Asia Pacific Journal of Research ISSN: 2320-5504, E-ISSN-2347-4793 Vol: I. Issue XXI, January 2015

SMARANDACHE - R-MODULE AND COMMUTATIVE AND BOUNDED BE-ALGEBRAS

Dr. N. KANNAPPA¹ P. HIRUDAYARA J^2

 ¹Head & Associate Professor, PG & Research Department of Mathematics, TBML College, Porayar - 609307, TamilNadu, India
 ² Assistant Professor, Department of Mathematics, RVS College of Arts and Science, Karaikal - 609609, Puducherry, India.

ABSTRACT

In this paper we introduced Smarandache -2 – algebraic structure of R-Module namely Smarandache – R-Module. A Smarandache – 2 – algebraic structure on a set N means a weak algebraic structure A_0 on N such that there exist a proper subset M of N, which is embedded with a stronger algebraic structure A_1 , stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, from the unit element if any, from the whole set. We define Smarandache – R-Module and obtain some of its characterization through Commutative and Bounded BE-Algebras. For basic concepts we refers to Florentin smarandache[2] and Raul Padilla[9].

Keyword: R-Module, Smarandache – R-Module, BE-Algebras.

1.INTRODUCTION

New notions are introduced in algebra to study more about the congruence in number theory by Florentin smarandache[2]. By proper subset> of a set A, We consider a set P included in A and different from A, different from the empty set, and from the unit element in A - if any they rank the algebraic structures using an order relationship.

The algebraic structures $S_1 \ll S_2$ if :both are defined on the same set :: all S_1 laws are also S_2 laws; all axioms of S_1 law are accomplished by the corresponding S_2 law; S_2 law strictly accomplishes more axioms than S_1 laws, or in other words S_2 laws has more laws than S_1 .

For example : semi group << monoid << group << ring << field, or Semi group << commutative semi group, ring << unitary ring, etc. they define a General special structure to be a structure SM on a set A, different from a structure SN, such that a proper subset of A is an SN structure, where SM << SN.

2. Prerequistics

Definition 2.1: An algebra (A; *, 1) of type (2, 0) is called a BE-algebra if for all x, y and z in A,

(BE1) x * x = 1

(BE2) *x* * 1 = 1

(BE3)
$$1 * x = x$$

(BE4) x * (y * z) = y * (x * z).

In A, a binary relation " \leq " is defined by $x \leq y$ if and only if x * y = 1.

Definition 2.2: A BE-algebra (X; *, 1) is said to be self-distributive if x * (y * z) = (x * y) * (x * z) for all x, y and $z \in A$.

Definition 2.3: A dual BCK-algebra is an algebra (A; *, 1) of type (2,0) satisfying (BE1) and (BE2) and the following axioms for all $x, y, z \in A$.

(dBCK1) x * y = y * x = 1 implies x = y

(dBCK2) (x * y) * ((y * z) * (x * z)) = 1

(dBCK3) x * ((x * y) * y) = 1.

Definition 2.4: Let A be a BE-algebra or dual BCK-algebra . A is said to be commutative if the following identity holds:

 $x \vee_{B} y = y \vee_{B} x$ where $x \vee_{B} y = (y * x) * x$ for all $x, y \in A$.

Definition 2.5: Let A be a BE-algebra. If there exists an element 0 satisfying $0 \le x$ (or 0 * x = 1) for all $x \in A$, then the element "0" is called unit of A. A BE-algebra with unit is called a bounded BE-algebra.

Note : In a bounded BE-algebra x * 0 denoted by xN.

Definition 2.6: In a bounded BE-algebra, the element x such that xNN = x is called an involution .

Let S (A) = { $x \in A$; xNN = x } where A is a bounded BE-algebra. S(A) is the set of all involutions in A. Moreover, since 1NN = (1 * 0) * 0 = 0 * 0 = 1 and 0NN = (0 * 0) * 0 = 1 * 0 = 0, We have $0, 1 \in S(A)$ and so $S(A) \neq \emptyset$.

Definition 2.7: Each of the elements *a* and *b* in a bounded BE-algebra is called the complement of the other if $a \lor b = 1$ and $a \land b = 0$.

Definition 2.8: Now we have introduced our concept smarandache - R - module : "Let R be a module, called R-module. If R is said to be smarandache - R - module. Then there exist a proper subset A of R which is an algebra with respect to the same induced operations of R."

ISSN: 2320-5504, E-ISSN-2347-4793

3.Theorem

Theorem 3.1: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied,

(i)
$$1N = 0, 0N = 1$$

(ii)
$$x \le xNN$$

(iii)
$$x * yN = y * xN$$

(iv) $0 \lor x = xNN, x \lor 0 = x.$

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras.

(i) We have 1N=1*0=0 and 0N=0*0=1. by using (BE1) and (BE3)

(ii) Since
$$x * xNN = x * ((x * 0) * 0) = (x * 0) * (x * 0) = 1$$

We get $x \le x$ (by (BE1) and (BE4))

(iii) We have x * yN = x * (y * 0) (by using (BE4))

$$= y * (x * 0)$$
$$= y * xN.$$

(iv) By routine operations, we have $0 \lor x = (x * 0) * 0 = xNN$ and $x \lor 0 = (0 * x) * x = 1 * x = x$.

Theorem 3.2: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied $x * y \le (y \lor x) * y$ for all $x, y \in A$.

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras. Since

 $(x * y) * ((y \lor x) * y) = (y \lor x) * ((x * y) * y) = (y \lor x) * (y \lor x) = 1$

```
We have x * y \le (y \lor x) * y.
```

Theorem 3.3: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold. In addition to that satisfy x * (y * z) = (x * y) * (x * z) then the following conditions are satisfied for all $x, y, z \in A$

(i) x * y ≤ y N * xN
(ii) x ≤ y implies yN ≤ xN.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded and Self-Distributive BE-algebras.

(i) Since (x * y) * (yN * xN)= (x * y) * ((y * 0) * (x * 0))= (y * 0) * ((x * y) * (x * 0)) (by BE4) = (y * 0) * (x * (y * 0)) (by distributivity) = x * ((y * 0) * (y * 0)) (by BE4) = x * 1 (by BE1) = 1 (by BE2),We have $x * y \le yN * xN$. (ii) It is trivial by $x \le y$, We have $z * x \le z * y$ then $y * z \le x * z$ for all $x, y, z \in A$.

Theorem 3.4: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold. In addition to that satisfy x * (y * z) = (x * y) * (x * z), then the following conditions are satisfied

(i) $(y \lor x) * y \le x * y$. (ii) x * (x * y) = x * y.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Self-Distributive BE-algebras.

(i) Since

$$x * (y \lor x) = x * ((x * y) * y)$$
$$= (x * y) * (x * y)$$
$$= 1.$$
We have $x \le y \lor x$. By $z * x \le z * y$ We have $(y \lor x) * y \le x * y$ for all $x, y, z \in A$

(ii) By using self distributive definition, (BE1) and (BE3), we have

$$x * (x * y) = (x * x) * (x * y)$$

= 1 * (x * y)
= x * y.

Theorem 3.5: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold. In addition to that satisfy $0 \le x$ (or 0 * x = 1), then the following conditions are satisfied for all $x, y \in A$

(i) xNN = x(ii) $xN \land yN = (x \lor y)$ Asia Pacific Journal of Research ISSN: 2320-5504, E-ISSN-2347-4793

- (iii) $xN \lor yN = (x \land y)$
- (iv) xN * yN = y * x.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras.

(i) It is obtained that

xNN = (x * 0) * 0 (from BE3)= (0 * x) * x (by commutativity)= 1*x= x.

$$xN \wedge yN = (xNN \vee yNN)N = (x \vee y)N.$$

(iii)By the definition of Λ and (i) we have that

$$(x \land y)N = (xN \lor yN)NN = xN \lor yN.$$

(iv)We have $xN \ast yN = (x \ast 0) \ast (y \ast 0)$
$$= y \ast ((x \ast 0) \ast 0)$$
$$= y \ast (xNN) = y \ast x.$$

Theorem 3.6: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that, there exists a complement of any element of A and then it is unique.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras. Let $x \in A$ and a, b be two complements of x. Then we know that $x \land a = x \land b = 0$ and $x \lor a = x \lor b = 1$. Also since $x \lor a = (x * a) * a = 1$ and a * (x * a) = x * (a * a) = x * 1 = 1,

We have $x * a \le a$ and $a \le x * a$. So we get x * a = a.

Similarly

$$x * b = b.$$

Hence $a * b = (x * a) * (x * b) = (aN * xN) * (bN * xN)$ by Theorem 2.5 (iv)
$$= bN * ((aN * xN) * xN)$$
 by BE-4
$$= bN * (xN \vee aN)$$

$$= bN * (x \wedge a) N$$
 by Theorem 2.5 (iii)
$$= (x \wedge a) * b$$
 by Theorem 2.5 (iii)
$$= 0 * b$$

$$= 1.$$

With similar operations, we have b * a = 1.

Hence we obtain a = b which gives that the complement of x is unique.

ISSN: 2320-5504, E-ISSN-2347-4793

Theorem 3.7: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $0 \le x$ (or 0 * x = 1), then the following conditions are equivalent for all $x, y \in A$

(i) $x \wedge xN = 0$ (ii) $xN \lor x = 1$ (iii) $xN \ast x = x$ (iv) $x \ast xN = xN$ (v) $x \ast (x \ast y) = x \ast y$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Commutative and bounded BE-algebras.

(i) \Rightarrow (ii) Let $x \land xN = 0$. Then it follows that $xN \lor x = (xN \lor x)$ by Theorem 2.5 (i) $= (xNN \land xN)$ by Theorem 2.5 (ii) $= (x \land xN)$ by Theorem 2.5 (i) = 0N= 1. (ii) \Rightarrow (iii) Let $xN \lor x = 1$. Then, since $(xN * x) * x = x \lor xN = 1$ and x * (xN * x) = xN * (x * x) = xN * 1 = 1We get xN * x = x by (dBCK1). (iii) \Rightarrow (iv) Let xN * x = x. Substituting xN for x and using Theorem 2.5 (i) We obtain the result. (iv) \Rightarrow (v) Let x * xN = xN. Then We get yN * (x * xN) = yN * xN. Hence we have x * (yN * xN) = yN * xN. Using Theorem 2.5 (iv) We obtain x * (x * y) = x * y. $(v) \Rightarrow (ii)$ Let x * (x * y) = x * y. Then We have $xN \lor x = (x * (xN)) * xN$ = (x * (x * 0)) * xN= (x * 0) * (x * 0)= Ì. (ii) \Rightarrow (i) Let $xN \lor x = 1$. Then We obtain $N \land x = xN \land xNN$ $= (x \lor xN)$ by Theorem 2.5 (ii) = 1N= 0.

REFERENCES

- [1]. Ahn S. S. and So K. S, "On generalized upper sets in BE algebras," *Bulletin of the Korean Mathematical Society*, vol. 46, no. 2, pp. 281–287, 2009.
- [2]. Florentin smarandache, "Special Algebric Stuctures," University of New Mexico.MSC:06A99, 1991.
- [3]. Jun Y. B., Roh E. H., and Kim H. S, "On BH-algebras," *Scientiae Mathematicae*, vol. 1, no.3, pp. 347–354, 1998.
- [4]. Kannappa N and Hirudayaraj P "On some characterisation of Smarandache R module " International conference on Applications of Mathematics and Statistics. ISSN:978-93-81361-71-9 pp -103-106, 2012.
- [5]. Kannappa N and Hirudayaraj P "Smarandache R module and BRK Algebras" International conference on Mathematical methods and computation. ISSN 0973-0303,pp 346-349, 2014.
- [6]. Kannappa N and Hirudayaraj P "Smarandache R module with BCI- Algebras and BCC Algebras", Jamal Academic Research Journal, ISSN 0973-0303, pp. 07–10, 2015.
- [7]. Kim C. B. and Kim H. S, "On *BM*-algebras," *Scientiae Mathematicae Japonicae*, vol. 63, no. 3, pp. 421–427, 2006.
- [8]. Kim H. S. and Kim Y. H, "On BE-algebras," *Scientiae Mathematicae Japonicae*, vol. 66, no. 1, pp. 113–116, 2007.
- [9]. Raul Padilla "Smarandache Algebraic structures", Universidade do Minho, Portugal 1999.
- [10]. Walendziak A., "On commutative BE-algebras," *ScientiaeMathematicae Japonicae*, vol. 69, no. 2, pp. 281–284, 2009.