandache b- implicative ideal of X.

Theorem (3.12):

Let X be a bounded $\mathrm{Q}-$ Smarandache BH -algebra such that Q is a bounded BCK- algebra and I be a Q-Smarandache ideal of X . Then I is a Q -Smarandache b - implicative ideal of $\mathrm{X}, \forall \mathrm{b} \in \mathrm{I}$.

Proof :

Let I be a Q-Smarandache ideal of X.
Now, let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$ and $\mathrm{z}, \mathrm{b} \in \mathrm{I}$ such that $\left(\left(\mathrm{x}^{*}(\mathrm{y} * \mathrm{x})\right) * \mathrm{z}\right) * \mathrm{~b} \in \mathrm{I}$.
$\Rightarrow\left(x^{*}\left(y^{*} x\right)\right)^{*} \mathrm{z} \in \mathrm{I}$. [Since I is a Q-Smarandache ideal of X]
$\Rightarrow\left(x^{*}\left(y^{*} x\right) \in I . \quad[\right.$ Since I is a Q-Smarandache ideal of X]
$\Rightarrow x \in I$. [Since Q is a bounded BCK algebra, by Definition (2.5)]
Therefore, I is a Q-Smarandache b- implicative ideal of X.

Theorem (3.13):

Let X be a Q-Smarandache BH-algebra and satisfies the following condition:

$$
\forall x, y \in Q, x * y=x \quad \text { with } \quad x \neq y
$$

, and I be a Q-Smarandache ideal of X . Then I is a Q-Smarandache b - implicative ideal of X , $\forall \mathrm{b} \in \mathrm{I}$.

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

Proof:

Let I be a Q-Smarandache ideal of X.
Now, let $x, y \in Q$ and $z, b \in I$ such that $\left(\left(x^{*}\left(y^{*} x\right)\right) * z\right)^{*} b \in I$.
$\Rightarrow\left(x^{*}\left(y^{*} x\right)\right)^{*} \mathrm{z} \in \mathrm{I}$. [Since I is a Q-Smarandache ideal of X]
$\Rightarrow x^{*}\left(y^{*} x\right) \in \mathrm{I}$. [Since I is a Q-Smarandache ideal of X]
Now, we have two cases:
Case 1: if $x=y$, then $x^{*}\left(x^{*} x\right)=x^{*} 0=x$.
[Since Q is a BCK-algebra; $\mathrm{x} * \mathrm{x}=0$ and $\mathrm{x} * 0=\mathrm{x} \quad$]
$\Rightarrow \mathrm{x} \in \mathrm{I}$.
$\left[\right.$ Since $\left.x^{*}\left(y^{*} x\right) \in I\right]$
$\Rightarrow I$ is a Q-Smarandache b - implicative ideal of X.
Case 2: if $x \neq y$, then $x *\left(y^{*} x\right)=x * y=x$. [Since $x * y=x$]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. [Since $\left.\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right]$
Therefore, I is a Q-Smarandache b- implicative ideal of X.

Theorem (3.14):

Let X is a Q -Smarandache BH -algebra X and satisfies the condition:
$\forall \mathrm{x}, \mathrm{y} \in \mathrm{Q} ; \mathrm{x}=\mathrm{x} *(\mathrm{y} * \mathrm{x})$
, and I be a Q-Smarandache ideal of X . Then I is a Q-Smarandache b-implicative ideal of $\mathrm{X}, \forall \mathrm{b} \in \mathrm{I}$.

Proof:

Let I be a Q-Smarandache ideal of X .
Now, let $x, y \in Q$ and $z, b \in I$ such that $\left(\left(x^{*}\left(y^{*} x\right)\right)^{*} z\right)^{*} b \in I$.
$\Rightarrow\left(x^{*}\left(y^{*} \mathrm{x}\right)\right)^{*} \mathrm{z} \in \mathrm{I}$. [Since I is a Q -Smarandache ideal of X]
$\Rightarrow x^{*}\left(y^{*} x\right) \in \mathrm{I}$. [Since I is a Q-Smarandache ideal of X]
Case 1: if $y=0$, then $x^{*}(0 * x)=x^{*} 0=x$.
[Since Q is a BCK-algebra; $\mathrm{x} * 0=\mathrm{x}, 0^{*} \mathrm{x}=0, \forall \mathrm{x} \in \mathrm{Q}$]
$\Rightarrow \mathrm{x} \in \mathrm{I}$.
Hence I is a Q -Smarandache implicative ideal of X .
Case 2: if $y \neq 0$, then $x^{*}\left(y^{*} x\right)=x . \quad[$ By condition; $x=x *(y * x)$]
$\Rightarrow \mathrm{x} \in \mathrm{I}$. $\quad\left[\right.$ Since $\left.\mathrm{x} *\left(\mathrm{y}^{*} \mathrm{x}\right) \in \mathrm{I}\right]$
Therefore, I is a Q-Smarandache b- implicative ideal of X.

Proposition (3.15):

Let $\left\{I_{i} ; i \in \lambda\right\}$ be famiy of a Q-Smarandache b-implicative ideals of a Q-Smarandache BHalgebra. Then $\cap I_{i}$ is a Q-Smarandache b-implicative ideal of X. $i \in \lambda$

Proof :

Let $\mathrm{x}, \mathrm{y} \in \mathrm{Q}$ and $\mathrm{z} \in \cap \mathrm{I}_{\mathrm{i}}$ such that $\left.\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right)\right) * \mathrm{z}\right) * \mathrm{~b} \in \cap \mathrm{I}_{\mathrm{i}}$.

$$
i \in \lambda \quad i \in \lambda
$$

$\Rightarrow((\mathrm{x} *(\mathrm{x}, \mathrm{y})) * \mathrm{z}) * \mathrm{~b} \in \mathrm{I}_{\mathrm{i}} \quad$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{i}}, \forall \mathrm{i} \in \lambda$.
$\Rightarrow x \in I_{i}, \forall i \in \lambda$.
[Since I_{i} is a Q-Smarandache b- implicative ideal of $X, \forall i \in \lambda$]
$\Rightarrow \mathrm{x} \in \cap \mathrm{I}_{\mathrm{i}}$.
$i \in \lambda$
Therefore, $\cap I_{i}$ is a Q-Smarandache b- implicative ideal of X $i \in \lambda$

Journal of Kerbala University , Vol. 14 No. 1 Scientific . 2016

Remark (3.16):

The union of a Q-Smarandache implicatives ideals with repect to an element b of a QSmarandache BH-algebra may not be a Q-Smarandache implicative ideal of X as in the following example.

Example (3.17) :

Consider the Q -Smarandache BH -algebra $\mathrm{X}=\{0,1,2,3,4,5\}$ with binary operation "*" defind by the following table:

$*$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
$\mathbf{0}$						
$\mathbf{1}$	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$
2	2	2	$\mathbf{0}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
3	3	2	$\mathbf{1}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{1}$
4	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{4}$	$\mathbf{0}$	$\mathbf{1}$
$\mathbf{5}$	5	5	5	$\mathbf{5}$	$\mathbf{5}$	$\mathbf{0}$

where $\mathrm{Q}=\{0,2\}$ is a BCK -algebra. $\mathrm{I}=\{0,1\}$ and $\mathrm{J}=\{0,5\}$ are two a Q -Smarandache 0 -implicative ideals of X, but $I \cup J=\{0,1,5\}$ is not a Q-Smarandache 0 - implicative ideal of X, since $x=2, y=0$, $\mathrm{z}=5,\left((2 *(0 * 2))^{*} 5\right) * 0=((2 * 0) * 5) * 0=(2 * 5) * 0=1 * 0=1 \in \mathrm{I}$, but $2 \notin \mathrm{IU}$ J.

Proposition (3.18) :

Let $\left\{I_{i}, i \in \lambda\right\}$ be chain of a Q-Smarandache b-implicative ideal of a Q-Smarandache BHalgebra X. Then $U I_{i}$ is a Q-Smarandache b-implicative ideal of X. $i \in \lambda$

Proof :

Since $\left\{I_{i}, i \in \lambda\right\}$ is a be chian of a Q- Smarandache ideal of X. Then $U I_{i}$ is a Q$i \in \lambda$
Smarandache ideal of X .
Let $x, y \in Q$ and $z \in U I_{i}$ such that $\left(\left(x^{*}\left(y^{*} x\right)\right) * z\right)^{*} b \in U I_{i}$ and $z \in U I_{i}$.

$$
i \in \lambda \quad i \in \lambda \quad i \in \lambda
$$

There exist $\mathrm{I}_{\mathrm{j}}, \mathrm{I}_{\mathrm{k}} \in\left\{\mathrm{I}_{\mathrm{i}}, \mathrm{i} \in \lambda\right\}$ such that $\left(\left(\mathrm{x}^{*}\left(\mathrm{y}^{*} \mathrm{x}\right) * \mathrm{z}\right)^{*} \mathrm{~b} \in \mathrm{I}_{\mathrm{j}}\right.$ and $\mathrm{z} \in \mathrm{I}_{\mathrm{k}}$.
\Rightarrow either $I_{j} \subseteq I_{k}$ or $I_{k} \subseteq I_{j}$. [Since $\left\{I_{i}\right\}_{i \in \lambda}$ is chain]
\Rightarrow either $\left(\left(x^{*}\left(y^{*} x\right)\right)^{*} z\right)^{*} b \in I_{j}$ and $z \in I_{k}$ or $\left(\left(x^{*}\left(y^{*} x\right)\right)^{*} z\right)^{*} b \in I_{k}$ and $z \in I_{j}$.
\Rightarrow either $x \in I_{j}$ or $x \in I_{k}$. [Since I_{j} and I_{k} are Q-Smarandache b- implicative ideal of X]
$\Rightarrow \mathrm{x} \in \cup \mathrm{I}_{\mathrm{i}}$. $i \in \lambda$
Therefore, $U I_{i} \quad$ is a Q-Smarandache b - implicative ideal of X. $i \in \lambda$

Journal of Kerbala University, Vol. 14 No. 1 Scientific . 2016

References :

[1]H. H. Abbass and S. A. Neamah. , "A New Type of Implicative Ideals of a BH-Algebra", European Journal scientific Research Vol. 126, No3. pp.255-268, 2014.
[2]H. H. Abbass and S. J. Mohammed. , " On a Q-Smarandache Completely Closed Ideal with Respect To An Element of a Smarandache BH -algebra", Journal of kerbala university, Vol. 11 No.3, pp.147-157, 2013.
[3]J. Meng and Y.B. Jun, "BCK-algebras", Kyung Moon SA, Seoul, 1994.
[4]K. Iseki ,"An algebra related with a propositional calculus", Proc. Japan Acad. 42, 2629,1966.
[5]Q.P. Hu and X. Li," On BCH-algebras", Math. Seminar Notes,Vol.11, pp.313-320, 1983.
[6]S. S. Ahn and H. S. Kim, "R-maps and L-maps in BH-algebras", Journal of the Chungcheong Mathematical Society, Vol.13, No. 2, pp.53-59, 2000.
[7]Y. B. Jun, E. H. Roh and H. S. Kim ,"On BH-algebras", Scientiae Mathematicae Vol. 1,No 3, pp.347-354, 1998.
[8]Y. Imai and K. Iseki, "On Axiom System of Propositional Calculi XIV, Proc. Japan Acad. 42 , pp. 19-20, 1966 .

