Quotient Cordial Labeling of Graphs

R.Ponraj
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)
M.Maria Adaickalam
(Department of Economics and Statistics, Government of Tamilnadu, Chennai- 600 006, India)
\section*{R.Kala}
(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India)
E-mail: ponrajmaths@gmail.com, mariaadaickalam@gmail.com, karthipyi91@yahoo.co.in

Abstract

In this paper we introduce quotient cordial labeling of graphs. Let G be a (p, q) graph. Let $f: V(G) \rightarrow\{1,2, \cdots, p\}$ be a $1-1$ map. For each edge $u v$ assign the label $\left[\frac{f(u)}{f(v)}\right]$ (or) $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geq f(v)$ or $f(v)>f(u) . f$ is called a quotient cordial labeling of G if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labelled with even integers and number of edges labelled with odd integers. A graph with a quotient cordial labeling is called a quotient cordial graph. We investigate the quotient cordial labeling behavior of path, cycle, complete graph, star, bistar etc.

Key Words: Path, cycle, complete graph, star, bistar, quotient cordial labeling, Smarandachely quotient cordial labeling.
AMS(2010): 05C78.

§1. Introduction

Graphs considered here are finite and simple. Graph labeling is used in several areas of science and technology like coding theory, astronomy, circuit design etc. For more details refer Gallian [2]. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$. Cahit [1], introduced the concept of cordial labeling of graphs. Recently Ponraj et al. [4], introduced difference cordial labeling of graphs. Motivated by these labelings we introduce quotient cordial labeling of graphs. Also in this paper we investigate the quotient cordial labeling behavior of path, cycle, complete graph, star, bistar etc. In [4], Ponraj et al. investigate the quotient cordial labeling behavior of subdivided star $S(K 1, n)$, subdivided bistar $S\left(B_{n, n}\right)$ and union of some star related graphs. [$\left.x\right]$ denote the smallest integer less than or equal to x. Terms are not defined here follows from Harary [3].

[^0]
§2. Quotient Cordial Labeling

Definition 2.1 Let G be $a(p, q)$ graph. Let $f: V(G) \rightarrow\{1,2, \cdots, p\}$ be an injective map. For each edge uv assign the label $\left[\frac{f(u)}{f(v)}\right]$ (or) $\left[\frac{f(v)}{f(u)}\right]$ according as $f(u) \geq f(v)$ or $f(v)>f(u)$. Then f is called a quotient cordial labeling of G if $\left|e_{f}(0)-e_{f}(1)\right| \leq 1$ where $e_{f}(0)$ and $e_{f}(1)$ respectively denote the number of edges labelled with even integers and number of edges labelled with odd integers. A graph with a quotient cordial labeling is called a quotient cordial graph.

Generally, a Smarandachely quotient cordial labeling of G respect to $S \subset V(G)$ is such a labelling of G that it is a quotient cordial labeling on $G \backslash S$. Clearly, a quotient cordial labeling is a Smarandachely quotient cordial labeling of G respect to $S=\emptyset$.

A simple example of quotient cordial graph is given in Figure 1.

Figure 1.

§3. Main Results

First we investigate the quotient cordial labeling behavior of path.

Theorem 3.1 Any path is quotient cordial.

Proof Let P_{n} be the path $u_{1} u_{2} \cdots u_{n}$. Assign the label 1 to u_{1}. Then assign $2,4,8, \cdots$ $(\leq n)$ to the consecutive vertices until we get $\left[\frac{n-1}{2}\right]$ edges with label 0 , then choose the least number $\leq n$ that is not used as a label. That is consider the label 3. Assign the label to the next non labelled vertices consecutively by $3,6,12, \ldots(\leq n)$ until we get $\left[\frac{n-1}{2}\right]$ edges with label 0 . If not, consider the next least number $\leq n$ that is not used as a label. That is choose 5 . Then label the vertices $5,10,20, \cdots(\leq n)$ consecutively. If the total number of edges with label 0 is $\left[\frac{n-1}{2}\right]$, then stop this process, otherwise repeat the same until we get the $\left[\frac{n-1}{2}\right]$ edges with label 0 . Let S be the set of integer less than or equal to n that are not used as a label. Let t be the least integer such that u_{t} is not labelled. Then assign the label to the vertices $u_{t}, u_{t+1}, \cdots, u_{n}$ from the set S in descending order. Clearly the above vertex labeling is a quotient cordial labeling.

Illustration 3.2 A quotient cordial labeling of P_{15} is given in Figure 2.

Figure 2

Here, $S=\{5,7,9,10,11,13,14,15\}$

Corollary 3.3 If n is odd then the cycle C_{n} is quotient cordial.
Proof The quotient cordial labeling of path P_{n}, n odd, given in Theorem 3.1 is obviously a quotient cordial labeling of the cycle C_{n}.

Next is the complete graph.

Theorem 3.4 The complete graph K_{n} is quotient cordial iff $n \leq 4$.
Proof Obviously $K_{n}, n \leq 4$ is quotient cordial. Assume $n>4$. Suppose f is a quotient cordial labeling of K_{n}.

Case 1. n is odd.
Consider the sets,

$$
\begin{aligned}
S_{1} & =\left\{\left[\frac{n}{n-1}\right],\left[\frac{n}{n-2}\right], \ldots,\left[\frac{n}{\frac{n+1}{2}}\right]\right\} \cup\left\{\left[\frac{n}{1}\right]\right\} \\
S_{2} & =\left\{\left[\frac{n-2}{n-3}\right],\left[\frac{n-2}{n-4}\right], \ldots,\left[\frac{n-2}{\frac{n-1}{2}}\right]\right\} \cup\left\{\left[\frac{n-2}{1}\right]\right\} \\
& \vdots \\
S_{\frac{n-1}{2}} & =\left\{\left[\frac{3}{2}\right]\right\} \cup\left\{\left[\frac{3}{1}\right]\right\}
\end{aligned}
$$

Clearly, S_{1} contains $\frac{n+1}{2}$ integers. S_{2} contains $\frac{n-1}{2}$ integers. S_{3} contains $\frac{n-3}{2}$ integers. $\ldots, S_{\frac{n-2}{2}}$ contains 2 integers. Each S_{i} obviously contributes edges with label 1.T herefore

$$
\begin{align*}
e_{f}(1) & \geq\left|S_{1}\right|+\left|S_{2}\right|+\ldots+\left|S_{\frac{n-1}{2}}\right| \\
& =\frac{n+1}{2}+\frac{n-1}{2}+\frac{n-3}{2}+\ldots+2 \\
& =2+3+\ldots+\frac{n+1}{2} \\
& =\left[1+2+3+\ldots+\frac{n+1}{2}\right]-1 \\
& =\frac{\left(\frac{n+1}{2}\right)\left(\frac{n+1}{2}+1\right)}{2}-1=\frac{(n+1)(n+3)}{8}-1 \tag{1}
\end{align*}
$$

Next consider the sets,

$$
\begin{aligned}
S_{1}^{\prime} & =\left\{\left[\frac{n-1}{n-2}\right],\left[\frac{n-1}{n-3}\right], \ldots,\left[\frac{n-1}{n+1}\right]\right\} \\
S_{2}^{\prime} & =\left\{\left[\frac{n-3}{n-4}\right],\left[\frac{n-3}{n-5}\right], \ldots,\left[\frac{n-3}{n-1}\right]\right\} \\
& \vdots \\
S_{\frac{n-3}{2}}^{\prime} & =\left\{\left[\frac{4}{3}\right]\right\}
\end{aligned}
$$

Clearly each of the sets S_{i}^{\prime} also contributes edges with label 1. Therefore

$$
\begin{align*}
e_{f}(1) & \geq\left|S_{1}^{\prime}\right|+\left|S_{2}^{\prime}\right|+\ldots+\left|S_{\frac{n-3}{\prime}}^{\prime}\right| \\
& =\frac{n-3}{2}+\frac{n-5}{2}+\frac{n-7}{2}+\ldots+1 \\
& =1+2+4+\ldots+\frac{n-3}{2} \\
& =\frac{\left(\frac{n-3}{2}\right)\left(\frac{n-3}{2}+1\right)}{2}=\frac{(n-3)(n-1)}{8} \tag{2}
\end{align*}
$$

From (1) and (2), we get

$$
\begin{aligned}
e_{f}(1) & \geq \frac{(n+1)(n+3)}{8}-1+\frac{(n-3)(n-1)}{8} \\
& \geq \frac{n^{2}+4 n+3+n^{2}-4 n+3-8}{8} \\
& \geq \frac{2 n^{2}-2}{8} \geq \frac{n^{2}-1}{4}>\left[\frac{n(n-1)}{4}\right]+1
\end{aligned}
$$

a contradiction to that f is a quotient cordial labeling.
Case 2. n is even.
Similar to Case 1, we get a contradiction.

Theorem 3.5 Every graph is a subgraph of a connected quotient cordial graph.

Proof Let G be a (p, q) graph with $V(G)=\left\{u_{i}: 1 \leq i \leq p\right\}$. Consider the complete graph K_{p} with vertex set $V(G)$. Let $f\left(u_{i}\right)=i, 1 \leq i \leq p$. By Theorem 3.4, we get $e_{f}(1)>e_{f}(0)$. Let $e_{f}(1)=m+e_{f}(0), m \in \mathbb{N}$. Consider the two copies of the star $K_{1, m}$. The super graph G^{*} of G is obtained from K_{p} as follows: Take one star $K_{1, m}$ and identify the central vertex of the star with u_{1}. Take another star $K_{1, m}$ and identify the central vertex of the same with u_{2}. Let $S_{1}=$ $\{x: x$ is an even number and $p<x<p+2 m\}$ and $S_{2}=\{x: x$ is an odd number and $p<$
$x<p+2 m\}$. Assign the label to the pendent vertices adjacent to u_{1} from the set S_{1} in any order and then assign the label to the pendent vertices adjacent to u_{2} from the set S_{2}. Clearly this vertex labeling is a quotient cordial labeling of G^{*}.

Illustration $3.6 K_{5}$ is not quotient cordial but it is a subgraph of quotient cordial graph G^{*} given in Figure 3.

Figure 3
Theorem 3.7 Any star $K_{1, n}$ is quotient cordial.
Proof Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to the central vertex u and then assign the labels $2,3, \cdots, n+1$ to the pendent vertices $u_{1}, u_{2}, \cdots, u_{n} . f$ is a quotient cordial labeling follows from the following Table 1.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
even	$\frac{n}{2}$	$\frac{n}{2}$
odd	$\frac{n+1}{2}$	$\frac{n-1}{2}$

Table 1
Now we investigate the complete bipartite graph $K_{2, n}$.
Theorem $3.8 K_{2, n}$ is quotient cordial.
Proof Let $V\left(K_{2, n}\right)=\left\{u, v, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Assign the label 1,2 respectively to the vertices u, v. Then assign the label $3,4,5, \cdots, m+2$ to the remaining vertices. Clearly f is a quotient cordial labeling since $e_{f}(0)=m+1, e_{f}(1)=m$.

Theorem 3.9 $K_{1, n} \cup K_{1, n} \cup K_{1, n}$ is quotient cordial.
Proof Let $V\left(K_{1, n} \cup K_{1, n} \cup K_{1, n}\right)=\left\{u, u_{i}, v, v_{i}, w, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n} \cup K_{1, n} \cup\right.$ $\left.K_{1, n}\right)=\left\{u u_{i}, v v_{i}, w w_{i}: 1 \leq i \leq n\right\}$. Define a map $f: V\left(K_{1, n} \cup K_{1, n} \cup K_{1, n}\right) \rightarrow\{1,2,3, \ldots, 3 n\}$ by $f(u)=1, f(v)=2, f(w)=3$,

$$
\begin{aligned}
& f\left(u_{i}\right)=3 i+1, \quad 1 \leq i \leq n \\
& f\left(v_{i}\right)=3 i+3, \quad 1 \leq i \leq n \\
& f\left(w_{i}\right)=3 i+2, \quad 1 \leq i \leq n
\end{aligned}
$$

Clearly Table 3 shows that f is a quotient cordial labeling.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
n is even	$\frac{3 n}{2}$	$\frac{3 n}{2}$
$n \equiv 1(\bmod 4)$	$\frac{3 n-1}{2}$	$\frac{3 n+1}{2}$
$n \equiv 3(\bmod 4)$	$\frac{3 n+1}{2}$	$\frac{3 n-1}{2}$

Table 3

Next is the bistar $B_{n, n}$.

Theorem 3.10 The bistar $B_{n, n}$ is quotient cordial.

Proof Let $V\left(B_{n, n}\right)=\left\{u, u_{i}, v, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{u v, u u_{i}, v v_{i}: 1 \leq i \leq n\right\}$. Assign the label 1 to u and assign the label 2 to v. Then assign the labels $3,4,5, \ldots, n+2$ to the vertices $u_{1}, u_{2}, \cdots, u_{n}$. Next assign the label $n+3, n+4, \ldots, 2 n+2$ to the pendent vertices $v_{1}, v_{2}, \cdots, v_{n}$. The edge condition is given in Table 2.

Nature of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 0,1,2(\bmod n)$	$n+1$	n
$n \equiv 3(\bmod n)$	n	$n+1$

Table 3

Hence f is a quotient cordial labeling.

The final investigation is about the graph obtained from a triangle and three stars.

Theorem 3.11 Let C_{3} be the cycle $u_{1} u_{2} u_{3} u_{1}$. Let G be a graph obtained from C_{3} with $V(G)=$ $V\left(C_{3}\right) \cup\left\{v_{i}, w_{i}, z_{i}: 1 \leq i \leq n\right\}$ and $E(G)=E\left(C_{3}\right) \cup\left\{u_{1} v_{i}, u_{2} w_{i}, u_{3} z_{i}: 1 \leq i \leq n\right\}$. Then G is quotient cordial.

Proof Define $f: V(G) \rightarrow\{1,2,3, \cdots, 3 n+3\}$ by $f\left(u_{1}\right)=1, f\left(u_{2}\right)=2, f\left(u_{3}\right)=3$.
Case 1. $n \equiv 0,2,3(\bmod 4)$.

Define

$$
\begin{aligned}
& f\left(v_{i}\right)=3 i+1, \quad 1 \leq i \leq n \\
& f\left(w_{i}\right)=3 i+3, \quad 1 \leq i \leq n \\
& f\left(z_{i}\right)=3 i+2, \quad 1 \leq i \leq n
\end{aligned}
$$

Case 2. $n \equiv 1(\bmod 4)$.
Define

$$
\begin{aligned}
& f\left(v_{i}\right)=3 i+2, \quad 1 \leq i \leq n \\
& f\left(w_{i}\right)=3 i+1, \quad 1 \leq i \leq n \\
& f\left(z_{i}\right)=3 i+3, \quad 1 \leq i \leq n
\end{aligned}
$$

The Table 4 shows that f is a quotient cordial labeling.

values of n	$e_{f}(0)$	$e_{f}(1)$
$n \equiv 1,3(\bmod 4)$	$\frac{3 n+3}{2}$	$\frac{3 n+3}{2}$
$n \equiv 0,2(\bmod 4)$	$\frac{3 n+2}{2}$	$\frac{3 n+4}{2}$

Table 3

Illustration 3.12 A quotient cordial labeling of G obtained from C_{3} and $K_{1,7}$ is given in Figure 4.

Figure 4

References

[1] I.Cahit, Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars com-
bin., 23 (1987), 201-207.
[2] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2012) \#Ds6.
[3] F.Harary, Graph theory, Addision wesley, New Delhi (1969).
[4] R.Ponraj, S.Sathish Narayanan and R.Kala, Difference cordial labeling of graphs, Global Journal of Mathematical Sciences: Theory and Practical, 5(2013), 185-196.
[5] R.Ponraj and M.Maria Adaickalam, Quotient cordial labeling of some star related graphs, The Journal of the Indian Academy of Mathematics, 37(2)(2015), 313-324.

[^0]: ${ }^{1}$ Received July 9, 2015, Accepted February 25, 2016.

