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Abstract: A function f is called a graceful labelling of a graph G with q edges if f is

an injection from the vertices of G to the set {0, 1, 2, . . . , q} such that, when each edge xy

is assigned the label |f(x) − f(y)| , the resulting edge labels are distinct. A graph G is

said to be one modulo N graceful (where N is a positive integer) if there is a function φ

from the vertex set of G to {0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q − 1), N(q − 1) + 1}in

such a way that (i) φ is 1 − 1 (ii) φ induces a bijection φ∗ from the edge set of G to

{1, N + 1, 2N + 1, . . . , N(q − 1) + 1}where φ∗(uv)=|φ(u) − φ(v)|. In this paper we prove

that the arbitrary supersubdivisions of paths, disconnected paths, cycles and stars are one

modulo N graceful for all positive integers N .
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§1. Introduction

S.W.Golomb introduced graceful labelling ([1]). The odd gracefulness was introduced by

R.B.Gnanajothi in [2]. C.Sekar introduced one modulo three graceful labelling ([8]) recently.

V.Ramachandran and C.Sekar ([6]) introduced the concept of one modulo N graceful where N

is any positive integer.In the case N = 2, the labelling is odd graceful and in the case N = 1 the

labelling is graceful.We prove that the the arbitrary supersubdivisions of paths, disconnected

paths, cycles and stars are one modulo N graceful for all positive integers N .

§2. Main Results

Definition 2.1 A graph G is said to be one Smarandache modulo N graceful on subgraph

H < G with q edges (where N is a positive integer) if there is a function φ from the vertex set
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of G to {0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q− 1) + 1} in such a way that (i) φ is

1−1 (ii) φ induces a bijection φ∗ from the edge set of H to {1, N+1, 2N+1, · · · , N(q−1)+1},
and E(G) \E(h) to {1, 2, · · · , |E(G)|− q}, where φ∗(uv)=|φ(u)−φ(v)|. Particularly, if H = G

such a graph is said to be one modulo N graceful graph.

Definition 2.2([9]) In the complete bipartite graph K2,m we call the part consisting of two

vertices, the 2-vertices part of K2,m and the part consisting of m vertices the m-vertices part of

K2,m.Let G be a graph with p vertices and q edges. A graph H is said to be a supersubdivision

of G if H is obtained by replacing every edge ei of G by the complete bipartite graph K2,m for

some positive integer m in such a way that the ends of ei are merged with the two vertices part

of K2,m after removing the edge ei from G.H is denoted by SS(G).

Definition 2.3([9]) A supersubdivision H of a graph G is said to be an arbitrary supersubdivi-

sion of the graph G if every edge of G is replaced by an arbitrary K2,m (m may vary for each

edge arbitrarily). H is denoted by ASS(G).

Definition 2.4 A graph G is said to be connected if any two vertices of G are joined by a path.

Otherwise it is called disconnected graph.

Definition 2.5 A star Sn with n spokes is given by (V,E) where V (Sn) = {v0, v1, . . . , vn} and

E(Sn) = {v0vi/i = 1, 2 . . . , n}. v0 is called the centre of the star.

Definition 2.6 A cycle Cn with n points is a graph given by (V,E) where V (Cn) = {v1, v2, . . . , vn}
and E(Cn) = {v1v2, v2v3, . . . , vn−1vn, vnv1}.

Theorem 2.7 Arbitrary supersubdivisions of paths are one modulo N graceful for every positive

integer N .

Proof Let Pn be a path with successive vertices u1, u2, u3, · · · , un and let ei (1 ≤ i ≤ n−1)

denote the edge uiui+1 of Pn. Let H be an arbitrary supersubdivision of the path Pn where

each edge ei of Pn is replaced by a complete bipartite graph K2,mi
where mi is any positive

integer,such as those shown in Fig.1 for P6. We observe thatH hasM = 2(m1+m2+· · ·+mn−1)

edges.

Define φ(ui) = N(i− 1), i = 1, 2, 3, · · · , n. For k = 1, 2, 3, · · · ,mi, let

φ(u
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2k + i) − 2N(m1 +m2 + · · · +mi−1) + 1 if i = 2, 3, · · ·n− 1.

It is clear from the above labelling that the mi+2 vertices of K2,mi
have distinct labels

and the 2mi edges of K2,mi
also have distinct labels for 1 ≤ i ≤ n− 1. Therefore, the vertices

of each K2,mi
, 1 ≤ i ≤ n− 1 in the arbitrary supersubdivision H of Pn have distinct labels and

also the edges of each K2,mi
, 1 ≤ i ≤ n − 1 in the arbitrary supersubdivision graph H of Pn

have distinct labels. Also the function φ from the vertex set of G to {0, 1, N, (N+1), 2N, (2N+

1), · · · , N(q−1), N(q−1)+1} is in such a way that (i) φ is 1−1, and (ii) φ induces a bijection

φ∗ from the edge set of G to {1, N+1, 2N+1, · · · , N(q−1)+1}, where φ∗(uv) = |φ(u)−φ(v)|.
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Hence H is one modulo N graceful.

u1 u2 u3 u4 u5 u6

e5e4e3e2e1

Path P6

u1 u3u2 u4 u5 u6

Fig.1 An arbitrary supersubdivision of P6
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Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivision of the

path Pn. 2
Example 2.8 An odd graceful labelling of ASS(P5) is shown in Fig.2.
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Example 2.9 A graceful labelling of ASS(P6) is shown in Fig.3.



One Modulo N Gracefullness of Arbitrary Supersubdivisions of Graphs 39

0 1

27

2

18

3

13 6

4 5

30

34

29

26

24

22

20

12

17 10

15 832

Fig.3

Example 2.10 A one modulo 7 graceful labelling of ASS(P6) is shown in Fig.4.
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Theorem 2.11 Arbitrary supersubdivision of disconnecte paths Pn ∪ Pr are one modulo N

graceful provided the arbitrary supersubdivision is obtained by replacing each edge of G by K2,m

with m > 2.

Proof Let Pn be a path with successive vertices v1, v2, · · · , vn and let ei (1 ≤ i ≤ n − 1)

denote the edge vivi+1 of Pn. Let Pr be a path with successive vertices vn+1, vn+2, · · · , vn+r

and let ei(n+ 1 ≤ i ≤ n+ r − 1) denote the edge vivi+1.

Let H be an arbitrary supersubdivision of the disconnected graph Pn ∪ Pr where each edge ei

of Pn ∪ Pr is replaced by a complete bipartite graph K2,mi
with mi > 2 for 1 ≤ i ≤ n− 1 and

n+1 ≤ i ≤ n+r−1. We observe thatH hasM = 2(m1+m2+· · ·+mn−1+mn+1+· · ·+mn+r−1)

edges.
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Fig.5 An arbitrary supersubdivision of P3 ∪ P4

Define φ(vi) = N(i− 1), i = 1, 2, 3, · · · , n, φ(vi) = N(i), i = n+ 1, n+ 2, n+ 3, · · · , n+ r.

For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2 + i) + 1 − 2N(m1 +m2 + · · · +mi−1 + k − 1) if i = 2, 3, · · ·n− 1,

N(M − 1 + i) + 1 − 2N(m1 +m2 + · · · +mn−1 + k − 1) if i = n+ 1,

N(M − 1 + i) + 1 − 2N [(m1 +m2 + · · · +mn−1)+

(mn+1 + · · · +mi−1) + k − 1] if i = n+ 2, n+ 3, · · ·n+ r − 1.

It is clear from the above labelling that the mi+2 vertices of K2,mi
have distinct labels

and the 2mi edges of K2,mi
also have distinct labels for 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤

n + r − 1.Therefore the vertices of each K2,mi
, 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ n + r − 1

in the arbitrary supersubdivision H of Pn ∪ Pr have distinct labels and also the edges of

each K2,mi
, 1 ≤ i ≤ n − 1 and n + 1 ≤ i ≤ n + r − 1 in the arbitrary supersubdivision

graph H of Pn ∪ Pr have distinct labels. Also the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), . . . , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1− 1,

and (ii) φ induces a bijection φ∗ from the edge set of G to {1, N +1, 2N +1, · · · , N(q−1)+1},
where φ∗(uv)=|φ(u) − φ(v)|. Hence H is one modulo N graceful.

Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivisions of

disconnected paths Pn ∪ Pr. 2
Example 2.12 An odd graceful labelling of ASS(P6 ∪ P3) is shown in Fig.6.



One Modulo N Gracefullness of Arbitrary Supersubdivisions of Graphs 41

0 2 4 6 8 10 14 16 18

19

23

27

29

33

37

41

39

43

47

51

53

57

61

63

67

71

75

77

81

83

87

91

95

99

Fig.6

Example 2.13 A graceful labelling of ASS(P3 ∪ P4) is shown in Fig.7.
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Example 2.14 A one modulo 4 graceful labelling of ASS(P4 ∪ P3) is shown in Fig.8.
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Theorem 2.15 For any any n ≥ 3, there exists an arbitrary supersubdivision of Cn which is
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one modulo N graceful for every positive integer N .

Proof Let Cn be a cycle with consecutive vertices v1, v2, v3, · · · , vn. Let G be a super-

subdivision of a cycle Cn where each edge ei of Cn is replaced by a complete bipartite graph

K2,mi
where mi is any positive integer for 1 ≤ i ≤ n− 1 and mn = (n− 1). It is clear that G

has M = 2(m1 + m2 + · · · + mn) edges. Here the edge vn−1v1 is replaced by K2,n−1 for the

construction of arbitrary supersubdivision of Cn.
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Fig.10 An arbitrary Supersubdivision of C5
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Define φ(vi) = N(i− 1), i = 1, 2, 3, · · · , n. For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
i,i+1) =







N(M − 2k + 1) + 1 if i = 1,

N(M − 2k + i) + 1 − 2N(m1 +m2 + · · · +mi−1) if i = 2, 3, · · ·n− 1.
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and φ(v
(k)
n,1) = N(n− k +mn − 1) + 1.

It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1 − 1

(ii) φ induces a bijection φ∗ from the edge set of G to {1, N+1, 2N+1, · · · , N(q−1)+1}where

φ∗(uv)=|φ(u) − φ(v)|. Hence, H is one modulo N graceful. Clearly, φ defines a modulo N

graceful labelling of arbitrary supersubdivision of cycle Cn. 2
Example 2.16 An odd graceful labelling of ASS(C5) is shown in Fig.11.
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Example 2.17 A graceful labelling of ASS(C5) is shown in Fig.12.
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Example 2.18 A one modulo 3 graceful labelling of ASS(C4) is shown in Fig.13.
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Theorem 2.19 Arbitrary supersubdivision of any star is one modulo N graceful for every

positive integer N .

Proof The proof is divided into 2 cases.

Case 1 N = 1

It has been proved in [4] that arbitrary supersubdivision of any star is graceful.
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Fig.14 An arbitrary supersubdivision of S6

Case 2 N > 1.

Let Sn be a star with vertices v0, v1, v2, · · · , vn and let ei denote the edge v0vi of Sn for 1 ≤
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i ≤ n. Let H be an arbitrary supersubdivision of Sn. That is for 1 ≤ i ≤ n each edge ei of Sn is

replaced by a complete bipartite graphK2,mi
withmi is any positive integer for 1 ≤ i ≤ n−1 and

mn = (n−1) . It is clear that H has M = 2(m1+m2+ · · ·+mn) edges. The vertex set and edge

set ofH are given by V (H) = {v0, v1, v2 · · · , vn, v
(1)
01 , v

(2)
01 · · · , v(m1)

01 , v
(1)
02 , v

(2)
02 , · · · , v

(m2)
02 , · · · , v(1)

0n ,

v
(2)
0n , · · · , v

(mn)
0n }.

Define φ : V (H) → {0, 1, 2, · · ·2∑n
i=1mi} as follows:

let φ(v0) = 0. For k = 1, 2, 3, . . . ,mi, let

φ(v
(k)
0i ) =







N(M − k) + 1 if i = 1,

N(M − k) + 1 −N(m1 +m2 + · · · +mi−1) ifi = 2, 3, · · ·n.

φ(vi) =







N(M −m1) if i = 1,

NM −N(2m1 + 2m2 + · · · + 2mi−1 +mi) if i = 2, 3, · · ·n.

It is clear from the above labelling that the function φ from the vertex set of G to

{0, 1, N, (N + 1), 2N, (2N + 1), · · · , N(q − 1), N(q − 1) + 1} is in such a way that (i) φ is 1 − 1

(ii) φ induces a bijection φ∗ from the edge set of G to {1, N+1, 2N+1, . . . , N(q−1)+1}where

φ∗(uv)=|φ(u) − φ(v)|. Hence H is one modulo N graceful.

Clearly, φ defines a one modulo N graceful labelling of arbitrary supersubdivision of star

Sn. 2
Example 2.20 A one modulo 5 graceful labelling of ASS(S4) is shown in Fig.14.

71 66 61 56

51

5

0

969186

81

76

30

90

65

Fig.14



46 V.Ramachandran and C.Sekar

Example 2.21 An odd graceful labelling of ASS(S6) is shown in Fig.15.
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