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Abstract: A function f is called a graceful labelling of a graph G with g edges if f is
an injection from the vertices of G to the set {0,1,2,...,q} such that, when each edge zy
is assigned the label |f(z) — f(y)| , the resulting edge labels are distinct. A graph G is
said to be one modulo N graceful (where N is a positive integer) if there is a function ¢
from the vertex set of G to {0,1, N, (N + 1),2N, (2N +1),...,N(¢ — 1), N(g — 1) + 1}in
such a way that (i) ¢ is 1 — 1 (i) ¢ induces a bijection ¢* from the edge set of G to
{1,N +1,2N + 1,...,N(qg — 1) + 1}where ¢"(uv)=|¢(u) — ¢(v)|. In this paper we prove
that the arbitrary supersubdivisions of paths, disconnected paths, cycles and stars are one

modulo N graceful for all positive integers N.
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§1. Introduction

S.W.Golomb introduced graceful labelling ([1]). The odd gracefulness was introduced by
R.B.Gnanajothi in [2]. C.Sekar introduced one modulo three graceful labelling ([8]) recently.
V.Ramachandran and C.Sekar ([6]) introduced the concept of one modulo N graceful where N
is any positive integer.In the case N = 2, the labelling is odd graceful and in the case N = 1 the
labelling is graceful. We prove that the the arbitrary supersubdivisions of paths, disconnected

paths, cycles and stars are one modulo N graceful for all positive integers N.

§82. Main Results

Definition 2.1 A graph G is said to be one Smarandache modulo N graceful on subgraph
H < G with q edges (where N is a positive integer) if there is a function ¢ from the vertex set
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of G to {0,1, N,(N +1),2N,(2N +1),--- ,N(g—1),N(g—1) + 1} in such a way that (i) ¢ is
1—1 (i%) ¢ induces a bijection ¢* from the edge set of H to {1, N+1,2N+1,--- ,N(g—1)+1},
and E(G)\ E(h) to {1,2,--- ,|E(G)| — q}, where ¢*(uv)=|p(u) — ¢(v)|. Particularly, if H =G
such a graph is said to be one modulo N graceful graph.

Definition 2.2([9]) In the complete bipartite graph Ka ,, we call the part consisting of two
vertices, the 2-vertices part of Ko and the part consisting of m vertices the m-vertices part of
Ko m.Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision
of G if H is obtained by replacing every edge e; of G by the complete bipartite graph Ko, for
some positive integer m in such a way that the ends of e; are merged with the two vertices part

of Ko m after removing the edge e; from G.H is denoted by SS(G).

Definition 2.3([9]) A supersubdivision H of a graph G is said to be an arbitrary supersubdivi-
sion of the graph G if every edge of G is replaced by an arbitrary Ko ., (m may vary for each
edge arbitrarily). H is denoted by ASS(G).

Definition 2.4 A graph G is said to be connected if any two vertices of G are joined by a path.

Otherwise it is called disconnected graph.

Definition 2.5 A star S, with n spokes is given by (V, E) where V(S,,) = {vo,v1,...,vn} and
E(Sy) ={vovi/i=1,2...,n}. vy is called the centre of the star.

Definition 2.6 A cycle C,, with n points is a graph given by (V, E) where V(Cy,) = {v1,v2,...,0,}

and E(Cy) = {v1v2,v203, . . ., Up—1Up, Vp¥1 }-

Theorem 2.7 Arbitrary supersubdivisions of paths are one modulo N graceful for every positive

integer N.

Proof Let P, be a path with successive vertices uy, us, ug, -+ ,u, and let e; (1 <i <n—1)
denote the edge u;u;+1 of P,. Let H be an arbitrary supersubdivision of the path P, where
each edge e; of P, is replaced by a complete bipartite graph K ,,, where m; is any positive
integer,such as those shown in Fig.1 for Ps. We observe that H has M = 2(mj+mao+- - -+my—1)
edges.

Define ¢(u;) = N(i—1),:=1,2,3,--- ,n. For k=1,2,3,--- ,m;, let

e N(M —2k+i) —2N(my +ma+- - +mi_1)+1  ifi=23-n—1.

It is clear from the above labelling that the m;+2 vertices of K ,,, have distinct labels
and the 2m; edges of K3 ,,, also have distinct labels for 1 <i < n — 1. Therefore, the vertices
of each K3 ,,;, 1 <4 < n—1 in the arbitrary supersubdivision H of P, have distinct labels and
also the edges of each K3 ,,,, 1 <4 < mn —1 in the arbitrary supersubdivision graph H of P,
have distinct labels. Also the function ¢ from the vertex set of G to {0,1, N, (N+1),2N, (2N +
1),-+- ,N(g—1), N(g—1)+1} is in such a way that (i) ¢ is 1 — 1, and (i) ¢ induces a bijection
¢* from the edge set of G to {1, N+1,2N+1,--- ,N(g—1)+ 1}, where ¢*(uv) = |¢(u) — ¢(v)|.
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Hence H is one modulo N graceful.

€1 €2 €3 €4 €5

Ui U2 us Uy Us Ue

Path P6

(1)

Uyg

Fig.1 An arbitrary supersubdivision of P

Clearly, ¢ defines a one modulo N graceful labelling of arbitrary supersubdivision of the
path P,. O

Example 2.8 An odd graceful labelling of ASS(Ps) is shown in Fig.2.

39

Fig.2

Example 2.9 A graceful labelling of ASS(Ps) is shown in Fig.3.
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26

Example 2.10 A one modulo 7 graceful labelling of ASS(Ps) is shown in Fig.4.
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204

176 169

Fig.4

Theorem 2.11 Arbitrary supersubdivision of disconnecte paths P, U P, are one modulo N
graceful provided the arbitrary supersubdivision is obtained by replacing each edge of G by Ko,
with m > 2.

Proof Let P, be a path with successive vertices vy, va,--+ ,v, and let e; (1 <i<mn—1)

denote the edge v;v;+1 of P,. Let P, be a path with successive vertices v,4+1, Un+2, s Untr
and let e;(n +1 <4 <n+r—1) denote the edge v;v; 1.
Let H be an arbitrary supersubdivision of the disconnected graph P, U P, where each edge e;
of P, U P, is replaced by a complete bipartite graph K ,,, with m; > 2 for 1 <{ <n —1 and
n+1 < i < n+r—1. We observe that H has M = 2(m1+ma+- - -+Mp_14+Mpir1+ - +Mpir_1)
edges.
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Fig.5 An arbitrary supersubdivision of P3 U P,

Define ¢(v;) = N(i —1),i =1,2,3,--- ,n, ¢(v;) = N(i),i=n+1,n+2,n+3,--- ,n+r.
For k=1,2,3,...,my, let

N(M =2k+1)+1 ifi=1,
N(M—=2+i)+1=2N(my+ma+--+mi1+k—1) ifi=23---n—1,
S )= NM—1+i)+1—2N(mi+ma+-+my1+k—1) ifi=n+1,
NM—-1+44)4+1—-2N[(m1+mg—+ -+ myp_1)+
(Mmpt1+--+mi1)+k—1] ifi=n+2,n+3,---n+r—1.

It is clear from the above labelling that the m;+2 vertices of K5 ,,, have distinct labels
and the 2m; edges of K ,,, also have distinct labels for 1 < i < n—-landn+1 < i <
n + r — 1.Therefore the vertices of each Ko py,, 1 <i<n—-landn+1<i¢<n+r—-1
in the arbitrary supersubdivision H of P, U P, have distinct labels and also the edges of
each Koy, 1 < i <n—-1landn+1 <7< n+r—1Iin the arbitrary supersubdivision
graph H of P, U P, have distinct labels. Also the function ¢ from the vertex set of G to
{0,1,N,(N+1),2N,(2N +1),...,N(g—1),N(g — 1)+ 1} is in such a way that (i) ¢ is 1 — 1,
and (i7) ¢ induces a bijection ¢* from the edge set of G to {1, N+ 1,2N+1,--- /N(¢—1)+1},
where ¢*(uv)=|¢(u) — ¢(v)|. Hence H is one modulo N graceful.

Clearly, ¢ defines a one modulo N graceful labelling of arbitrary supersubdivisions of
disconnected paths P, U P;. O

Example 2.12 An odd graceful labelling of ASS(Ps U Ps) is shown in Fig.6.
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Fig.6

Example 2.13 A graceful labelling of ASS(P; U Py) is shown in Fig.7.

Fig.7

Example 2.14 A one modulo 4 graceful labelling of ASS(P; U Ps) is shown in Fig.8.
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Fig.8
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Theorem 2.15 For any any n > 3, there exists an arbitrary supersubdivision of C, which is
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one modulo N graceful for every positive integer N .

Proof Let C), be a cycle with consecutive vertices vi,ve,vs,- - ,v,. Let G be a super-
subdivision of a cycle C,, where each edge e; of C), is replaced by a complete bipartite graph
K m, where m,; is any positive integer for 1 <7 <n—1 and m,, = (n — 1). It is clear that G
has M = 2(my1 + mga + --- + m,,) edges. Here the edge v,_1v; is replaced by Kz ,_1 for the
construction of arbitrary supersubdivision of C,.

U3

V2

V4

Us

Fig.9 Cycle C),
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1
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Fig.10 An arbitrary Supersubdivision of Cj

Define ¢(v;) = N(i —1),i =1,2,3,--- ,n. For k=1,2,3,...,m;, let

n N(M =2k +i)+1—2N(my +ma+ - +mi_1)  ifi=23--n—1.
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and ¢(U7(Zki) =Nmn-k+m,—1)+1

It is clear from the above labelling that the function ¢ from the vertex set of G to
{0,1,N,(N+1),2N, (2N +1),--- ,N(¢—1),N(¢ — 1) + 1} is in such a way that (i) pis1—1
(i1) ¢ induces a bijection ¢* from the edge set of G to {1, N+1,2N+1,--- , N(g—1)+1}where
¢* (uv)=|d(u) — ¢(v)|. Hence, H is one modulo N graceful. Clearly, ¢ defines a modulo N
graceful labelling of arbitrary supersubdivision of cycle C),. |

Example 2.16 An odd graceful labelling of ASS(C5) is shown in Fig.11.

59
Fig.11

Example 2.17 A graceful labelling of ASS(C5) is shown in Fig.12.

Fig.12

Example 2.18 A one modulo 3 graceful labelling of ASS(Cy) is shown in Fig.13.
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64
Fig.13

Theorem 2.19 Arbitrary supersubdivision of any star is one modulo N graceful for every

positive integer N.

Proof The proof is divided into 2 cases.
Casel N=1

It has been proved in [4] that arbitrary supersubdivision of any star is graceful.

Ve

Fig.14 An arbitrary supersubdivision of Sg
Case 2 N> 1.

Let S, be a star with vertices vy, v1,v2, -+ , v, and let e; denote the edge vgv; of S, for 1 <
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1 < n. Let H be an arbitrary supersubdivision of S,,. That is for 1 < i < n each edge e; of S, is
replaced by a complete bipartite graph Ks ,,,, with m; is any positive integer for 1 <7 < n—1and
my, = (n—1) . It is clear that H has M = 2(mj+ma+---+m,,) edges. The vertex set and edge

set of H are given by V(H) = {vg, vy, vz - - - ,vn,véi),v(ﬁ) e ,v((;lnl), vé;),v(%), e ,v(();nZ), e ,véil),
@ (mn)
vOn’ ’vOn }
Define ¢ : V(H) — {0,1,2,---2>""  m;} as follows:
let ¢p(vo) =0. For k=1,2,3,...,m;, let
N(M — k) +1 ifi=1
k )
¢(U(()i)) = e
NM—-k)+1—N(mi+ma+---+m;_1) ifi =2,3,---n.
N(M — m1) ifi=1,
P(v;) =

NM — N(2my +2ma +---+2m;—1 +m;)  ifi=2,3,---n.

It is clear from the above labelling that the function ¢ from the vertex set of G to
{0,1,N,(N+1),2N, (2N +1),--- ,N(¢—1),N(¢g— 1) + 1} is in such a way that (i) pis1—1
(i1) ¢ induces a bijection ¢* from the edge set of G to {1, N+1,2N+1,..., N(¢—1)+ 1}where
¢* (uv)=|d(u) — ¢(v)|. Hence H is one modulo N graceful.

Clearly, ¢ defines a one modulo N graceful labelling of arbitrary supersubdivision of star
Sh. m|

Example 2.20 A one modulo 5 graceful labelling of ASS(S4) is shown in Fig.14.

90

Fig.14
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Example 2.21 An odd graceful labelling of AS5S(Ss) is shown in Fig.15.

Fig.15
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