One Modulo N Gracefullness Of Arbitrary Supersubdivisions of Graphs

V.Ramachandran
(Department of Mathematics, P.S.R Engineering College, Sevalpatti, Sivakasi, Tamil Nadu, India)
C.Sekar
(Department of Mathematics, Aditanar College of Arts and Science, Tiruchendur, Tamil Nadu, India)
E-mail: me.ram111@gmail.com, sekar.acas@gmail.com

Abstract

A function f is called a graceful labelling of a graph G with q edges if f is an injection from the vertices of G to the set $\{0,1,2, \ldots, q\}$ such that, when each edge $x y$ is assigned the label $|f(x)-f(y)|$, the resulting edge labels are distinct. A graph G is said to be one modulo N graceful (where N is a positive integer) if there is a function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \ldots, N(q-1), N(q-1)+1\}$ in such a way that $(i) \phi$ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \ldots, N(q-1)+1\}$ where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. In this paper we prove that the arbitrary supersubdivisions of paths, disconnected paths, cycles and stars are one modulo N graceful for all positive integers N.

Key Words: Modulo graceful graph, Smarandache modulo graceful graph, supersubdivisions of graphs, paths, disconnected paths, cycles and stars.

AMS(2010): 05C78

§1. Introduction

S.W.Golomb introduced graceful labelling ([1]). The odd gracefulness was introduced by R.B.Gnanajothi in [2]. C.Sekar introduced one modulo three graceful labelling ([8]) recently. V.Ramachandran and C.Sekar ([6]) introduced the concept of one modulo N graceful where N is any positive integer.In the case $N=2$, the labelling is odd graceful and in the case $N=1$ the labelling is graceful.We prove that the the arbitrary supersubdivisions of paths, disconnected paths, cycles and stars are one modulo N graceful for all positive integers N.

§2. Main Results

Definition 2.1 A graph G is said to be one Smarandache modulo N graceful on subgraph $H<G$ with q edges (where N is a positive integer) if there is a function ϕ from the vertex set

[^0]of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \cdots, N(q-1), N(q-1)+1\}$ in such a way that $(i) \phi$ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of H to $\{1, N+1,2 N+1, \cdots, N(q-1)+1\}$, and $E(G) \backslash E(h)$ to $\{1,2, \cdots,|E(G)|-q\}$, where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. Particularly, if $H=G$ such a graph is said to be one modulo N graceful graph.

Definition 2.2([9]) In the complete bipartite graph $K_{2, m}$ we call the part consisting of two vertices, the 2-vertices part of $K_{2, m}$ and the part consisting of m vertices the m-vertices part of $K_{2, m}$.Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision of G if H is obtained by replacing every edge e_{i} of G by the complete bipartite graph $K_{2, m}$ for some positive integer m in such a way that the ends of e_{i} are merged with the two vertices part of $K_{2, m}$ after removing the edge e_{i} from $G . H$ is denoted by $S S(G)$.

Definition 2.3([9]) A supersubdivision H of a graph G is said to be an arbitrary supersubdivision of the graph G if every edge of G is replaced by an arbitrary $K_{2, m}$ (m may vary for each edge arbitrarily). H is denoted by $A S S(G)$.

Definition 2.4 A graph G is said to be connected if any two vertices of G are joined by a path. Otherwise it is called disconnected graph.

Definition 2.5 A star S_{n} with n spokes is given by (V, E) where $V\left(S_{n}\right)=\left\{v_{0}, v_{1}, \ldots, v_{n}\right\}$ and $E\left(S_{n}\right)=\left\{v_{0} v_{i} / i=1,2 \ldots, n\right\} . v_{0}$ is called the centre of the star.

Definition 2.6 A cycle C_{n} with n points is a graph given by (V, E) where $V\left(C_{n}\right)=\left\{v_{1}, v_{2}, \ldots, v_{n}\right\}$ and $E\left(C_{n}\right)=\left\{v_{1} v_{2}, v_{2} v_{3}, \ldots, v_{n-1} v_{n}, v_{n} v_{1}\right\}$.

Theorem 2.7 Arbitrary supersubdivisions of paths are one modulo N graceful for every positive integer N.

Proof Let P_{n} be a path with successive vertices $u_{1}, u_{2}, u_{3}, \cdots, u_{n}$ and let $e_{i}(1 \leq i \leq n-1)$ denote the edge $u_{i} u_{i+1}$ of P_{n}. Let H be an arbitrary supersubdivision of the path P_{n} where each edge e_{i} of P_{n} is replaced by a complete bipartite graph $K_{2, m_{i}}$ where m_{i} is any positive integer,such as those shown in Fig. 1 for P_{6}. We observe that H has $M=2\left(m_{1}+m_{2}+\cdots+m_{n-1}\right)$ edges.

Define $\phi\left(u_{i}\right)=N(i-1), i=1,2,3, \cdots, n$. For $k=1,2,3, \cdots, m_{i}$, let

$$
\phi\left(u_{i, i+1}^{(k)}\right)= \begin{cases}N(M-2 k+1)+1 & \text { if } i=1 \\ N(M-2 k+i)-2 N\left(m_{1}+m_{2}+\cdots+m_{i-1}\right)+1 & \text { if } i=2,3, \cdots n-1\end{cases}
$$

It is clear from the above labelling that the $m_{i}+2$ vertices of $K_{2, m_{i}}$ have distinct labels and the $2 m_{i}$ edges of $K_{2, m_{i}}$ also have distinct labels for $1 \leq i \leq n-1$. Therefore, the vertices of each $K_{2, m_{i}}, 1 \leq i \leq n-1$ in the arbitrary supersubdivision H of P_{n} have distinct labels and also the edges of each $K_{2, m_{i}}, 1 \leq i \leq n-1$ in the arbitrary supersubdivision graph H of P_{n} have distinct labels. Also the function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+$ 1), $\cdots, N(q-1), N(q-1)+1\}$ is in such a way that $(i) \phi$ is $1-1$, and (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \cdots, N(q-1)+1\}$, where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$.

Hence H is one modulo N graceful.

Fig. 1 An arbitrary supersubdivision of P_{6}

Clearly, ϕ defines a one modulo N graceful labelling of arbitrary supersubdivision of the path P_{n}.

Example 2.8 An odd graceful labelling of $\operatorname{ASS}\left(P_{5}\right)$ is shown in Fig.2.

Fig. 2
Example 2.9 A graceful labelling of $\operatorname{ASS}\left(P_{6}\right)$ is shown in Fig.3.

Example 2.10 A one modulo 7 graceful labelling of $A S S\left(P_{6}\right)$ is shown in Fig.4.

Fig. 4

Theorem 2.11 Arbitrary supersubdivision of disconnecte paths $P_{n} \cup P_{r}$ are one modulo N graceful provided the arbitrary supersubdivision is obtained by replacing each edge of G by $K_{2, m}$ with $m \geqslant 2$.

Proof Let P_{n} be a path with successive vertices $v_{1}, v_{2}, \cdots, v_{n}$ and let $e_{i}(1 \leq i \leq n-1)$ denote the edge $v_{i} v_{i+1}$ of P_{n}. Let P_{r} be a path with successive vertices $v_{n+1}, v_{n+2}, \cdots, v_{n+r}$ and let $e_{i}(n+1 \leq i \leq n+r-1)$ denote the edge $v_{i} v_{i+1}$.
Let H be an arbitrary supersubdivision of the disconnected graph $P_{n} \cup P_{r}$ where each edge e_{i} of $P_{n} \cup P_{r}$ is replaced by a complete bipartite graph $K_{2, m_{i}}$ with $m_{i} \geqslant 2$ for $1 \leq i \leq n-1$ and $n+1 \leq i \leq n+r-1$. We observe that H has $M=2\left(m_{1}+m_{2}+\cdots+m_{n-1}+m_{n+1}+\cdots+m_{n+r-1}\right)$ edges.

Path P_{5}

Path P_{4}

Fig. 5 An arbitrary supersubdivision of $P_{3} \cup P_{4}$

Define $\phi\left(v_{i}\right)=N(i-1), i=1,2,3, \cdots, n, \phi\left(v_{i}\right)=N(i), i=n+1, n+2, n+3, \cdots, n+r$. For $k=1,2,3, \ldots, m_{i}$, let

$$
\phi\left(v_{i, i+1}^{(k)}\right)=\left\{\begin{array}{l}
N(M-2 k+1)+1 \quad \text { if } i=1, \\
N(M-2+i)+1-2 N\left(m_{1}+m_{2}+\cdots+m_{i-1}+k-1\right) \quad \text { if } i=2,3, \cdots n-1, \\
N(M-1+i)+1-2 N\left(m_{1}+m_{2}+\cdots+m_{n-1}+k-1\right) \quad \text { if } i=n+1, \\
N(M-1+i)+1-2 N\left[\left(m_{1}+m_{2}+\cdots+m_{n-1}\right)+\right. \\
\left.\left(m_{n+1}+\cdots+m_{i-1}\right)+k-1\right] \quad \text { if } i=n+2, n+3, \cdots n+r-1
\end{array}\right.
$$

It is clear from the above labelling that the $m_{i}+2$ vertices of $K_{2, m_{i}}$ have distinct labels and the $2 m_{i}$ edges of $K_{2, m_{i}}$ also have distinct labels for $1 \leq i \leq n-1$ and $n+1 \leq i \leq$ $n+r-1$.Therefore the vertices of each $K_{2, m_{i}}, 1 \leq i \leq n-1$ and $n+1 \leq i \leq n+r-1$ in the arbitrary supersubdivision H of $P_{n} \cup P_{r}$ have distinct labels and also the edges of each $K_{2, m_{i}}, 1 \leq i \leq n-1$ and $n+1 \leq i \leq n+r-1$ in the arbitrary supersubdivision graph H of $P_{n} \cup P_{r}$ have distinct labels. Also the function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \ldots, N(q-1), N(q-1)+1\}$ is in such a way that $(i) \phi$ is $1-1$, and (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \cdots, N(q-1)+1\}$, where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. Hence H is one modulo N graceful.

Clearly, ϕ defines a one modulo N graceful labelling of arbitrary supersubdivisions of disconnected paths $P_{n} \cup P_{r}$.

Example 2.12 An odd graceful labelling of $\operatorname{ASS}\left(P_{6} \cup P_{3}\right)$ is shown in Fig.6.

Fig. 6

Example 2.13 A graceful labelling of $\operatorname{ASS}\left(P_{3} \cup P_{4}\right)$ is shown in Fig.7.

Fig. 7

Example 2.14 A one modulo 4 graceful labelling of $A S S\left(P_{4} \cup P_{3}\right)$ is shown in Fig.8.

Fig. 8

Theorem 2.15 For any any $n \geq 3$, there exists an arbitrary supersubdivision of C_{n} which is
one modulo N graceful for every positive integer N.

Proof Let C_{n} be a cycle with consecutive vertices $v_{1}, v_{2}, v_{3}, \cdots, v_{n}$. Let G be a supersubdivision of a cycle C_{n} where each edge e_{i} of C_{n} is replaced by a complete bipartite graph $K_{2, m_{i}}$ where m_{i} is any positive integer for $1 \leq i \leq n-1$ and $m_{n}=(n-1)$. It is clear that G has $M=2\left(m_{1}+m_{2}+\cdots+m_{n}\right)$ edges. Here the edge $v_{n-1} v_{1}$ is replaced by $K_{2, n-1}$ for the construction of arbitrary supersubdivision of C_{n}.

Fig. 9 Cycle C_{n}

Fig. 10 An arbitrary Supersubdivision of C_{5}

Define $\phi\left(v_{i}\right)=N(i-1), i=1,2,3, \cdots, n$. For $k=1,2,3, \ldots, m_{i}$, let

$$
\phi\left(v_{i, i+1}^{(k)}\right)= \begin{cases}N(M-2 k+1)+1 & \text { if } i=1 \\ N(M-2 k+i)+1-2 N\left(m_{1}+m_{2}+\cdots+m_{i-1}\right) & \text { if } i=2,3, \cdots n-1\end{cases}
$$

and $\phi\left(v_{n, 1}^{(k)}\right)=N\left(n-k+m_{n}-1\right)+1$.
It is clear from the above labelling that the function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \cdots, N(q-1), N(q-1)+1\}$ is in such a way that $(i) \phi$ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \cdots, N(q-1)+1\}$ where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. Hence, H is one modulo N graceful. Clearly, ϕ defines a modulo N graceful labelling of arbitrary supersubdivision of cycle C_{n}.

Example 2.16 An odd graceful labelling of $\operatorname{ASS}\left(C_{5}\right)$ is shown in Fig.11.

Fig. 11
Example 2.17 A graceful labelling of $A S S\left(C_{5}\right)$ is shown in Fig. 12 .

Fig. 12

Example 2.18 A one modulo 3 graceful labelling of $A S S\left(C_{4}\right)$ is shown in Fig. 13 .

Fig. 13

Theorem 2.19 Arbitrary supersubdivision of any star is one modulo N graceful for every positive integer N.

Proof The proof is divided into 2 cases.
Case $1 \quad N=1$
It has been proved in [4] that arbitrary supersubdivision of any star is graceful.

Fig. 14 An arbitrary supersubdivision of S_{6}
Case $2 \quad N>1$.
Let S_{n} be a star with vertices $v_{0}, v_{1}, v_{2}, \cdots, v_{n}$ and let e_{i} denote the edge $v_{0} v_{i}$ of S_{n} for $1 \leq$
$i \leq n$. Let H be an arbitrary supersubdivision of S_{n}. That is for $1 \leq i \leq n$ each edge e_{i} of S_{n} is replaced by a complete bipartite graph $K_{2, m_{i}}$ with m_{i} is any positive integer for $1 \leq i \leq n-1$ and $m_{n}=(n-1)$. It is clear that H has $M=2\left(m_{1}+m_{2}+\cdots+m_{n}\right)$ edges. The vertex set and edge set of H are given by $V(H)=\left\{v_{0}, v_{1}, v_{2} \cdots, v_{n}, v_{01}^{(1)}, v_{01}^{(2)} \cdots, v_{01}^{\left(m_{1}\right)}, v_{02}^{(1)}, v_{02}^{(2)}, \cdots, v_{02}^{\left(m_{2}\right)}, \cdots, v_{0 n}^{(1)}\right.$, $\left.v_{0 n}^{(2)}, \cdots, v_{0 n}^{\left(m_{n}\right)}\right\}$.

Define $\phi: V(H) \rightarrow\left\{0,1,2, \cdots 2 \sum_{i=1}^{n} m_{i}\right\}$ as follows:
let $\phi\left(v_{0}\right)=0$. For $k=1,2,3, \ldots, m_{i}$, let

$$
\begin{gathered}
\phi\left(v_{0 i}^{(k)}\right)=\left\{\begin{array}{ll}
N(M-k)+1 \\
N(M-k)+1-N\left(m_{1}+m_{2}+\cdots+m_{i-1}\right) & \text { if } i=1, \\
\phi\left(v_{i}\right) & = \begin{cases}N\left(M-m_{1}\right) & \text { if } i=1,3, \cdots n \\
N M-N\left(2 m_{1}+2 m_{2}+\cdots+2 m_{i-1}+m_{i}\right) & \text { if } i=2,3, \cdots n .\end{cases}
\end{array} . \begin{array}{l}
\text { NM, }
\end{array}\right.
\end{gathered}
$$

It is clear from the above labelling that the function ϕ from the vertex set of G to $\{0,1, N,(N+1), 2 N,(2 N+1), \cdots, N(q-1), N(q-1)+1\}$ is in such a way that $(i) \phi$ is $1-1$ (ii) ϕ induces a bijection ϕ^{*} from the edge set of G to $\{1, N+1,2 N+1, \ldots, N(q-1)+1\}$ where $\phi^{*}(u v)=|\phi(u)-\phi(v)|$. Hence H is one modulo N graceful.

Clearly, ϕ defines a one modulo N graceful labelling of arbitrary supersubdivision of star S_{n}.

Example 2.20 A one modulo 5 graceful labelling of $A S S\left(S_{4}\right)$ is shown in Fig.14.

Fig. 14

Example 2.21 An odd graceful labelling of $\operatorname{ASS}\left(S_{6}\right)$ is shown in Fig.15.

Fig. 15

References

[1] S.W.Golomb, How to number a graph, in Graph Theory and Computing, R.C. Read, ed., Academic press, New york (1972)23-27.
[2] R.B.Gnanajothi, Topics in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, 1991.
[3] Joseph A. Gallian, A Dynamic Survey of Graph Labeling, The Electronic Journal of Combinatorics, 18 (2011), \#DS6.
[4] KM. Kathiresan and S. Amutha, Arbitrary supersubdivisions of stars are graceful, Indian J. Pure Appl. Math., 35(1) (2004), 81-84.
[5] A.Rosa, On certain valuations of the vertices of a graph, Theory of Graphs (International Symposium, Rome July 1966), Gordom and Breach, N.Y and Dunod Paris, 349-355, 1967.
[7] V.Ramachandran and C.Sekar, One modulo N gracefulness of n-polygonal snakes, $C_{n}^{(t)}$ and $P_{a, b}$, International Journal of Engineering Research \& Technology, Vol.2, Issue 10, October 2013, 3514-3529.
[8] C.Sekar and V.Ramachandran, Graceful labelling of arbitrary Supersubdivision of disconnected graph, Ultra Scientist of Physical Sciences, Vol.25(2)A, Aug. 2013, 315-318.
[9] C.Sekar, Studies in Graph Theory, Ph.D. Thesis, Madurai Kamaraj University, 2002.
[10] G.Sethuraman and P.Selvaraju, Gracefulness of arbitrary supersubdivision of graphs, Indian J. Pure Appl. Math., (2001), 1059-1064.

[^0]: ${ }^{1}$ Received December 23, 2013, Accepted May 21, 2014.

