On Algebraic Multi-Ring Spaces

Linfan Mao
(Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080)

Abstract

A Smarandache multi-space is a union of n spaces $A_{1}, A_{2}, \cdots, A_{n}$ with some additional conditions holding. Combining Smarandache multispaces with rings in classical ring theory, the conception of multi-ring spaces is introduced. Some characteristics of a multi-ring space are obtained in this paper

Key words: ring, multi-space, multi-ring space, ideal subspace chain.
Classification: AMS(2000) 16U80, 16W25

1. Introduction

The notion of multi-spaces is introduced by Smarandache in [6] under his idea of hybrid mathematics: combining different fields into a unifying field $([7])$, which is defined as follows.

Definition 1.1 For any integer $i, 1 \leq i \leq n$ let A_{i} be a set with ensemble of law L_{i}, and the intersection of k sets $A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{k}}$ of them constrains the law $I\left(A_{i_{1}}, A_{i_{2}}, \cdots, A_{i_{k}}\right)$. Then the union of $A_{i}, 1 \leq i \leq n$

$$
\widetilde{A}=\bigcup_{i=1}^{n} A_{i}
$$

is called a multi-space.
As we known, a set R with two binary operation + and \circ, denoted by $(R ;+, \circ$), is said to be a ring if for $\forall x, y \in R, x+y \in R, x \circ y \in R$, the following conditions hold.
(i) $(R ;+)$ is an abelian group;
(ii) $(R ; \circ)$ is a semigroup;
(iii) For $\forall x, y, z \in R, x \circ(y+z)=x \circ y+x \circ z$ and $(x+y) \circ z=x \circ z+y \circ z$.

By combining Smarandache multi-spaces with rings, a new kind of algebraic structure called multi-ring space is found, which is defined in the following.

Definition 1.2 Let $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$ be a complete multi-space with double binary operation set $O(\widetilde{R})=\left\{\left(+_{i}, \times_{i}\right), 1 \leq i \leq m\right\}$. If for any integers $i, j, i \neq j, 1 \leq i, j \leq m$, $\left(R_{i} ;+_{i}, \times_{i}\right)$ is a ring and for $\forall x, y, z \in \widetilde{R}$,

$$
\left(x+_{i} y\right)+_{j} z=x+_{i}\left(y+_{j} z\right), \quad\left(x \times_{i} y\right) \times_{j} z=x \times_{i}\left(y \times_{j} z\right)
$$

and

$$
x \times_{i}\left(y+{ }_{j} z\right)=x \times_{i} y+_{j} x \times_{i} z, \quad\left(y+_{j} z\right) \times_{i} x=y \times_{i} x+_{j} z \times_{i} x
$$

if all their operation results exist, then \widetilde{R} is called a multi-ring space. If for any integer $1 \leq i \leq m,\left(R ;+_{i}, \times_{i}\right)$ is a filed, then \widetilde{R} is called a multi-filed space.

For a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$, let $\widetilde{S} \subset \widetilde{R}$ and $O(\widetilde{S}) \subset O(\widetilde{R})$, if \widetilde{S} is also a multi-ring space with double binary operation set $O(\widetilde{S})$, then call \widetilde{S} a multi-ring subspace of \widetilde{R}. We have the following criterions for the multi-ring subspaces.

The subject of this paper is to find some characteristics of a multi-ring space. For terminology and notation not defined here can be seen in [1], [5], [12] for algebraic terminologies and in [2], [6] - [11] for multi-spaces and logics.

2. Characteristics of a multi-ring space

First, we have the following result for multi-ring subspace of a multi-ring space.
Theorem 2.1 For a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$, a subset $\widetilde{S} \subset \widetilde{R}$ with $O(\widetilde{S}) \subset$ $O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} if and only if for any integer $k, 1 \leq k \leq m$, $\left(\widetilde{S} \cap R_{k} ;+_{k}, \times_{k}\right)$ is a subring of $\left(R_{k} ;+_{k}, \times_{k}\right)$ or $\widetilde{S} \cap R_{k}=\emptyset$.

Proof For any integer $k, 1 \leq k \leq m$, if $\left(\widetilde{S} \cap R_{k} ;+_{k}, \times_{k}\right)$ is a subring of $\left(R_{k} ;+_{k}, \times_{k}\right)$ or $\widetilde{S} \cap R_{k}=\emptyset$, then since $\widetilde{S}=\bigcup_{i=1}^{m}\left(\widetilde{S} \cap R_{i}\right)$, we know that \widetilde{S} is a multi-ring subspace by definition of a multi-ring space.

Now if $\widetilde{S}=\bigcup_{j=1}^{s} S_{i_{j}}$ is a multi-ring subspace of \widetilde{R} with double binary operation set $O(\widetilde{S})=\left\{\left(+_{i_{j}}, \times_{i_{j}}\right), 1 \leq j \leq s\right\}$, then $\left(S_{i_{j}} ;+_{i_{j}}, \times_{i_{j}}\right)$ is a subring of $\left(R_{i_{j}} ;+_{i_{j}}, \times_{i_{j}}\right)$. Therefore, for any integer $j, 1 \leq j \leq s, S_{i_{j}}=R_{i_{j}} \cap \widetilde{S}$. But for other integer $l \in$ $\{i ; 1 \leq i \leq m\} \backslash\left\{i_{j} ; 1 \leq j \leq s\right\}, \widetilde{S} \cap S_{l}=\emptyset$.

Applying the criterions for subrings of a ring, we get the following result.
Theorem 2.2 For a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$, a subset $\widetilde{S} \subset \widetilde{R}$ with $O(\widetilde{S}) \subset$ $O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} if and only if for any double binary operations $\left(+_{j}, \times_{j}\right) \in O(\widetilde{S}),\left(\widetilde{S} \cap R_{j} ;+_{j}\right) \prec\left(R_{j} ;+_{j}\right)$ and $\left(\widetilde{S} ; \times_{j}\right)$ is complete.

Proof According to Theorem 2.1, we know that \widetilde{S} is a multi-ring subspace if and only if for any integer $i, 1 \leq i \leq m,\left(\widetilde{S} \cap R_{i} ;+_{i}, \times_{i}\right)$ is a subring of $\left(R_{i} ;+_{i}, \times_{i}\right)$ or $\widetilde{S} \cap R_{i}=\emptyset$. By a well known criterions for subrings of a ring (see also [5]), we know
that $\left(\widetilde{S} \cap R_{i} ;+_{i}, \times_{i}\right)$ is a subring of $\left(R_{i} ;+_{i}, \times_{i}\right)$ if and only if for any double binary operations $\left(+_{j}, \times_{j}\right) \in O(\widetilde{S}),\left(\widetilde{S} \cap R_{j} ;+_{j}\right) \prec\left(R_{j} ;+_{j}\right)$ and $\left(\widetilde{S} ; \times_{j}\right)$ is a complete set. This completes the proof. $\quad \square$

We use the ideal subspace chain of a multi-ring space to characteristic its structure properties. An ideal subspace \widetilde{I} of a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$ with double binary operation set $O(\widetilde{R})$ is a multi-ring subspace of \widetilde{R} satisfying the following conditions:
(i) \widetilde{I} is a multi-group subspace with operation set $\{+\mid(+, \times) \in O(\widetilde{I})\}$;
(ii) for any $r \in \widetilde{R}, a \in \widetilde{I}$ and $(+, \times) \in O(\widetilde{I}), r \times a \in \widetilde{I}$ and $a \times r \in \widetilde{I}$ if their operation results exist.

Theorem 2.3 A subset \widetilde{I} with $O(\widetilde{I}), O(\widetilde{I}) \subset O(\widetilde{R})$ of a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$ with double binary operation set $O(\widetilde{R})=\left\{\left(+_{i}, \times_{i}\right) \mid 1 \leq i \leq m\right\}$ is an ideal subspace if and only if for any integer $i, 1 \leq i \leq m,\left(\widetilde{I} \cap R_{i},{ }_{\sim}, \times_{i}\right)$ is an ideal of the ring $\left(R_{i},+_{i}, \times_{i}\right)$ or $\widetilde{I} \cap R_{i}=\emptyset$.

Proof By definition of an ideal subspace, the necessity of the condition is obvious.
For the sufficiency, denote by $\widetilde{R}(+, \times)$ the set of elements in \widetilde{R} with binary operations + and \times. If there exists an integer i such that $\widetilde{I} \cap R_{i} \neq \emptyset$ and $\left(\widetilde{I} \cap R_{i},+_{i}, \times_{i}\right)$ is an ideal of $\left(R_{i},+_{i}, \times_{i}\right)$, then for $\forall a \in \tilde{I} \cap R_{i}, \forall r_{i} \in R_{i}$, we know that

$$
r_{i} \times_{i} a \in \widetilde{I} \bigcap R_{i} ; \quad a \times_{i} r_{i} \in \widetilde{I} \bigcap R_{i} .
$$

Notice that $\widetilde{R}\left(+_{i}, \times_{i}\right)=R_{i}$. Therefore, we get that for $\forall r \in \widetilde{R}$,

$$
r \times_{i} a \in \tilde{I} \bigcap R_{i} ; \text { and } a \times_{i} r \in \tilde{I} \bigcap R_{i},
$$

if their operation result exist. Whence, \widetilde{I} is an ideal subspace of \widetilde{R}. \downarrow
An ideal subspace \widetilde{I} of a multi-ring space \widetilde{R} is said maximal if for any ideal subspace \widetilde{I}^{\prime}, if $\widetilde{R} \supseteq \widetilde{I}^{\prime} \supseteq \widetilde{I}$, then $\widetilde{I}^{\prime}=\widetilde{R}$ or $\widetilde{I}^{\prime}=\widetilde{I}$. For any order of the double binary operation set $O(\widetilde{R})$ of a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$, not loss of generality, assume it being $\left({ }_{\widetilde{R}}, \times_{1}\right) \succ\left(+_{2}, \times_{2}\right) \succ \cdots \succ\left(+_{m}, \times_{m}\right)$, we can define an ideal subspace chain of \widetilde{R} by the following programming.
(i) Construct the ideal subspace chain

$$
\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1 s_{1}}
$$

under the double binary operation $\left(+_{1}, \times_{1}\right)$, where \widetilde{R}_{11} is a maximal ideal subspace of \widetilde{R} and in general, for any integer $i, 1 \leq i \leq m-1, \widetilde{R}_{1(i+1)}$ is a maximal ideal subspace of $\widetilde{R}_{1 i}$.
(ii) If the ideal subspace

$$
\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1 s_{1}} \supset \cdots \supset \widetilde{R}_{i 1} \supset \cdots \supset \widetilde{R}_{i s_{i}}
$$

has been constructed for $\left(+_{1}, \times_{1}\right) \succ\left({ }_{2}, \times_{2}\right) \succ \cdots \succ\left(+_{i}, \times_{i}\right), 1 \leq i \leq m-1$, then construct an ideal subspace chain of $\widetilde{R}_{i s_{i}}$

$$
\widetilde{R}_{i s_{i}} \supset \widetilde{R}_{(i+1) 1} \supset \widetilde{R}_{(i+1) 2} \supset \cdots \supset \widetilde{R}_{(i+1) s_{1}}
$$

under the operations $\left(+_{i+1}, \times_{i+1}\right)$, where $\widetilde{R}_{(i+1) 1}$ is a maximal ideal subspace of $\widetilde{R}_{i s_{i}}$ and in general, $\widetilde{R}_{(i+1)(i+1)}$ is a maximal ideal subspace of $\widetilde{R}_{(i+1) j}$ for any integer $j, 1 \leq j \leq s_{i}-1$. Define the ideal subspace chain of \widetilde{R} under $\left(+_{1}, \times_{1}\right) \succ\left(+_{2}, \times_{2}\right) \succ$ $\cdots \succ\left(+_{i+1}, \times_{i+1}\right)$ being

$$
\widetilde{R} \supset \widetilde{R}_{11} \supset \cdots \supset \widetilde{R}_{1 s_{1}} \supset \cdots \supset \widetilde{R}_{i 1} \supset \cdots \supset \widetilde{R}_{i s_{i}} \supset \widetilde{R}_{(i+1) 1} \supset \cdots \supset \widetilde{R}_{(i+1) s_{i+1}}
$$

Similar to a multi-group space([3]), we have the following results for the ideal subspace chain of a multi-ring space.

Theorem 2.4 For a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$, its ideal subspace chain only has finite terms if and only if for any integer $i, 1 \leq i \leq m$, the ideal chain of the ring $\left(R_{i} ;+_{i}, \times_{i}\right)$ has finite terms, i.e., each ring $\left(R_{i} ;+_{i}, \times_{i}\right)$ is an Artin ring.

Proof Let the order of double operations in $\vec{O}(\widetilde{R})$ be

$$
\left(+_{1}, \times_{1}\right) \succ\left(+_{2}, \times_{2}\right) \succ \cdots \succ\left(+_{m}, \times_{m}\right)
$$

and a maximal ideal chain in the ring $\left(R_{1} ;+_{1}, \times_{1}\right)$ is

$$
R_{1} \succ R_{11} \succ \cdots \succ R_{1 t_{1}} .
$$

Calculate

$$
\left.\begin{array}{c}
\widetilde{R}_{11}=\widetilde{R} \backslash\left\{R_{1} \backslash R_{11}\right\}=R_{11} \bigcup\left(\bigcup_{i=2}^{m}\right) R_{i} \\
\widetilde{R}_{12}=\widetilde{R}_{11} \backslash\left\{R_{11} \backslash R_{12}\right\}=R_{12} \bigcup\left(\bigcup_{i=2}^{m}\right) R_{i} \\
\ldots \ldots \ldots \ldots \ldots
\end{array}\right\}
$$

According to Theorem 3.10, we know that

$$
\widetilde{R} \supset \widetilde{R}_{11} \supset \widetilde{R}_{12} \supset \cdots \supset \widetilde{R}_{1 t_{1}}
$$

is a maximal ideal subspace chain of \widetilde{R} under the double binary operation $\left(+_{1}, \times_{1}\right)$. In general, for any integer $i, 1 \leq i \leq m-1$, assume

$$
R_{i} \succ R_{i 1} \succ \cdots \succ R_{i t_{i}}
$$

is a maximal ideal chain in the ring $\left(R_{(i-1) t_{i-1}} ;+_{i}, \times_{i}\right)$. Calculate

$$
\widetilde{R}_{i k}=R_{i k} \bigcup\left(\bigcup_{j=i+1}^{m}\right) \widetilde{R}_{i k} \bigcap R_{i}
$$

Then we know that

$$
\widetilde{R}_{(i-1) t_{i-1}} \supset \widetilde{R}_{i 1} \supset \widetilde{R}_{i 2} \supset \cdots \supset \widetilde{R}_{i t_{i}}
$$

is a maximal ideal subspace chain of $\widetilde{R}_{(i-1) t_{i-1}}$ under the double operation $\left(+_{i}, \times_{i}\right)$ by Theorem 3.10. Whence, if for any integer $i, 1 \leq i \leq m$, the ideal chain of the ring $\left(R_{i} ;+_{i}, \times_{i}\right)$ has finite terms, then the ideal subspace chain of the multi-ring space \widetilde{R} only has finite terms and if there exists one integer i_{0} such that the ideal chain of the ring $\left(R_{i_{0}},+_{i_{0}}, \times{ }_{i_{0}}\right)$ has infinite terms, then there must be infinite terms in the ideal subspace chain of the multi-ring space \widetilde{R}. \ddagger.

A multi-ring space is called an Artin multi-ring space if each ideal subspace chain only has finite terms. We have the following corollary by Theorem 3.11.

Corollary 2.1 A multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m}$ with double binary operation set $O(\widetilde{R})=$ $\left\{\left(+_{i}, \times_{i}\right) \mid 1 \leq i \leq m\right\}$ is an Artin multi-ring space if and only if for any integer $i, 1 \leq i \leq m$, the ring $\left(R_{i} ;+_{i}, \times_{i}\right)$ is an Artin ring.

For a multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m}$ with double binary operation set $O(\widetilde{R})=$ $\left\{\left(+_{i}, \times_{i}\right) \mid 1 \leq i \leq m\right\}$, an element e is an idempotent element if $e_{\times}^{2}=e \times e=e$ for a double binary operation $(+, \times) \in O(\widetilde{R})$. We define the directed sum \widetilde{I} of two ideal subspaces \widetilde{I}_{1} and \widetilde{I}_{2} as follows:
(i) $\widetilde{I}=\widetilde{I}_{1} \cup \widetilde{I}_{2}$;
(ii) $\widetilde{I}_{1} \cap \widetilde{I}_{2}=\left\{0_{+}\right\}$, or $\widetilde{I}_{1} \cap \widetilde{I}_{2}=\emptyset$, where 0_{+}denotes an unit element under the operation + .

Denote the directed sum of \widetilde{I}_{1} and \widetilde{I}_{2} by

$$
\tilde{I}=\tilde{I}_{1} \bigoplus \tilde{I}_{2}
$$

If for any $\widetilde{I}_{1}, \widetilde{I}_{2}, \widetilde{I}=\widetilde{I}_{1} \oplus \widetilde{I}_{2}$ implies that $\widetilde{I}_{1}=\widetilde{I}$ or $\widetilde{I}_{2}=\widetilde{I}$, then \widetilde{I} is called non-reducible. We have the following result for the Artin multi-ring space similar to a well-known result for the Artin ring (see [12]).

Theorem 2.5 Any Artin multi-ring space $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$ with double binary operation set $O(\widetilde{R})=\left\{\left(+_{i}, \times_{i}\right) \mid 1 \leq i \leq m\right\}$ is a directed sum of finite non-reducible ideal subspaces, and if for any integer $i, 1 \leq i \leq m,\left(R_{i} ;+_{i}, \times_{i}\right)$ has unit $1_{\times_{i}}$, then

$$
\left.\widetilde{R}=\bigoplus_{i=1}^{m} \bigoplus_{j=1}^{s_{i}}\left(R_{i} \times_{i} e_{i j}\right) \bigcup\left(e_{i j} \times_{i} R_{i}\right)\right)
$$

where $e_{i j}, 1 \leq j \leq s_{i}$ are orthogonal idempotent elements of the ring R_{i}.
Proof Denote by \widetilde{M} the set of ideal subspaces which can not be represented by a directed sum of finite ideal subspaces in \widetilde{R}. According to Theorem 3.11, there is a minimal ideal subspace \widetilde{I}_{0} in \widetilde{M}. It is obvious that \widetilde{I}_{0} is reducible.

Assume that $\widetilde{I}_{0}=\widetilde{I}_{1}+\widetilde{I}_{2}$. Then $\widetilde{I}_{1} \notin \widetilde{M}$ and $\widetilde{I}_{2} \notin \widetilde{M}$. Therefore, \widetilde{I}_{1} and \widetilde{I}_{2} can be represented by directed sums of finite ideal subspaces. Whence, \widetilde{I}_{0} can be also represented by a directed sum of finite ideal subspaces. Contradicts that $\widetilde{I}_{0} \in \widetilde{M}$.

Now let

$$
\widetilde{R}=\bigoplus_{i=1}^{s} \widetilde{I}_{i}
$$

where each $\widetilde{I}_{i}, 1 \leq i \leq s$, is non-reducible. Notice that for a double operation $(+, \times)$, each non-reducible ideal subspace of \widetilde{R} has the form

$$
(e \times R(\times)) \bigcup(R(\times) \times e), \quad e \in R(\times)
$$

Whence, we know that there is a set $T \subset \widetilde{R}$ such that

$$
\widetilde{R}=\bigoplus_{e \in T, \times \in O(\widetilde{R})}(e \times R(\times)) \bigcup(R(\times) \times e)
$$

For any operation $\times \in O(\widetilde{R})$ and the unit 1_{\times}, assume that

$$
1_{\times}=e_{1} \oplus e_{2} \oplus \cdots \oplus e_{l}, e_{i} \in T, 1 \leq i \leq s
$$

Then

$$
e_{i} \times 1_{\times}=\left(e_{i} \times e_{1}\right) \oplus\left(e_{i} \times e_{2}\right) \oplus \cdots \oplus\left(e_{i} \times e_{l}\right)
$$

Therefore, we get that

$$
e_{i}=e_{i} \times e_{i}=e_{i}^{2} \text { and } e_{i} \times e_{j}=0_{i} \text { for } i \neq j
$$

That is, $e_{i}, 1 \leq i \leq l$, are orthogonal idempotent elements of $\widetilde{R}(\times)$. Notice that $\widetilde{R}(\times)=R_{h}$ for some integer h. We know that $e_{i}, 1 \leq i \leq l$ are orthogonal idempotent elements of the ring $\left(R_{h},+_{h}, \times_{h}\right)$. Denoted by $e_{h j}$ for $e_{j}, 1 \leq j \leq l$. Consider all units in \widetilde{R}, we get that

$$
\widetilde{R}=\bigoplus_{i=1}^{m}\left(\bigoplus_{j=1}^{s_{i}}\left(R_{i} \times_{i} e_{i j}\right) \bigcup\left(e_{i j} \times_{i} R_{i}\right)\right)
$$

This completes the proof. \square
Corollary 2.2 ([12]) Any Artin ring $(R ;+, \times)$ is a directed sum of finite ideals, and if $(R ;+, \times)$ has unit 1_{\times}, then

$$
R=\bigoplus_{i=1}^{s} R_{i} e_{i}
$$

where $e_{i}, 1 \leq i \leq s$ are orthogonal idempotent elements of the $\operatorname{ring}(R ;+, \times)$.

3. Open problems for a multi-ring space

Similar to Artin multi-ring space, we can also define Noether multi-ring spaces, simple multi-ring spaces, half-simple multi-ring spaces, \cdots, etc.. The open problems for these new algebraic structure are as follows.

Problem 3.1 Call a ring R a Noether ring if its every ideal chain only has finite terms. Similarly, for a multi-ring space \widetilde{R}, if its every ideal multi-ring subspace chain only has finite terms, it is called a Noether multi-ring space. Whether can we find its structures similar to Corollary 2.2 and Theorem 2.5?

Problem 3.2 Similar to ring theory, define a Jacobson or Brown-McCoy radical for multi-ring spaces and determine their contribution to multi-ring spaces.

References

[1] G.Birkhoff and S.Mac Lane, A Survey of Modern Algebra, Macmillan Publishing Co., Inc, 1977.
[2] Daniel Deleanu, A Dictionary of Smarandache Mathematics, Buxton University Press, London \& New York,2004.
[3] L.F.Mao, On Algebraic Multi-Group Spaces, eprint arXiv: math/0510427, 10/2005.
[4] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[5] L.Z. Nie and S.S Ding, Introduction to Algebra, Higher Education Publishing Press, 1994.
[6] F.Smarandache, Mixed noneuclidean geometries, eprint arXiv: math/0010119, 10/2000.
[7] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
[8] F.Smarandache, Neutrosophy, a new Branch of Philosophy, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 297384.
[9] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 385-438.
[10]] W.B.Vasantha Kandasamy, Bialgebraic structures and Smarandache bialgebraic structures, American Research Press, 2003.
[11] W.B.Vasantha Kandasamy and F.Smarandache, Basic Neutrosophic Algebraic Structures and Their Applications to Fuzzy and Neutrosophic Models, HEXIS, Church Rock, 2004.
[12] Quanyan Xong, Ring Theory, Wuhan University Press, 1993.

