SMARANDACHE - R-MODULE AND COMMUTATIVE AND BOUNDED BE-ALGEBRAS

Dr. N. KANNAPPA ${ }^{1} \quad$ P. HIRUDAYARAJ ${ }^{2}$
${ }^{1}$ Head \& Associate Professor, PG \& Research Department of Mathematics, TBML College, Porayar - 609307, TamilNadu, India
${ }^{2}$ Assistant Professor, Department of Mathematics, RVS College of Arts and Science, Karaikal - 609609,Puducherry, India.

Abstract

In this paper we introduced Smarandache - 2 - algebraic structure of R-Module namely Smarandache - R-Module. A Smarandache -2 - algebraic structure on a set N means a weak algebraic structure A_{0} on N such that there exist a proper subset M of N, which is embedded with a stronger algebraic structure A_{1}, stronger algebraic structure means satisfying more axioms, by proper subset one understands a subset different from the empty set, from the unit element if any, from the whole set. We define Smarandache - R-Module and obtain some of its characterization through Commutative and Bounded BE-Algebras. For basic concepts we refers to Florentin smarandache[2] and Raul Padilla[9].

Keyword: R-Module, Smarandache - R-Module, BE-Algebras.

1.INTRODUCTION

New notions are introduced in algebra to study more about the congruence in number theory by Florentin smarandache[2]. By <proper subset> of a set A, We consider a set P included in A and different from A, different from the empty set, and from the unit element in A - if any they rank the algebraic structures using an order relationship.

The algebraic structures $S_{1} \ll S_{2}$ if :both are defined on the same set :: all S_{1} laws are also S_{2} laws; all axioms of S_{1} law are accomplished by the corresponding S_{2} law; S_{2} law strictly accomplishes more axioms than S_{1} laws, or in other words S_{2} laws has more laws than S_{1}.

For example : semi group << monoid << group << ring < field, or Semi group << commutative semi group, ring << unitary ring, etc. they define a General special structure to be a structure SM on a set A, different from a structure SN , such that a proper subset of A is an SN structure, where $\mathrm{SM} \ll \mathrm{SN}$.

2. Prerequistics

Definition 2.1: An algebra $(A ; *, 1)$ of type $(2,0)$ is called a BE-algebra if for all x, y and z in A,
(BE1) $x * x=1$
(BE2) $x * 1=1$
(BE3) $1 * x=x$
(BE4) $x *(y * z)=y *(x * z)$.
In A, a binary relation " \leq " is defined by $x \leq y$ if and only if $x * y=1$.

Definition 2.2: A BE-algebra $\left(X ;{ }^{*}, 1\right)$ is said to be self-distributive if $x *\left(y^{*} z\right)=(x * y) *(x * z)$ for all x, y and $z \in A$.
Definition 2.3: A dual BCK-algebra is an algebra (A; *, 1) of type (2,0) satisfying (BE1) and (BE2) and the following axioms for all $x, y, \mathrm{z} \in \mathrm{A}$.
(dBCK1) $x * y=y * x=1$ implies $x=y$
(dBCK2) $(x * y) *((y * z) *(x * z))=1$
(dBCK3) $x *((x * y) * y)=1$.
Definition 2.4: Let A be a BE-algebra or dual BCK-algebra. A is said to be commutative if the following identity holds:
$x \vee_{\mathrm{B}} y=y \vee_{\mathrm{B}} x$ where $x \vee_{\mathrm{B}} \mathrm{y}=(y * x) * x$ for all $x, y \in \mathrm{~A}$.
Definition 2.5: Let A be a BE-algebra. If there exists an element 0 satisfying $0 \leq x$ (or $0 * x=1$) for all $x \in \mathrm{~A}$, then the element " 0 " is called unit of A. A BE-algebra with unit is called a bounded BEalgebra.
Note : In a bounded BE-algebra $x * 0$ denoted by $x N$.
Definition 2.6: In a bounded BE-algebra, the element x such that $x N N=x$ is called an involution .
Let $\mathrm{S}(\mathrm{A})=\{x \in \mathrm{~A} ; x N N=x\}$ where A is a bounded BE-algebra. $\mathrm{S}(\mathrm{A})$ is the set of all involutions in A . Moreover, since $1 N N=(1 * 0) * 0=0 * 0=1$ and $0 N N=(0 * 0) * 0=1 * 0=0$, We have $0,1 \in \mathrm{~S}(\mathrm{~A})$ and so $S(A) \neq \varnothing$.
Definition 2.7: Each of the elements a and b in a bounded BE-algebra is called the complement of the other if $a \vee b=1$ and $a \wedge b=0$.

Definition 2.8: Now we have introduced our concept smarandache - R - module : "Let R be a module, called R -module. If R is said to be smarandache -R - module. Then there exist a proper subset A of R which is an algebra with respect to the same induced operations of R."

3.Theorem

Theorem 3.1: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied,
(i) $1 \mathrm{~N}=0,0 \mathrm{~N}=1$
(ii) $x \leq x N N$
(iii) $x * y N=y * x N$
(iv) $0 \vee x=x N N, x \vee 0=x$.

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras.
(i) We have $1 N=1 * 0=0$ and $0 N=0 * 0=1$. by using (BE1) and (BE3)
(ii) Since $x * x N N=x *((x * 0) * 0)=(x * 0) *(x * 0)=1$

We get $x \leq x$ (by (BE1) and (BE4))
(iii) We have $x * y N=x *(y * 0)($ by using (BE4))

$$
\begin{aligned}
& =y *(x * 0) \\
& =y * x N .
\end{aligned}
$$

(iv) By routine operations, we have $0 \vee x=(x * 0) * 0=x N N$ and $x \vee 0=(0 * x) * x=1 * x=x$.

Theorem 3.2: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, then the following conditions are satisfied $\mathrm{x} * y \leq(y \vee x) * y$ for all $x, y \in \mathrm{~A}$.

Proof. Let R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded BE-algebras.
Since
$(x * y) *((y \vee x) * y)=(y \vee x) *((x * y) * y)=(y \vee x) *(y \vee x)=1$
We have $x * y \leq(y \vee x) * y$.
Theorem 3.3: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $\mathrm{x} *\left(y^{*} z\right)=(x * y) *(x * z)$ then the following conditions are satisfied for all $x, y, \mathrm{z} \in \mathrm{A}$
(i) $x * y \leq y N * x N$
(ii) $x \leq y$ implies $y N \leq x N$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is bounded and Self-Distributive BE-algebras.
(i) Since $(x * y) *(y N * x N)$

$$
\begin{aligned}
& =(x * y) *((y * 0) *(x * 0)) \\
& =(y * 0) *((x * y) *(x * 0))(\text { by BE } 4)
\end{aligned}
$$

$=(y * 0) *(x *(y * 0))$ (by distributivity)
$=x *((y * 0) *(y * 0))($ by BE4 $)$
$=x * 1$ (by BE1)
$=1$ (by BE2),
We have $x * y \leq y N * x N$.
(ii) It is trivial by $x \leq y$, We have $z * x \leq z * y$
then $\mathrm{y} * \mathrm{z} \leq x * \mathrm{z}$ for all $x, y, \mathrm{z} \in \mathrm{A}$.
Theorem 3.4: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $\mathrm{x} *\left(y^{*} z\right)=(x * y) *(x * z)$, then the following conditions are satisfied
(i) $(y \vee x) * y \leq x * y$.
(ii) $x *(x * y)=x * y$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Self-Distributive BE-algebras.
(i) Since

$$
\begin{aligned}
x *(y \vee x) & =x *((x * y) * y) \\
= & (x * y) *(x * y) \\
= & 1 .
\end{aligned}
$$

We have $x \leq y \vee x$. By $\mathrm{z} * \mathrm{x} \leq \mathrm{z} * \mathrm{y}$
We have $(y \vee x) * y \leq x * y$ for all $x, y, \mathrm{z} \in \mathrm{A}$
(ii) By using self distributive definition, (BE1) and (BE3), we have

$$
\begin{aligned}
x *(x * y) & =(x * x) *(x * y) \\
= & 1 *(x * y) \\
= & x * y
\end{aligned}
$$

Theorem 3.5: Let R be a smarandache- R -module, if there exists a proper subset A of R in which (BE 1) to (BE4) are hold, In addition to that satisfy $0 \leq x$ (or $0 * x=1$), then the following conditions are satisfied for all $x, y \in \mathrm{~A}$
(i) $x N N=x$
(ii) $x N \wedge y N=(x \vee y)$
(iii) $x N \vee y N=(x \wedge y)$
(iv) $x N * y N=y * x$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras.
(i) It is obtained that

$$
\begin{aligned}
x N N & =(x * 0) * 0(\text { from BE3 }) \\
& =(0 * x) * x(\text { by commutativity }) \\
& =1 * x \\
& =x .
\end{aligned}
$$

(ii) By the definition of " \wedge " and (i) we have that

$$
x N \wedge y N=(x N N \vee y N N) N=(x \vee y) N .
$$

(iii)By the definition of " \wedge " and (i) we have that $(x \wedge y) N=(x N \vee y N) N N=x N \vee y N$.
(iv) We have $x N * y N=(x * 0) *(y * 0)$

$$
\begin{aligned}
& =y *((x * 0) * 0) \\
& =y *(x N N)=y * x .
\end{aligned}
$$

Theorem 3.6: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that, there exists a complement of any element of A and then it is unique.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a bounded and Commutative BE-algebras.
Let $x \in \mathrm{~A}$ and a, b be two complements of x. Then we know that $x \wedge a=x \wedge b=0$ and $x \vee a=x \vee b=1$.
Also since $x \vee a=(x * a) * a=1$ and $a *(x * a)=x *(a * a)=x * 1=1$,
We have $x * a \leq a$ and $a \leq x * a$. So we get $x * a=a$.
Similarly

$$
x * b=b .
$$

Hence $a * b=(x * a) *(x * b)=(a N * x N) *(b N * x N)$ by Theorem 2.5 (iv)
$=b N *((a N * x N) * x N) \quad$ by BE-4
$=b N *(x N \vee a N)$
$=b N *(x \wedge a) N$ by Theorem 2.5 (iii)
$=(x \wedge a) * b$ by Theorem 2.5 (iii)
$=0 * b$
$=1$.
With similar operations, we have $b * a=1$.
Hence we obtain $a=b$ which gives that the complement of x is unique.

ISSN: 2320-5504, E-ISSN-2347-4793
Theorem 3.7: Let R be a smarandache-R-module, if there exists a proper subset A of R in which (BE1) to (BE4) are hold, In addition to that satisfy $0 \leq x$ (or $0 * x=1$), then the following conditions are equivalent for all $x, y \in \mathrm{~A}$
(i) $x \wedge x N=0$
(ii) $x N \vee x=1$
(iii) $x N * x=x$
(iv) $x * x N=x N$
(v) $x *(x * y)=x * y$.

Proof. Since R be a smarandache-R-module. Then by definition there exists a proper subset A of R which is an algebra. By hypothesis A holds for (BE1) to (BE4) then A is a Commutative and bounded BE -algebras.
(i) \Rightarrow (ii) Let $x \wedge x N=0$. Then it follows that

$$
\begin{aligned}
x N \vee & x=(x N \vee x) \text { by Theorem } 2.5 \text { (i) } \\
& =(x N N \wedge x N) \text { by Theorem } 2.5 \text { (ii) } \\
& =(x \wedge x N) \text { by Theorem } 2.5 \text { (i) } \\
& =0 N \\
& =1 .
\end{aligned}
$$

(ii) \Rightarrow (iii) Let $x N \vee x=1$. Then, since
$(x N * x) * x=x \vee x N=1$ and $x *(x N * x)=x N *(x * x)=x N * 1=1$
We get $x N * x=x$ by (dBCK1).
(iii) \Rightarrow (iv) Let $x N * x=x$. Substituting $x N$ for x and using Theorem 2.5 (i)

We obtain the result.
(iv) \Rightarrow (v) Let $x * x N=x N$. Then

We get $y N *(x * x N)=y N * x N$.
Hence we have $x *(y N * x N)=y N * x N$. Using Theorem 2.5 (iv)
We obtain $x *(x * y)=x * y$.
(v) \Rightarrow (ii) Let $x *(x * y)=x * y$. Then

We have $x N \vee x=(x *(x N)) * x N$

$$
\begin{aligned}
& =(x *(x * 0)) * x N \\
& =(x * 0) *(x * 0) \\
& =1 .
\end{aligned}
$$

(ii) \Rightarrow (i) Let $x N \vee x=1$. Then

We obtain $N \wedge x=x N \wedge x N N$

$$
\begin{aligned}
& =(x \vee x N) \text { by Theorem } 2.5 \text { (ii) } \\
& =1 N \\
& =0 .
\end{aligned}
$$

REFERENCES

[1]. Ahn S. S. and So K. S, "On generalized upper sets in BE algebras," Bulletin of the Korean Mathematical Society, vol. 46, no. 2, pp. 281-287, 2009.
[2]. Florentin smarandache, "Special Algebric Stuctures," University of New Mexico.MSC:06A99, 1991.
[3]. Jun Y. B., Roh E. H., and Kim H. S, "On BH-algebras," Scientiae Mathematicae, vol. 1, no.3, pp. 347354, 1998.
[4]. Kannappa N and Hirudayaraj P "On some characterisation of Smarandache - R - module " International conference on Applications of Mathematics and Statistics. ISSN:978-93-81361-71-9 pp -103-106, 2012.
[5]. Kannappa N and Hirudayaraj P "Smarandache - R - module and BRK Algebras" International conference on Mathematical methods and computation.

ISSN 0973-0303,pp 346-349, 2014.
[6]. Kannappa N and Hirudayaraj P "Smarandache - R - module with BCI- Algebras and BCC Algebras", Jamal Academic Research Journal, ISSN 0973-0303, pp. 07-10, 2015.
[7]. Kim C. B. and Kim H. S, "On BM-algebras," Scientiae Mathematicae Japonicae, vol. 63, no. 3, pp. 421-427, 2006.
[8]. Kim H. S. and Kim Y. H, "On BE-algebras," Scientiae Mathematicae Japonicae, vol. 66, no. 1, pp. 113-116, 2007.
[9]. Raul Padilla "Smarandache Algebraic structures", Universidade do Minho, Portugal 1999.
[10]. Walendziak A., "On commutative BE-algebras," ScientiaeMathematicae Japonicae, vol. 69, no. 2, pp. 281-284, 2009.

