Perfect Powers in Smarandache Type Expressions

Florian Luca

In [2] and [3] the authors ask how many primes are of the Smarandache form (see [10]) $x^{y}+y^{x}$, where $\operatorname{gcd}(x, y)=1$ and $x, y \geq 2$. In [6] the author showed that there are only finitely many numbers of the above form which are products of factorials.

In this article we propose the following
Conjecture 1. Let a, b, and c be three integers with $a b \neq 0$. Then the equation

$$
\begin{equation*}
a x^{y}+b y^{x}=c z^{n} \quad \text { with } x, y, n \geq 2, \text { and } \operatorname{gcd}(x, y)=1 \tag{1}
\end{equation*}
$$

has finitely many solutions (x, y, z, n).
We announce the following result:
Theorem 1. The "abc Conjecture" implies Conjecture 1.
The proof of Theorem 1 is based on an idea of Lang (see [5]).
For any integer k let $P(k)$ be the largest prime number dividing k with the convention that $P(0)=P(\pm 1)=1$. We have the following result.

Theorem 2. Let a, b, and c be three integers with $a b \neq 0$. Let $P>0$ be a fixed positive integer. Then the equation

$$
a x^{y}+b y^{x}=c z^{n} \quad \text { with } x, y, n \geq 2, \operatorname{gcd}(x, y)=1, \text { and } P(y)<P
$$

has finitely many solutions (x, y, z, n). Moreover, there exists a computable positive number C depending only on a, b, c, and P such that all the solutions of equation (2) satisfy $\max (x, y)<C$.

The proof of theorem 2 uses lower bounds for linear forms in logarithms of algebraic numbers.

Conjecture 2. The only solutions of the equation

$$
\begin{equation*}
x^{y} \pm y^{x}=z^{n} \quad \text { with } x, y, n \geq 2, z>0, \operatorname{gcd}(x, y)=1 \tag{3}
\end{equation*}
$$

are $(x, y, z, n)=(3,2,1, n)$.
We have the following results:
Theorem 3. The equation

$$
\begin{equation*}
x^{y} \pm y^{x}=z^{2} \quad \text { with } x, y \geq 2, \text { and } \operatorname{gcd}(x, y)=1 \tag{4}
\end{equation*}
$$

has finitely many solutions (x, y, z) with $2 \mid x y$. Moreover, all such solutions satisfy $\max (x, y)<3 \cdot 10^{143}$.

The proof of Theorem 3 uses lower bounds for linear forms in logarithms of algebraic numbers.

Theorem 4. The equation

$$
\begin{equation*}
2^{y}+y^{2}=z^{n} \tag{5}
\end{equation*}
$$

has no solutions (y, z, n) such that y is odd and $n>1$.
The proof of theorem 4 is elementary and uses the fact that $\mathrm{Z}[i \sqrt{2}]$ is an UFD.

2. Preliminary Results

We begin by stating the abc Conjecture as it appears in [5]. Let k be a nonzero integer. Define the radical of k to be

$$
\begin{equation*}
N_{0}(k)=\prod_{p \mid k} p \tag{6}
\end{equation*}
$$

i.e. the product of the distinct primes dividing k. Notice that if x and y are integers, then

$$
N_{0}(x y) \leq N_{0}(x) N_{0}(y),
$$

and if $\operatorname{gcd}(x, y)=1$, then

$$
N_{0}(x y)=N_{0}(x) N_{0}(y) .
$$

The abc Conjecture ([5]). Given $\epsilon>0$ there exists a number $C(\epsilon)$ having the following property. For any nonzero relatively prime integers a, b, c such that $a+b=c$ we have

$$
\max (|a|,|b|,|c|)<C(\epsilon) N_{0}(a b c)^{1+\epsilon} .
$$

The proofs of theorems 2 and 3 use estimations of linear forms in logarithms of algebraic numbers.

Suppose that $\zeta_{1}, \ldots, \zeta_{l}$ are algebraic numbers, not 0 or 1 , of heights not exceeding A_{1}, \ldots, A_{l}, respectively. We assume $A_{m} \geq e^{e}$ for $m=1, \ldots, l$. Put $\Omega=\log A_{1} \ldots \log A_{l}$. Let $\mathrm{F}=\mathrm{Q}\left[\zeta_{1}, \ldots, \zeta_{l}\right]$. Let n_{1}, \ldots, n_{l} be integers, not all 0 , and let $B \geq \max \left|n_{m}\right|$. We assume $B \geq e^{2}$. The following result is due to Baker and Wüstholz.

Theorem BW ([1]). If $\zeta_{1}^{n_{1}} \ldots \zeta_{l}^{n_{l}} \neq 1$, then

$$
\begin{equation*}
\left|\zeta_{1}^{n_{1}} \cdots \zeta_{l}^{n_{l}}-1\right|>\frac{1}{2} \exp \left(-\left(16(l+1) d_{F}\right)^{2(l+3)} \Omega \log B\right) \tag{7}
\end{equation*}
$$

In fact, Baker and Würtholz showed that if $\log \zeta_{1}, \ldots, \log \zeta_{L}$ are any fixed values of the logarithms, and $\Lambda=n_{1} \log \zeta_{1}+\ldots+n_{l} \log \zeta_{l} \neq 0$, then

$$
\begin{equation*}
\log |\Lambda|>-\left(16 l d_{F}\right)^{2(l+2)} \Omega \log B \tag{8}
\end{equation*}
$$

Now (7) follows easily from (8) via an argument similar to the one used by Shorey et al. in their paper [9].

We also need the following p-adic analogue of theorem BW which is due to Alf van der Poorten.

Theorem vdP ([7]). Let π be a prime ideal of F lying above a prime integer p. Then,

$$
\begin{equation*}
\operatorname{ord}_{\pi}\left(\zeta_{1}^{n_{1}} \ldots \zeta_{l}^{n_{l}}-1\right)<\left(16(l+1) d_{\mathrm{F}}\right)^{12(l+1)} \frac{p^{d_{\mathrm{F}}}}{\log p} \Omega(\log B)^{2} \tag{9}
\end{equation*}
$$

We also need the following two results.
Theorem K ([4]). Let A and B be nonzero rational integers. Let $m \geq 2$ and $n \geq 2$ with $m n \geq 6$ be rational integers. For any two integers x and y let $X=\max (|x|,|y|)$. Then

$$
\begin{equation*}
P\left(A x^{m}+B y^{n}\right)>C\left(\log _{2} X \log _{3} X\right)^{1 / 2} \tag{10}
\end{equation*}
$$

where $C>0$ is a computable constant depending only on A, B, m and n.
Theorem $\mathrm{S}([8])$. Let $n>1$ and A, B be nonzero integers. For integers $m>3, x$ and y with $|x|>1, \operatorname{gcd}(x, y)=1$, and $A x^{m}+B y^{n} \neq 0$, we have

$$
\begin{equation*}
P\left(A x^{m}+B y^{n}\right) \geq C((\log m)(\log \log m))^{1 / 2} \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|A x^{m}+B y^{n}\right| \geq \exp \left(C((\log m)(\log \log m))^{1 / 2}\right) \tag{12}
\end{equation*}
$$

where $C>0$ is a computable number depending only on A, B and n.
Let K be a finite extension of Q of degree d, and let \mathcal{O}_{K} be the ring of algebraic integers inside K . For any element $\gamma \in \mathcal{O}_{\mathrm{K}}$, let $[\gamma]$ be the ideal generated by γ in \mathcal{O}_{K}. For any ideal I in \mathcal{O}_{K}, let $N(I)$ be the norm of I. Let $\pi_{1}, \pi_{2}, \ldots, \pi_{l}$ be a set of prime ideals in \mathcal{O}_{K}. Put

$$
p=\max P\left(N\left(\pi_{i}\right)\right) .
$$

Write

$$
\pi_{i}^{h}=\left[p_{i}\right] \quad \text { for } i=1, \ldots, l
$$

where $p_{1}, p_{2}, \ldots, p_{l} \in \mathcal{O}_{\mathrm{K}}$ and h is the class number of K . Denote by \mathcal{S} the set of all elements α of \mathcal{O}_{K} such that [α] is exclusively composed of prime ideals $\pi_{1}, \pi_{2}, \ldots, \pi_{l}$. Then we have

Lemma T. ([9]). Let $\alpha \in \mathcal{S}$. Assume that

$$
[\alpha]=\pi_{1}^{b_{1}} \pi_{2}^{b_{2}} \ldots \pi_{l}^{b_{1}}
$$

There exist a $\beta \in \mathcal{O}_{K}$ with $|N(\beta)| \leq p^{\text {dhl }}$ and a unit $\epsilon \in \mathcal{O}_{\mathrm{K}}$ such that

$$
\alpha=\epsilon \beta p_{1}^{a_{1}} p_{2}^{a_{2}} \ldots p_{l}^{a_{l}} .
$$

Moreover,

$$
b_{i}=a_{i} h+c_{i} \quad \text { for some } 0 \leq c_{i}<h
$$

3. The Proofs

The Proof of Theorem 1. We may assume that $\operatorname{gcd}(a, b, c)=1$. By C_{1}, C_{2}, \ldots, we shall denote computable positive numbers depending only on a, b, c. Let (x, y, z, n) be a solution of (1). Assume that $x>y$, and that $x>3$. Let $d=\operatorname{gcd}\left(a x^{y}, b y^{x}\right)$. Notice that $d \mid a b$. Equation (1) becomes

$$
\begin{equation*}
\frac{a x^{y}}{d}+\frac{b y^{x}}{d}=\frac{c z^{n}}{d} \tag{13}
\end{equation*}
$$

By the abc Conjecture for $\epsilon=2 / 3$ it follows that

$$
\begin{equation*}
\max \left(\left|a x^{y}\right|,\left|b y^{x}\right|\left|c z^{n}\right|\right)<\frac{C(2 / 3) N_{0}(a b c)^{5 / 3}}{d^{2}} N_{0}(x y z)^{5 / 3} \tag{14}
\end{equation*}
$$

Let

$$
C_{1}=C(2 / 3) N_{0}(a b c)^{5 / 3}
$$

Since $d \geq 1$, and $|b| \geq 1$, from inequality (14) it follows that

$$
\begin{equation*}
y^{x} \leq\left|b y^{x}\right|<C_{1}(x y|z|)^{5 / 3}<C_{1} x^{10 / 3}|z|^{5 / 3} \tag{15}
\end{equation*}
$$

Since $x>\min (y, 3)$, it follows easily that $y^{x}>x^{y}$. Hence,

$$
|z|^{n}=\left|\frac{a}{c} x^{y}+\frac{b}{c} y^{x}\right|<C_{2} y^{x}
$$

where $C_{2}=\frac{|a|+|b|}{|c|}$. We conclude that

$$
\begin{equation*}
|z|<C_{2}^{1 / n} y^{x / n} \leq C_{2}^{1 / 2} y^{x / n} . \tag{16}
\end{equation*}
$$

Combining inequalities (15) and (16) it follows that

$$
y^{x}<C_{1} C_{2}^{5 / 6} x^{10 / 3} y^{(5 x / 3 n)}
$$

or

$$
\begin{equation*}
y^{x(1-5 / 3 n)}<C_{3} x^{10 / 3} \tag{17}
\end{equation*}
$$

where $C_{3}=C_{1} C_{2}^{5 / 6}$. Since $2 \leq y$ and $2 \leq n$, it follows that

$$
\begin{equation*}
2^{x / 6} \leq 2^{x(1-5 / 3 n)}<C_{3} x^{10 / 3} \tag{18}
\end{equation*}
$$

Inequality (18) clearly shows that $x<C_{4}$.
The Proof of Theorem 2. We may assume that

$$
P \geq \max (P(a), P(b), P(c))
$$

By C_{1}, C_{2}, \ldots, we shall denote computable positive numbers depending only on a, b, c, P. We begin by showing that n is bounded. Fix $d \in$ $\{2,3, \ldots, P-1\}$. Suppose that x, y, z, n is a solution of (2) with $n>3$ and $d \mid y$. Since

$$
\begin{equation*}
b y^{x}=c z^{n}-a\left(x^{y / d}\right)^{d} \tag{19}
\end{equation*}
$$

it follows, by Theorem S, that

$$
\begin{equation*}
P=P\left(b y^{x}\right)=P\left(c z^{n}-a\left(x^{y / d}\right)^{d}\right)>C_{1}((\log n)(\log \log n))^{1 / 2} \tag{20}
\end{equation*}
$$

where C_{1} is a computable number depending only on a, c, d. Inequality (20) shows that $n<C_{2}$.

Suppose now that $n y \geq 6$. Let $X=\max (x,|z|)$. From equation (19) and theorem K , it follows that

$$
\begin{equation*}
P=P\left(b y^{x}\right)=P\left(c z^{n}-a x^{y}\right)>C_{3}\left(\log _{2} X \log _{3} X\right)^{1 / 2} \tag{21}
\end{equation*}
$$

where $C_{3}>0$ is a computable constant depending only on a, c, and C_{2}. From inequality (21) it follows that $X<C_{3}$. Let $C_{4}=\max \left(C_{2}, C_{3}\right)$. It follows that, if $n y \geq 6$, then $\max (x,|z|, n)<C_{4}$. We now show that y is bounded as well. Suppose that $y>\max \left(C_{4}, e^{2}\right.$). Rewrite equetion (2) as

$$
\begin{equation*}
\frac{|c z|^{n}}{|a| x^{y}}=\left|1-\left(\frac{-b}{a}\right) y^{x} x^{-y}\right| . \tag{22}
\end{equation*}
$$

Let $A>e^{e}$ be an upper bound for the height of $-b / a$ and C_{4}. Let $\Omega=$ $(\log A)^{3}$. From theorem BW we conclude that

$$
\begin{equation*}
\log |c|+n \log |z|-\log |a|-y \log x>-\log 2-64^{12} \Omega \log y \tag{23}
\end{equation*}
$$

Since $x \geq 2$, and $\max (x,|z|, n)<C_{4}$, it follows, by inequality (23), that $y \log 2-64^{12} \Omega \log y \leq y \log x-64^{12} \Omega \log y<C_{4} \log C_{4}-\log |a|+\log |c|+\log 2$.

From equation (24) it follows that $y<C_{5}$.

Suppose now that $n=y=2$. We first bound z in terms of x. Rewrite equation (2) as

$$
\begin{equation*}
z^{2}=2^{x}\left|\frac{b}{c}\right| \cdot\left|1+\left(\frac{a}{b}\right)\left(\frac{x^{2}}{2^{x}}\right)\right| \tag{25}
\end{equation*}
$$

Let $C_{6}>0$ be a computable positive number depending only on a and b such that

$$
\begin{equation*}
\left|\frac{a}{b}\right|\left(\frac{x^{2}}{2^{x}}\right)<\frac{1}{2} \quad \text { for } x>C_{6} \tag{26}
\end{equation*}
$$

From equation (25) and inequality (26), it follows that

$$
\begin{equation*}
2^{x}\left|\frac{b}{2 c}\right|<2^{x}\left|\frac{b}{c}\right|\left(1-\left|\frac{a}{b}\right|\left(\frac{x^{2}}{2^{x}}\right)\right)<z^{2}<2^{x}\left|\frac{b}{c}\right|\left(1+\left|\frac{a}{b}\right|\left(\frac{x^{2}}{2^{x}}\right)\right)<2^{x}\left|\frac{3 b}{2 c}\right| \tag{27}
\end{equation*}
$$

for $x>C_{6}$. Taking logarithms in inequality (27) we obtain

$$
\begin{equation*}
x C_{7}+C_{8}<\log z<x C_{7}+C_{9} \quad \text { for } x>C_{6} \tag{28}
\end{equation*}
$$

where $C_{7}=\frac{\log 2}{2}, C_{8}=\frac{\log |b|-\log 2|c|}{2}$, and $C_{9}=\frac{\log |3 b|-\log |2 c|}{2}$. We now rewrite equation (2) as

$$
\begin{equation*}
(c z)^{2}-a c x^{2}=a b 2^{x} \tag{29}
\end{equation*}
$$

Let $\alpha=\sqrt{a c}$. Then

$$
\begin{equation*}
(c z+\alpha x)(c z-\alpha x)=c b 2^{x} \tag{30}
\end{equation*}
$$

We distinguish 2 cases.
CASE 1. $a c<0$. Let $\mathrm{K}=\mathrm{Q}[\alpha]$. Since $a c<0$, it follows that all the units of \mathcal{O}_{K} are roots of unity. Since K is a quadratic field, it follows that the ideal [2] has at most two prime divisors. Since

$$
\operatorname{gcd}([c z+\alpha x],[c z-\alpha x]) \mid 2[\alpha b c]
$$

it follows, by lemma T , that

$$
\begin{equation*}
c z+\alpha x=\epsilon \beta p^{u} \tag{31}
\end{equation*}
$$

where $\frac{x}{h}-1<u \leq \frac{x}{h}$, and $\epsilon, \beta, p \in \mathcal{O}_{\mathrm{K}}$ are such that $|\epsilon|=1,|p|=2^{h / 2}$, where h is the class number of K , and $|\beta|<C_{10}$ where C_{10} is a computable number depending only on a, b, and c. Conjugating equation (31) we get

$$
\begin{equation*}
c z-\alpha x=\bar{\epsilon} \bar{\beta} \bar{p}^{u} \tag{32}
\end{equation*}
$$

From equations (31) and (32) it follows that

$$
2 \alpha x=\epsilon \beta p^{u}\left(1-\left(-\epsilon^{-2}\right)(\beta)^{-1} \bar{\beta}(p)^{-u}(\bar{p})^{u}\right) .
$$

Hence,

$$
\begin{equation*}
2|\alpha| x=|\beta||p|^{u}\left|1-\left(-\epsilon^{-2}\right)(\beta)^{-1} \bar{\beta}(p)^{-u}(\bar{p})^{u}\right| \tag{33}
\end{equation*}
$$

Taking logarithms in equation (33) we obtain

$$
\begin{equation*}
\log (2|\alpha|)+\log x=\log |\beta|+u \log p+\log \left|1-\left(-\epsilon^{-2}\right)(\beta)^{-1} \bar{\beta}(p)^{-u}(\bar{p})^{u}\right| \tag{34}
\end{equation*}
$$

Let A, and P be upper bounds for the heights of $-\epsilon^{-2}(\beta)^{-1} \bar{\beta}$ and p, respectively. Assume that $\min (A, P)>e^{e}$. Let $\Omega=\log A(\log P)^{2}$. Assume also that $\frac{x}{h}>1+e^{2}$. From equation (34), theorem BW, the fact that $|p|=2^{h / 2}$, and the fact that $\frac{x}{h}-1<u \leq \frac{x}{h}$, we obtain that

$$
\begin{gather*}
\log (2|\alpha|)+\log x>\log |\beta|+u \log |p|-\log 2-64^{12} \Omega \log u> \\
\log |\beta|+\left(\frac{x}{h}-1\right) \cdot\left(\frac{h}{2}\right) \log 2-\log 2-64^{12} \Omega \log (x / h) . \tag{35}
\end{gather*}
$$

Inequality (35) clearly shows that $x<C_{11}$.
CASE 2. $a c>0$. We may assume that both a and c are positive. If $b<0$, equation (2) can be rewritten as

$$
\begin{equation*}
|a| x^{2}-|b| 2^{x}=|c| z^{2}>0 \tag{36}
\end{equation*}
$$

Equation (36) clearly shows that $x<C_{12}$. Hence, we assume that $b>0$. We distinguish two subcases.

CASE 2.1. $\sqrt{a c} \in \mathrm{Z}$. In this case, from equation

$$
(c|z|+\alpha x)(c|z|-\alpha x)=b c 2^{x}
$$

and from the fact that

$$
\begin{equation*}
\operatorname{gcd}(c|z|+\alpha x, c|z|-\alpha x) \mid 2 \alpha c b \tag{37}
\end{equation*}
$$

it follows easily that

$$
\left\{\begin{array}{l}
c|z|+\alpha x=\beta 2^{u} \tag{38}\\
c|z|-\alpha x=\gamma
\end{array}\right.
$$

where β, γ, u are positive integers with $0<\beta<b c, \gamma<(b c) \cdot(2 \alpha c b)$ and $u>x-\operatorname{ord}_{2}(2 \alpha c b)$. From equation (38) it follows that

$$
\begin{equation*}
2 \alpha x=\beta 2^{x}-\gamma \tag{39}
\end{equation*}
$$

From equation (39), and from the fact that $0<\beta<b c, \gamma<(b c) \cdot(2 \alpha c b)$, and $u>x-\operatorname{ord}_{2}(2 \alpha c b)$, it follows that $x<C_{13}$.

CASE 2.2. $\sqrt{a c} \notin \mathrm{Z}$. Let $\mathrm{K}=\mathrm{Q}[\alpha]$. Let ϵ be a generator of the torsion free subgroup of the units group of \mathcal{O}_{K}. From equation (37) and lemma T , it follows that

$$
\begin{equation*}
c|z|+\alpha x=\epsilon^{m} \beta_{1} p_{1}^{u} \tag{40}
\end{equation*}
$$

where $\frac{x}{h}-1<u \leq \frac{x}{h}$, and $\beta, p_{1} \in \mathcal{O}_{\mathrm{K}}$ are such that $1<\beta_{1}<C_{14}$ for some computable constant C_{14}, and $1<p_{1}<2^{h} \cdot \epsilon$. From equation (40), it follows that

$$
\begin{equation*}
c|z|-\alpha x=\epsilon^{-m} \beta_{2} p_{2}^{u} \tag{41}
\end{equation*}
$$

where $\beta_{2}=\left|\beta_{1}\right|^{2} / \beta_{1}$, and $p_{2}=2^{h} / p_{1}$. Suppose now that $x>C_{6}$. Since

$$
\epsilon^{m}=p_{1}^{-u} \beta_{1}^{-1}(c|z|+\alpha x)
$$

it follows, from inequality (28), and from the fact that $\frac{x}{h}-1<u \leq \frac{x}{h}$ and $1<p_{1}<2^{h} \cdot \epsilon$, that

$$
\begin{equation*}
|m|<C_{15} x+C_{16} \quad \text { for } x>C_{6} \tag{42}
\end{equation*}
$$

for some computable constants C_{15} and C_{16} depending only on a, b, and c. From equations (40) and (41), it follows that

$$
2 \alpha x=\epsilon^{m} \beta_{1} p_{1}^{u} \cdot\left(1-\epsilon^{-2 m}\left(\beta_{1}\right)^{-1} \beta_{2}\left(p_{1}\right)^{-u} p_{2}^{u}\right)
$$

or

$$
\begin{equation*}
2 \alpha x=(c|z|+\alpha x) \cdot\left(1-\epsilon^{-2 m}\left(\beta_{1}\right)^{-1} \beta_{2}\left(p_{1}\right)^{-u} p_{2}^{u}\right) . \tag{43}
\end{equation*}
$$

Let $A_{1}, A_{2}, A_{3}, A_{4}$ be upper bounds for the heights of $\epsilon,\left(\beta_{1}\right)^{-1} \beta_{2}, p_{1}, p_{2}$ respectively. Assume that $\min \left(A_{1}, A_{2}, A_{3}, A_{4}\right)>e^{e}$. Denote $\Omega=$ $\prod_{i=1}^{4} \log A_{i}$. Denote $C_{17}=\max \left(2 C_{15}, 1 / h\right)$. From inequality (42), it follows that

$$
\begin{equation*}
\max (2|m|, u)<C_{17} x+C_{16} \tag{44}
\end{equation*}
$$

Let $B=C_{17} x+C_{16}$. Taking logarithms in equation (43), and applying theorem BW, we obtain

$$
\begin{gather*}
\log (2 \alpha)+\log x=\log (c|z|+\alpha x)+\log \left|1-\epsilon^{-2 m}\left(\beta_{1}\right)^{-1} \beta_{2}\left(p_{1}\right)^{-u} p_{2}^{u}\right|> \\
\log (c|z|+\alpha x)-\log 2-80^{14} \Omega \log \left(C_{17} x+C_{16}\right) \tag{45}
\end{gather*}
$$

Combining inequalities (28) and (45) we obtain
$\log (4 \alpha)+\log x+80^{14} \Omega \log \left(C_{17} x+C_{16}\right)>\log (c|z|+\alpha x)>\log z>C_{7} x+C_{8}$
This last inequality clearly shows that $x<C_{18}$.

The Proof of Theorem 3. We treat only the equation

$$
x^{y}+y^{x}=z^{2} .
$$

We may assume that x is even. First notice that, since $\operatorname{gcd}(x, y)=1$, it follows that $\operatorname{gcd}(x, z)=\operatorname{gcd}(y, z)=1$. Rewrite equation (4) as

$$
x^{y}=\left(z+y^{x / 2}\right)\left(z-y^{x / 2}\right)
$$

Since $\operatorname{gcd}\left(z, y^{x / 2}\right)=1$ and both z and y are odd, it follows that

$$
\operatorname{gcd}\left(z+y^{x / 2}, z-y^{x / 2}\right)=2 .
$$

Write $x=2 d_{1} d_{2}$ such that either one of the following holds

$$
\left\{\begin{array} { l }
{ z + y ^ { x / 2 } = 2 ^ { y - 1 } d _ { 1 } ^ { y } } \tag{46}\\
{ z - y ^ { x / 2 } = 2 d _ { 2 } ^ { y } }
\end{array} \quad \text { or } \quad \left\{\begin{array}{l}
z+y^{x / 2}=2 d_{1}^{y} \\
z-y^{x / 2}=2^{y-1} d_{2}^{y}
\end{array}\right.\right.
$$

Hence, either

$$
\begin{equation*}
y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y} \tag{47}
\end{equation*}
$$

or

$$
\begin{equation*}
y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} \tag{48}
\end{equation*}
$$

We proceed in several steps.
Step 1. (1) If $x>y$ then either $y \leq 9$ and $x<27$, or $y>9$ and $x<3 y$.
(2) If $x<y$ and $y>2.6 \cdot 10^{21}$, then $y<4 x$.
(1) Assume first that $x>y$. Since

$$
y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y} \quad \text { or } \quad y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y}
$$

it follows that

$$
\begin{equation*}
y^{x / 2}<2^{y-1} d_{1}^{y}<\left(2 d_{1}\right)^{y}<x^{y} \quad \text { or } \quad y^{x / 2}<d_{1}^{y}<x^{y} . \tag{49}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{x}{2} \log y<y \log x \tag{50}
\end{equation*}
$$

Inequality (50) is equivalent to

$$
\begin{equation*}
\frac{x}{\log x}<2 \frac{y}{\log y} . \tag{51}
\end{equation*}
$$

If $y \leq 9$, then one can check easily that (51) implies $x<27$. Suppose now that $y>9$. We show that inequality (51) implies $x<3 y$. Indeed, assume that $x \geq 3 y$. Then

$$
\begin{equation*}
\frac{3 y}{\log 3+\log y}=\frac{3 y}{\log (3 y)} \leq \frac{x}{\log x}<\frac{2 y}{\log y} . \tag{52}
\end{equation*}
$$

Inequality (52) is equivalent to

$$
3 \log y<\log 9+2 \log y
$$

or $y<9$. This contradiction shows that $x<3 y$ for $y>9$.
(2) Assume now that $x<y$. Suppose first that

$$
y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y}
$$

In this case

$$
\left(2 d_{1}\right)^{y}>2^{y-2} d_{1}^{y}=d_{2}^{y}+y^{x / 2}>d_{2}^{y}
$$

therefore $2 d_{1}>d_{2}$. Since $x=2 d_{1} d_{2}$, it follows that $2 d_{1}>\sqrt{x}$, or $d_{1}>\frac{\sqrt{x}}{2}$.
Suppose now that

$$
y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y}
$$

In this case,

$$
d_{1}^{y}>2^{y-2} d_{2}^{y}>d_{2}^{y}
$$

or $d_{1}>d_{2}$. We obtain that $d_{1}>\sqrt{d_{1} d_{2}}=\sqrt{\frac{x}{2}}>\frac{\sqrt{x}}{2}$.
If equality (47) holds, it follows that

$$
\begin{equation*}
y^{x / 2}=2^{y-2} d_{1}^{y}\left|1-2^{-(y-2)}\left(\frac{d_{2}}{d_{1}}\right)^{y}\right| \geq d_{1}^{y}\left|1-2^{-(y-2)}\left(\frac{d_{2}}{d_{1}}\right)^{y}\right| \tag{53}
\end{equation*}
$$

On the other hand, if equality (48) holds, then

$$
\begin{equation*}
y^{x / 2}=d_{1}^{y}\left|1-2^{y-2}\left(\frac{d_{2}}{d_{1}}\right)^{y}\right| \tag{54}
\end{equation*}
$$

From inequality (53) and equation (54), we conclude that, in, either case,

$$
\begin{equation*}
y^{x / 2} \geq d_{1}^{y}\left|1-2^{\epsilon(y-2)}\left(\frac{d_{2}}{d_{1}}\right)^{y}\right| \tag{55}
\end{equation*}
$$

for some $\epsilon \in\{ \pm 1\}$. Suppose now that $x>e^{e}$. By theorem BW, and inequality (55), it follows that

$$
\begin{gather*}
\frac{x}{2} \log y \geq y \log d_{1}-\log 2-48^{10} e \log x \log y \geq \\
y \log \frac{\sqrt{x}}{2}-\log 2-48^{10} e \log x \log y \tag{56}
\end{gather*}
$$

or

$$
\begin{equation*}
48^{10} e \log x \log y+\log 2+\frac{x}{2} \log y>y \log \frac{\sqrt{x}}{2} . \tag{57}
\end{equation*}
$$

CASE 1. Assume that $x<2^{6}$. From inequality (57), it follows that

$$
48^{10} e \cdot 6 \log 2 \cdot \log y+\log 2+2^{5} \log y>y \log \frac{\sqrt{e^{e}}}{2}>\frac{y}{2}
$$

or

$$
\left(48^{10} e \cdot 6 \log 2+2^{5}\right) \log y+\log 2>\frac{y}{2}
$$

or

$$
\begin{equation*}
2\left(48^{10} e \cdot 6 \log 2+2^{5}+1\right)>\frac{y}{\log y} \tag{58}
\end{equation*}
$$

Let $C_{1}=2\left(48^{10} e \cdot 6 \log 2+2^{5}+1\right)$. From inequality (58) and lemma 2 in [6], it follows that

$$
\begin{equation*}
y<C_{1} \log ^{2} C_{1}<2\left(48^{10} e \cdot 6 \log 2+2^{5}+1\right) \cdot 42^{2}<2.6 \cdot 10^{21} \tag{59}
\end{equation*}
$$

CASE 2. Assume that $x \geq 2^{6}$. Then,

$$
d_{1}>\frac{\sqrt{x}}{2} \geq \sqrt[3]{x}
$$

Inequality (56) becomes

$$
48^{10} e \log x \log y+\log 2+\frac{x}{2} \log y>\frac{1}{3} y \log x
$$

or

$$
3 e 48^{10} \log x \log y+\log 8+\frac{3}{2} x \log y>y \log x
$$

or

$$
\left(3 e 48^{10}+1\right) \log x \log y+\frac{3}{2} x \log y>y \log x
$$

or

$$
\begin{equation*}
3 e 48^{10}+1+\frac{3}{2} \frac{x}{\log x}>\frac{y}{\log y} \tag{60}
\end{equation*}
$$

Assume first that

$$
\begin{equation*}
\frac{3}{2} \frac{x}{\log x}<3 e 48^{10}+1 \tag{61}
\end{equation*}
$$

In this case,

$$
\begin{equation*}
\frac{x}{\log x}<\frac{2}{3}\left(3 e 48^{10}+1\right) \tag{62}
\end{equation*}
$$

Let $C_{2}=\frac{2}{3}\left(3 e 48^{10}+1\right)$. From inequality (62) and lemma 2 in [6], it follows that

$$
\begin{equation*}
x<C_{2} \log ^{2} C_{2}<\frac{2}{3}\left(3 e 48^{10}+1\right) \cdot 41^{2}<6 \cdot 10^{20} \tag{63}
\end{equation*}
$$

In this case, from inequalities (60) and (61), it follows that

$$
\begin{equation*}
\frac{y}{\log y}<2\left(3 e 48^{10}+1\right) \tag{64}
\end{equation*}
$$

Let $C_{3}=2\left(3 e 48^{10}+1\right)$. It follows, by inequality (64) and lemma 2 in [6], that

$$
\begin{equation*}
y<C_{3} \log ^{2} C_{3}<2\left(3 e 48^{10}+1\right) \cdot 42^{2}<1.8 \cdot 10^{21} \tag{65}
\end{equation*}
$$

Assume now that $y>2.6 \cdot 10^{21}$. From inequality (59), it follows that $x \geq 2^{6}$. Moreover, since inequality (65) is a consequence of inequality (61), it follows that

$$
\begin{equation*}
\frac{3}{2} \frac{x}{\log x} \geq 3 e 48^{10}+1 \tag{66}
\end{equation*}
$$

From inequalitites (60) and (66) it follows that

$$
\begin{equation*}
\frac{3 x}{\log x}>\frac{y}{\log y} \tag{67}
\end{equation*}
$$

We now show that inequality (67) implies $y<4 x$. Indeed, assume that $y \geq 4 x$. Then inequality (67) implies

$$
\frac{3 x}{\log x}>\frac{y}{\log y} \geq \frac{4 x}{\log (4 x)}=\frac{4 x}{\log x+\log 4}
$$

or

$$
3 \log x+3 \log 4>4 \log x
$$

or $3 \log 4>\log x$ which contradicts the fact that $x \geq 2^{6}$.
Step 2. If $y \geq 3 \cdot 10^{143}$, then y is prime.
Let

$$
\begin{equation*}
y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y} \quad \text { or } \quad y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} . \tag{68}
\end{equation*}
$$

Notice that if $y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y}$, then $\operatorname{gcd}\left(2 d_{1}, d_{2}\right)=1$. Let $p \mid y$ be a prime number. Since $p \nmid 2 d_{1} d_{2}=x$, it follows, by theorem vdP, that

$$
\begin{equation*}
\frac{x}{2} \leq \max \left(\operatorname{ord}_{p}\left(2^{y-2} d_{1}^{y}-d_{2}^{y}\right), \operatorname{ord}_{p}\left(d_{1}^{y}-2^{y-2} d_{2}^{y}\right)\right)<48^{36} e \frac{p}{\log p} \log ^{2} y \log x \tag{69}
\end{equation*}
$$

By step 1, it follows that

$$
\begin{equation*}
\frac{1}{4} y<x \leq 2 \cdot 48^{36} e \frac{p}{\log p} \log ^{2} y \log (4 y)<4 \cdot 48^{36} e \frac{p}{\log p} \log ^{3} y . \tag{70}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\frac{y}{\log ^{3} y}<16 \cdot 48^{36} e \frac{p}{\log p}<16 \cdot 48^{36} e p \tag{71}
\end{equation*}
$$

Suppose that y is not prime. Let $p \mid y$ be a prime such that $p \leq \sqrt{y}$. From inequality (71) it follows that

$$
\frac{\sqrt{y}}{\log ^{3} y}<16 \cdot 48^{36} e
$$

or

$$
\begin{equation*}
\frac{\sqrt{y}}{\log ^{3}(\sqrt{y})}<128 \cdot 48^{36} e \tag{72}
\end{equation*}
$$

Let $k=\sqrt{y}$ and $C_{4}=128 \cdot 48^{36} e$. By inequality (72) and lemma 2 in [6], it follows that

$$
\begin{equation*}
\sqrt{y}=k<C_{4} \log ^{4} C_{4}=128 \cdot 48^{36} e \cdot 146^{4}<5.3 \cdot 10^{71} \tag{73}
\end{equation*}
$$

or

$$
\begin{equation*}
y<\left(5.3 \cdot 10^{71}\right)^{2}<3 \cdot 10^{143} \tag{74}
\end{equation*}
$$

This last inequality contradicts the assumption that $y \geq 3 \cdot 10^{143}$.
Step 3. If $y \geq 3 \cdot 10^{143}$, then $x>y$.
Let $y=p$ be a prime. If $y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y}$, it follows, by Fermat's little theorem that

$$
2^{-1} d_{1}-d_{2} \equiv 2^{y-2} d_{1}^{y}-d_{2}^{y} \equiv y^{x / 2} \equiv 0(\bmod p)
$$

therefore

$$
\begin{equation*}
d_{1} \equiv 2 d_{2}(\bmod p) \tag{75}
\end{equation*}
$$

On the other hand, if $y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y}$, then

$$
\left.d_{1}-2^{-1} d_{2} \equiv d_{1}^{y}-2^{y-2} d_{2}^{y} \equiv y^{x / 2} \equiv 0 \bmod p\right)
$$

therefore

$$
\begin{equation*}
d_{2} \equiv 2 d_{1}(\bmod p) \tag{76}
\end{equation*}
$$

Suppose that $x<y$. From congruences (75) and (76), we conclude that, in both cases, x is a perfect square. Hence,

$$
\begin{equation*}
y^{x}=z^{2}-(\sqrt{x})^{2 y}=\left(z+(\sqrt{x})^{y}\right) \cdot\left(z-(\sqrt{x})^{y}\right) \tag{77}
\end{equation*}
$$

From equation (77) it follows that

$$
\left\{\begin{array}{l}
z-(\sqrt{x})^{y}=1 \tag{78}\\
z+(\sqrt{x})^{y}=y^{x}
\end{array}\right.
$$

Hence,

$$
\begin{equation*}
2(\sqrt{x})^{y}=y^{x}-1 \tag{79}
\end{equation*}
$$

It follows, by equation (79) and theorem BW, that

$$
\begin{gather*}
0=\log \left|y^{x}-2(\sqrt{x})^{y}\right|=\log \left(y^{x}\right)+\log \left|1-2 y^{-x}(\sqrt{x})^{y}\right|> \\
x \log y-\log 2-64^{12} e \log ^{2} y \log x \tag{80}
\end{gather*}
$$

From inequality (80) and Step 1 it follows that

$$
\log 2+64^{12} e \log ^{3} y>x \log y>\frac{y \log y}{4}
$$

or

$$
4 \log 2+4 \cdot 64^{12} e \log ^{3} y>y \log y
$$

or

$$
\left(4 \cdot 64^{12} e+1\right) \log ^{2} y>y
$$

or

$$
\begin{equation*}
4 \cdot 64^{12} e+1>\frac{y}{\log ^{2} y} \tag{81}
\end{equation*}
$$

Let $C_{5}=4 \cdot 64^{12} e+1$. By inequality (81) and lemma 2 in [6] it follows that

$$
\begin{equation*}
y<C_{5} \log ^{3} C_{5}<\left(4 \cdot 64^{12} e+1\right) \cdot 53^{3}<8 \cdot 10^{27} \tag{82}
\end{equation*}
$$

The last inequality contradicts the fact that $y \geq 3 \cdot 10^{143}$.
Step 4. Suppose that $y \geq 3 \cdot 10^{143}$. Let $y=p$ be a prime. Then, with the notations of Step 1, every solution of equation (4) is of one of the following forms:
(1) $y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y} \quad$ with $y=p, d_{1}=2+p, d_{2}=1, x=4+2 p$
(2) $y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} \quad$ with $y=p, d_{1}=\frac{3 p-1}{2}, d_{2}=1, x=3 p-1$
(3) $y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} \quad$ with $y=p, d_{1}=\frac{p-1}{2}, d_{2}=3, x=3 p-9$

We assume that $y \geq 3 \cdot 10^{143}$. In this case, $y=p$ is prime, and $x>y$. From Step 1 we conclude that $x<3 y$. Moreover, from the arguments used at Step 1 it follows that $d_{1}>\frac{\sqrt{x}}{2}$. Since $x=2 d_{1} d_{2}$, it follows that

$$
d_{2}<\sqrt{x}<\sqrt{3 y}=\sqrt{3 p}
$$

By the arguments used at Step 3 we may assume that x is not a perfect square. We distinguish the following cases.

CASE 1. $d_{2}=1$. By congruences (75) and (76) it follows that $d_{1} \equiv$ $2(\bmod p)$, or $2 d_{1} \equiv 1(\bmod p)$.

Assume that $d_{1} \equiv 2(\bmod p)$. Since $x=2 d_{1}$, and $p=y<x<3 y=3 p$, it follows that $d_{1}=2+p$ and $x=2 d_{1}=4+2 p$.

Assume that $2 d_{1} \equiv 1(\bmod p)$. Again, since $x=2 d_{1}$, and $p=y<x<$ $3 y=3 p$, it follows that $d_{1}=\frac{3 p-1}{2}$, and $x=3 p-1$.

CASE 2. $d_{2}=2$. By congruences (75) and (76) it follows that $d_{1} \equiv$ $4(\bmod p)$, or $d_{1} \equiv 1(\bmod p)$. One can easily check that there is no solution in this case. Indeed, if $d_{1} \equiv 4(\bmod p)$, it follows that $d_{1} \geq p+4$. Hence, $x=2 d_{1} d_{2} \geq 4(p+4)>3 p=3 y$ which contradicts the fact that $x<3 y$.

Similar arguments can be used to show that there is no solution for which $d_{2}=2$ and $d_{1} \equiv 1(\bmod p)$.

CASE 3. $d_{2}=3$. By congruences (75) and (76) it follows that $d_{1} \equiv$ $6(\bmod p)$, or $2 d_{1} \equiv 3(\bmod p)$. One can easily check that there is no solution for which $d_{1} \equiv 6(\bmod p)$. Suppose that $2 d_{1} \equiv 3(\bmod p)$. Since $p=y<x<3 y=3 p$ and $x=2 d_{1} d_{2}=6 d_{1}$, it follows easily that $d_{1}=\frac{p-3}{2}$, and $x=3 p-9$.

CASE 4. $d_{2}=k \geq 4$.
If k is even, then, by congruences (75) and (76), it follows that $d_{1} \equiv$ $2 k(\bmod p)$, or $d_{1} \equiv k / 2(\bmod p)$. Since x is not a perfect square it follows that $d_{1} \geq p+k / 2$, therefore $x \geq 2 p k+k^{2}>p k \geq 4 p>3 p=3 y$ contradicting the fact that $x<3 y$.

If k is odd, then, by congruences (75) and (76), it follows that $d_{1} \equiv$ $2 k(\bmod p)$, or $2 d_{1} \equiv k(\bmod p)$. We conclude that $d_{1} \geq \frac{p-k}{2}$, therefore $x=2 d_{1} d_{2} \geq k(p-k)$. Since $k(p-k)>3 p$ for $5 \leq k \leq \sqrt{3 p}$ and $p \geq 3 \cdot 10^{143}$, we conclude that $x>3 p=3 y$ contradicting again the fact that $x<3 y$.

Step 5. There are no solutions of equation (2) with $y \geq 3 \cdot 10^{142}$ and x even.

According to Step 4 we need to treat the following cases.
CASE 1.

$$
\begin{equation*}
y^{x / 2}=2^{y-2} d_{1}^{y}-d_{2}^{y} \quad \text { with } y=p, d_{1}=2+p, d_{2}=1, x=4+2 p \tag{83}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
p^{2+p}=2^{p-2}(2+p)^{p}-1>2^{p-3}(2+p)^{p} . \tag{84}
\end{equation*}
$$

Taking logarithms in inequality (84) we obtain

$$
(2+p) \log p>(p-3) \log 2+p \log (p+2)
$$

or

$$
\begin{equation*}
2 \log p+p(\log p-\log (p+2))>(p-3) \log 2 \tag{85}
\end{equation*}
$$

It follows, by inequality (85), that

$$
2 \log p>(p-3) \log 2
$$

or

$$
\begin{equation*}
p \log 2<2 \log p+3 \log 2<5 \log p \tag{86}
\end{equation*}
$$

Inequality (86) is certainly false for $p=y \geq 3 \cdot 10^{143}$.
CASE 2.

$$
y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} \quad \text { with } y=p, d_{1}=\frac{3 p-1}{2}, d_{2}=1, x=3 p-1
$$

Hence,

$$
p^{(3 p-1) / 2}=\left(\frac{3 p-1}{2}\right)^{p}-2^{p-2}<\left(\frac{3 p-1}{2}\right)^{p}<\left(\frac{3 p}{2}\right)^{p}
$$

or

$$
\begin{equation*}
p^{(p-1) / 2}<\left(\frac{3}{2}\right)^{p} \tag{87}
\end{equation*}
$$

Taking logarithms in inequality (87) it follows that

$$
\frac{p-1}{2} \log p<p \log 1.5
$$

or

$$
\log p<\frac{2 p}{p-1} \log 1.5<3 \log 1.5<\log 1.5^{3}
$$

It follows that $p<1.5^{3}<4$ which contradicts the fact that $p \geq 3 \cdot 10^{143}$.
CASE 3.

$$
y^{x / 2}=d_{1}^{y}-2^{y-2} d_{2}^{y} \quad \text { with } y=p, d_{1}=\frac{p-1}{2}, d_{2}=3, x=3 p-9 .
$$

Hence,

$$
\begin{equation*}
p^{(3 p-9) / 2}=\left(\frac{p-3}{2}\right)^{p}-2^{p-2} 3^{p}<\left(\frac{p-3}{2}\right)^{p}<p^{p} . \tag{88}
\end{equation*}
$$

From inequality (88) it follows that $\frac{3 p-9}{2}<p$ or $p<9$ which contradicts the fact that $p=y \geq 3 \cdot 10^{143}$.

The Proof of Theorem 4. The given equation has no solution (y, z, n) with $n>1$ and y odd, $y<5$. Assume now that $y \geq 5$. We may assume that n is prime. We first show that n is odd. Indeed, assume that (y, z) is a positive solution of $y^{2}+2^{y}=z^{2}$ with both y and z odd. Then $(z+y)(z-y)=2^{y}$. Since gcd $(z+y, z-y)=2$ it follows that $z-y=2$ and $z+y=2^{y-1}$. Hence, $y=2^{y-2}-1$. However, one can easily check that $2^{y-2}-1>y$ for $y \geq 5$.

Assume now that $n=p \geq 3$ is an odd prime. Write

$$
\left(y+2^{(y-1) / 2} \cdot i \sqrt{2}\right) \cdot\left(y-2^{(y-1) / 2} \cdot i \sqrt{2}\right)=z^{n}
$$

Since $\mathrm{Z}[i \sqrt{2}]$ is euclidian and

$$
\operatorname{gcd}\left(y+2^{(y-1) / 2} \cdot i \sqrt{2}, y-2^{(y-1) / 2} \cdot i \sqrt{2}\right)=1
$$

it follows that there exists $a, b \in \mathrm{Z}$ such that

$$
\left\{\begin{array}{l}
y+2^{(y-1) / 2} \cdot i \sqrt{2}=(a+b i \sqrt{2})^{n} \tag{89}\\
y-2^{(y-1) / 2} \cdot i \sqrt{2}=(a-b i \sqrt{2})^{n}
\end{array}\right.
$$

From equations (89) it follows that

$$
\begin{equation*}
y=\frac{(a+b i \sqrt{2})^{n}+(a-b i \sqrt{2})^{n}}{2} \tag{90}
\end{equation*}
$$

and

$$
\begin{equation*}
2^{(y-1) / 2}=\frac{(a+b i \sqrt{2})^{n}-(a-b i \sqrt{2})^{n}}{2 \sqrt{2} i} \tag{91}
\end{equation*}
$$

From equation (90) we conclude that a is odd. From equation (91), it follows that

$$
2^{(y-1) / 2}=b\left(n a^{n-1}+s\right),
$$

where s is even. Since both n and a are odd, it follows that $n a^{n-1}+s$ is odd as well. Hence, $b=2^{(y-1) / 2}$. Equation (5) can now be rewritten as

$$
y^{2}+2^{y}=z^{n}=((a+b i \sqrt{2}) \cdot(a-b i \sqrt{2}))^{n}=\left(a^{2}+2 b^{2}\right)^{n}
$$

or

$$
\begin{equation*}
y^{2}+2^{y}=\left(a^{2}+2^{y}\right)^{n}>2^{n y} \geq 2^{3 y} \tag{92}
\end{equation*}
$$

Inequality (92) implies that

$$
y^{2}>2^{3 y}-2^{y}=2^{y}\left(2^{2 y}-1\right)>2^{y}
$$

which is false for $y \geq 5$.

Bibliography

[1] A. BaKER, G. WÜstholz, Logarithmic Forms and Group Varieties, J. reine angew. Math. 442 (1993), 19-62.
[2] P. Castin, Letter to the Editor, Math. Spec. 28 (1995/6), 68.
[3] K. Kashimara, Letter to the Editor, Math. Spec. 28 (1995/6), 20.
[4] S. V. Kotov, Uber die maximale Norm der Idealteilerdes Polynoms $\alpha x^{m}+\beta y^{n}$ mit den algebraischen Koeffitzienten, Acta Arith. 31, (1976), 219-230.
[5] S. LANG, Old and new conjectured diophantine inequalities, Bull. AMS 23 (1990), 37-75.
[6] F. Luca, Products of Factorials in Smarandache Type Expressions, in these proceedings.
[7] A. J. VAN DER POORTEN, Linear forms in logarithms in the p-adic case, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 29-57.
[8] T. N. SHOREY, On the greatest prime factor of $\left(a x^{m}+b y^{n}\right)$, Acta Arith. 36, (1980), 21-25.
[9] T.N. Shorey, A. J. van der Poorten, R. Tijdeman, A. Schinzel, Applications of the Gel'fond-Baker method to diophantine equations, in: Transcendence Theory, Advances and Applications, Academic Press, London, 1977, 59-77.
[10] F. Smarandache, Properties of the Numbers, Univ. of Craiova Conf. (1975).

Department of Mathematics, Syracuse University, SYRACUSE, NY 13244-1150

E-mail address: fiorian@ichthus.syr.edu

