On Radio Mean Number of Some Graphs

R.Ponraj and S.Sathish Narayanan
(Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, India)
\section*{R.Kala}
(Department of Mathematics, Manonmaniam Sundaranar University, Tirunelveli-627012, India)
E-mail: ponrajmaths@gmail.com, sathishrvss@gmail.com, karthipyi91@yahoo.co.in

Abstract

A radio mean labeling of a connected graph G is a one to one map f from the vertex set $V(G)$ to the set of natural numbers N such that for each distinct vertices u and v of $G, d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(G)$. The radio mean number of $f, r m n(f)$, is the maximum number assigned to any vertex of G. The radio mean number of $G, \operatorname{rmn}(G)$ is the minimum value of $r m n(f)$ taken over all radio mean labeling f of G. In this paper we find the radio mean number of some graphs which are related to complete bipartite graph and cycles.

Key Words: Carona, path, complete bipartite graph, cycle, Smarandache radio mean number, radio mean number.

AMS(2010): 05C78

§1. Introduction

We considered finite, simple undirected and connected graphs only. Let $V(G)$ and $E(G)$ respectively denote the vertex set and edge set of G. Chatrand et al.[1] defined the concept of radio labeling of G in 2001. Radio labeling of graphs is applied in channel assignment problem [1]. Radio number of several graphs determined [2,7,5,9]. In this sequal Ponraj et al. [8] introduced the radio mean labeling in G. A radio mean labeling is a one to one mapping f from $V(G)$ to N satisfying the condition

$$
\begin{equation*}
d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}(G) \tag{1.1}
\end{equation*}
$$

for every $u, v \in V(G)$. The span of a labeling f is the maximum integer that f maps to a vertex of Graph G. For any subgraph $H \leq G$, a Smarandache radio mean number of G on H is the lowest span taken over al such labelings of the graph G that its constraint on H is a radio mean labeling. Particularly, if $H=G$, such a Smarandache radio mean number is called the radio mean number of G, denoted by $\operatorname{rmn}(G)$. The condition (1.1) is called radio mean condition. In [8] we determined the radio mean number of some graphs like graphs with diameter three,

[^0]lotus inside a circle, gear graph, Helms and Sunflower graphs. In this paper we determine radio mean number of subdivision of complete bipartite, corona complete graph with path and one point union of cycle C_{6}. The subdivision graph $S(G)$ of a graph G is obtained by replacing each edge $u v$ by a path $u w v$. The corona of G with $H, G \odot H$ is the graph obtained by taking one copy of G and p copies of H and joining the $i^{\text {th }}$ vertex of G with an edge to every vertex in the $i^{t h}$ copy of H. Let x be any real number. Then $\lceil x\rceil$ stands for smallest integer greater than or equal to x. Terms and definitions not defined here are follow from Harary [6].

§2. Main Results

Theorem $2.1 \operatorname{rmn}\left(S\left(K_{m, n}\right)\right)=(m+1)(n+1)-1, m>1, n>1$.
Proof Let $V\left(S\left(K_{m, n}\right)\right)=\left\{u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\} \cup\left\{w_{i, j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(S\left(K_{m, n}\right)\right)=\left\{u_{i} w_{i, j}, w_{i, j} v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$. Note that $\operatorname{diam}\left(S\left(K_{m, n}\right)\right)=4$. Here we display $S\left(K_{2,2}\right)$ with a vertex labeling in Figure 1.

Figure 1

One can easily verify that the above vertex labeling satisfies the radio mean condition. We now explain a method for labeling the vertices of $S\left(K_{m, n}\right)$ where $n \geq 3$. Consider the vertex $w_{i, j}$. Assign the label 2 to the vertex $w_{m, n}$. Put the label 3 to $w_{m,(n-1)}$. Similarly for $w_{m,(n-2)}$ we can label it by by 4 . Proceeding like this $w_{m, 1}$ is labeled by $n+1$. Next we label the neighbours of u_{m-1}. Allocate the labels $2 n+3-j$ to the vertices $w_{(m-1), j}(1 \leq j \leq n)$. Then we move to the vertices which are adjacent to w_{m-2}. Put the labels $3 n+4-j$ to the vertices $w_{(m-2), j}(1 \leq j \leq n)$. Proceeding like this the labels of the neighbours of u_{1} are $m n+m+1-j, 1 \leq j \leq n$. Now consider the vertices $u_{i}(1 \leq i \leq m)$. Put the label 1 to u_{1}. Then the vertices $u_{i}(2 \leq i \leq m)$ are labeled by $n+2+(n+1)(m-i)$. Then the integers from $\{m n+m+1, m n+m+2, \ldots, m n+m+n\}$ are assigned to the remaining vertices in any order.

Claim 1 The labeling f is a valid radio mean labeling. We must show that the condition

$$
d(u, v)+\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \geq 1+\operatorname{diam}\left(S\left(K_{m, n}\right)\right)=5
$$

holds for all pairs of vertices (u, v) where $u \neq v$.
Case 1. Check the pair $\left(u_{i}, v_{j}\right)$.

$$
d\left(u_{i}, v_{j}\right)+\left\lceil\frac{f\left(u_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{1+m n+m+1}{2}\right\rceil \geq 6
$$

Case 2. Verify the pair $\left(u_{i}, u_{j}\right)$.

$$
d\left(u_{i}, u_{j}\right)+\left\lceil\frac{f\left(u_{i}\right)+f\left(u_{j}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{1+n+2}{2}\right\rceil \geq 7
$$

Case 3. Consider the pair $\left(u_{1}, w_{1, j}\right), n \geq 3$.

$$
d\left(u_{1}, w_{1, j}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(w_{1, j}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{1+m n+m-n+1}{2}\right\rceil \geq 5 .
$$

Case 4. Examine the pair $\left(u_{1}, w_{i, j}\right), i \neq 1$.

$$
d\left(u_{1}, w_{i, j}\right)+\left\lceil\frac{f\left(u_{1}\right)+f\left(w_{i, j}\right)}{2}\right\rceil \geq 3+\left\lceil\frac{1+2}{2}\right\rceil \geq 5
$$

Case 5. Examine the pair $\left(u_{i}, w_{i, j}\right), u_{i} \neq u_{1}, n \geq 3$.

$$
d\left(u_{i}, w_{i, j}\right)+\left\lceil\frac{f\left(u_{i}\right)+f\left(w_{i, j}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{n+2+2}{2}\right\rceil \geq 5
$$

Case 6. Check the pair $\left(v_{i}, w_{i, j}\right)$.

$$
d\left(v_{i}, w_{i, j}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(w_{i, j}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{m n+m+1+2}{2}\right\rceil \geq 6
$$

Case 7. Consider the pair $\left(w_{i, j}, w_{r, t}\right)$.

$$
d\left(w_{i, j}, w_{r, t}\right)+\left\lceil\frac{f\left(w_{i, j}\right)+f\left(w_{r, t}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{2+3}{2}\right\rceil \geq 5
$$

Case 8. Verify the pair $\left(v_{i}, v_{j}\right)$.

$$
d\left(v_{i}, v_{j}\right)+\left\lceil\frac{f\left(v_{i}\right)+f\left(v_{j}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{m n+m+1+m n+m+2}{2}\right\rceil \geq 12
$$

Hence $\operatorname{rmn}\left(S\left(K_{m, n}\right)\right)=(m+1)(n+1)-1$.
Theorem $2.2 \operatorname{rmn}\left(K_{m, n} \odot P_{t}\right)=(m+n)(t+1), m \geq 2, n \geq 2, t \geq 2$.
Proof Let $V\left(K_{m, n}\right)=\left\{x_{i}, y_{i}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(K_{m, n}\right)=\left\{x_{i} y_{j}: 1 \leq\right.$ $i \leq m, 1 \leq j \leq n\}$. Let $u_{1}^{i} u_{2}^{i} \cdots u_{t}^{i}$ be the path P_{t}^{i} and $v_{1}^{j} v_{2}^{j} \cdots v_{t}^{j}$ be the path $P_{t}^{* j}$, where $1 \leq i \leq m, 1 \leq j \leq n$. The vertex set and edge set of the corona graph $K_{m, n} \odot P_{t}$ is given below. Let $V\left(K_{m, n} \odot P_{t}\right)=V\left(K_{m, n}\right) \cup\left(\bigcup_{i=1}^{m} V\left(P_{t}^{i}\right)\right) \cup\left(\bigcup_{j=1}^{n} V\left(P_{t}^{* j}\right)\right)$ and $E\left(K_{m, n} \odot P_{t}\right)=E\left(K_{m, n}\right) \cup$ $\left(\bigcup_{i=1}^{m} E\left(P_{t}^{i}\right)\right) \cup\left(\bigcup_{j=1}^{n} E\left(P_{t}^{* j}\right)\right) \cup\left\{x_{i} u_{j}^{i}: 1 \leq i \leq m, 1 \leq j \leq t\right\} \cup\left\{y_{i} v_{j}^{i}: 1 \leq i \leq n, 1 \leq j \leq t\right\}$. Assign the label $1,2, \cdots, m$ to the vertices $u_{1}^{1}, u_{1}^{2}, \cdots, u_{1}^{m}$ respectively. Then we move to the path vertices of $P_{t}^{* j}$. Assign the label $m+1, m+2, \cdots, m+t$ to the vertices $v_{1}^{1}, v_{2}^{1}, \cdots, v_{t}^{1}$ respectively. Then assign $m+t+1, m+t+2, \cdots, m+2 t$ to the vertices $v_{1}^{2}, v_{2}^{2}, \cdots, v_{t}^{2}$ respectively. Proceeding like this until we reach the vertices of $P_{t}^{* n}$. Note that $v_{1}^{n}, v_{2}^{n}, \cdots, v_{t}^{n}$ received the labels $m+(n-1) t+1, m+(n-1) t+2, \cdots, m+n t$. Again we move to the vertices of the path P_{t}^{i}. Assign the label $m+n t+1, m+n t+2, \cdots, m+n t+t-1$ to the vertices $u_{2}^{1}, u_{3}^{1}, \cdots, u_{t}^{1}$ respectively.

Then assign the label $m+n t+t, m+n t+t+1, \cdots, m+n t+2 t-2$ to the vertices $u_{2}^{2}, u_{3}^{2}, \cdots, u_{t}^{2}$ respectively. Proceed in the same way, assign the labels to the remaining vertices. Clearly the vertices $u_{2}^{m}, u_{3}^{m}, \cdots, u_{t}^{m}$ respectively received the labels $n t+m t-t+1, n t+m t-t+2, \cdots, n t+m t$. Finally assign the labels $n t+m t+1, n t+m t+2, \ldots, n t+m t+m$ to the vertices $x_{1}, x_{2}, \cdots, x_{m}$ and $n t+m t+m+1, n t+m t+2, \cdots, n t+m t+m+n$ to the vertices $y_{1}, y_{2}, \ldots, y_{n}$ respectively. We now check the radio mean condition for every pair of vertices.

Case 1. Consider the pair $\left(u_{i}^{j}, u_{s}^{r}\right)$.
Subcase $1.1 j \neq r$.

$$
d\left(u_{i}^{j}, u_{s}^{r}\right)+\left\lceil\frac{f\left(u_{i}^{j}\right)+f\left(u_{s}^{r}\right)}{2}\right\rceil \geq 4+\left\lceil\frac{1+2}{2}\right\rceil \geq 6
$$

Subcase $1.2 j=r$.

$$
d\left(u_{i}^{j}, u_{s}^{j}\right)+\left\lceil\frac{f\left(u_{i}^{j}\right)+f\left(u_{s}^{j}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{1+m+n t+1}{2}\right\rceil \geq 5
$$

Case 2 Check the pair $\left(u_{i}^{j}, x_{r}\right)$.

$$
d\left(u_{i}^{j}, x_{r}\right)+\left\lceil\frac{f\left(u_{i}^{j}\right)+f\left(x_{r}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{1+n t+m t+1}{2}\right\rceil \geq 6
$$

Case 3 Verify the pair $\left(u_{i}^{j}, y_{r}\right)$.

$$
d\left(u_{i}^{j}, y_{r}\right)+\left\lceil\frac{f\left(u_{i}^{j}\right)+f\left(y_{r}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{1+n t+m}{2}\right\rceil \geq 6
$$

Case 4 Examine the pair $\left(u_{i}^{j}, v_{r}^{s}\right)$.

$$
d\left(u_{i}^{j}, v_{r}^{s}\right)+\left\lceil\frac{f\left(u_{i}^{j}\right)+f\left(v_{r}^{s}\right)}{2}\right\rceil \geq 3+\left\lceil\frac{1+m+t+1}{2}\right\rceil \geq 6
$$

Case 5 Consider the pair $\left(v_{i}^{j}, v_{r}^{s}\right)$.

$$
d\left(v_{i}^{j}, v_{r}^{s}\right)+\left\lceil\frac{f\left(v_{i}^{j}\right)+f\left(v_{r}^{s}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{m+t+1+m+t+2}{2}\right\rceil \geq 7
$$

Case 6 Verify the pair $\left(v_{i}^{j}, x_{r}\right)$.

$$
d\left(v_{i}^{j}, x_{r}\right)+\left\lceil\frac{f\left(v_{i}^{j}\right)+f\left(x_{r}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{m+t+1+n t+m t+1}{2}\right\rceil \geq 9
$$

Case 7 Verify the pair $\left(v_{i}^{j}, y_{r}\right)$.

$$
d\left(v_{i}^{j}, y_{r}\right)+\left\lceil\frac{f\left(v_{i}^{j}\right)+f\left(y_{r}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{m+t+1+n t+m t+m+1}{2}\right\rceil \geq 9
$$

Case 8 Consider the pair $\left(x_{i}, x_{j}\right)$.

$$
d\left(x_{i}, x_{j}\right)+\left\lceil\frac{f\left(x_{i}\right)+f\left(x_{j}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{n t+m t+1+n t+m t+2}{2}\right\rceil \geq 12
$$

Case 9 Examine the pair $\left(y_{i}, y_{j}\right)$.

$$
d\left(y_{i}, y_{j}\right)+\left\lceil\frac{f\left(y_{i}\right)+f\left(y_{j}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{n t+m t+m+1+n t+m t+m+2}{2}\right\rceil \geq 14
$$

Case 10 Check the pair $\left(x_{i}, y_{j}\right)$.

$$
d\left(x_{i}, y_{j}\right)+\left\lceil\frac{f\left(x_{i}\right)+f\left(y_{j}\right)}{2}\right\rceil \geq 1+\left\lceil\frac{n t+m t+1+n t+m t+m+1}{2}\right\rceil \geq 11
$$

Hence $r m n\left(K_{m, n} \odot P_{t}\right)=(m+n)(t+1)$.
The one point union of t cycles of length n is called the friendship graph and it is denoted by $C_{n}^{(t)}$.

Theorem 2.3 For any integer $t \geq 2$,

$$
\operatorname{rmn}\left(C_{6}^{(t)}\right)=\left\{\begin{array}{ccc}
5 t+3 & \text { if } & t=2 \\
5 t+2 & \text { if } & t=3 \\
5 t+1 & \text { otherwise } &
\end{array}\right.
$$

Proof Let $u_{1}^{i} u_{2}^{i} u_{3}^{i} u_{4}^{i} u_{4}^{i} u_{5}^{i} u_{1}^{i}$ be the $i^{t h}$ copy of the cycle $C_{6}^{(i)}$. Identify the vertex $u_{1}^{i}(1 \leq$ $i \leq t)$. It is easy to verify that

$$
\operatorname{diam}\left(C_{6}^{(t)}\right)=\left\{\begin{array}{ccc}
3 & \text { if } & t=1 \\
6 & \text { otherwise }
\end{array}\right.
$$

Case $1 t=2$.
Claim $1 \quad \operatorname{rmn}\left(C_{6}^{(2)}\right) \neq 5 t+1$.
Suppose $\operatorname{rmn}\left(C_{6}^{2}\right)=5 t+1$. Let f be the radio mean labeling of $C_{6}^{(2)}$ for which $r m n(f)=$ $5 t+1$. Then the vertices are labeled from the set $\{1,2, \cdots, 5 t+1\}$. Clearly 1 and 2 should be labeled to the vertices with a distance at least 5 . The possible vertices with label 1 and 2 are indicated in Figures 2 and 3.

Figure 2

Figure 3

Clearly 2 and 3 are labeled at a distance at least 4 and 3 and 1 are labeled at a distance at least 5 . There is no such vertex. Hence $\operatorname{rmn}\left(C_{6}^{(2)}\right) \neq 5 t+1$.

Claim $2 \operatorname{rmn}\left(C_{6}^{(2)}\right) \neq 5 t+2$.
Suppose $\operatorname{rmn}\left(C_{6}^{(2)}\right)=5 t+2$ then the vertices are labeled from the set $\{1,2, \cdots, 5 t+2\}$. If 1 is a label of a vertex then 3 and 4 are not labels of any vertices. Therefore the vertices are labeled from the set $\{2,3, \cdots, 5 t+2\}$. Note that 2 and 3 should be labeled to the vertices which are at a distance at least 4 . Therefore 2 can not be a label of the identified vertex u_{1}^{i}. Suppose 2 is a label of the vertex u_{2}^{i}. This implies 3 should be a label of the vertex u_{4}^{2}. Then 4 can not be a label of any of the remaining vertices. If we put the label 2 to the vertex u_{3}^{i}, then 3 should be a label of either of the vertices $u_{3}^{2}, u_{4}^{2}, u_{5}^{2}$. In this case also 4 can not be a label of the remaining vertices. The same fact arises when 2 is a label of the vertex u_{4}^{1}. By symmetry, this is true for the other cases also. Hence we can not label the vertices of $C_{6}^{(2)}$ with the labels from the set $\{2,3, \cdots, 5 t+2\}$. Therefore $\operatorname{rmn}\left(C_{6}^{(2)}\right) \neq 5 t+2$.

Claim $3 \operatorname{rmn}\left(C_{6}^{(2)}\right)=5 t+3$.
The Figure 4 given below shows that the vertex labels are satisfies the radio mean condition.

Figure 4
This implies $\operatorname{rmn}\left(C_{6}^{(2)}\right)=5 t+3$.
Case 2. $t=3$.
Claim $4 \operatorname{rmn}\left(C_{6}^{(3)}\right) \geq 5 t+1$.
We observe that, for satisfying the radio mean condition, the labels 1,2 and 3 are labels of the vertices of different cycles. Without loss of generality assume that 1 is a vertex label of the first copy of $C_{6}, 2$ is a vertex label of the second copy of C_{6} and 3 is a vertex label of the third copy of C_{6}. Note that if 1 is a label of u_{1}^{1} or u_{2}^{1} then 24 can not be a label. If $f\left(u_{3}^{1}\right)=1$ then 2 should be a label of u_{4}^{3}. This implies 4 can not be a label of any of the remaining vertices. Suppose u_{4}^{1} is labeled by 1 . Then 2 is labeled by either one of the vertices u_{3}^{2}, u_{5}^{2} or u_{4}^{2}. It follows that 3 should be a label of either u_{3}^{3}, u_{5}^{3} or u_{5}^{2} according as 2 is labeled. In either case 4 can not be a label of any of the vertices. Thus $\operatorname{rmn}\left(C_{6}^{(3)}\right) \geq 5 t+1$.

Claim $5 \operatorname{rmn}\left(C_{6}^{(3)}\right) \leq 5 t+2$.

The vertex labeling given in figure 5 establish that it satisfies the radio mean condition and hence $\operatorname{rmn}\left(C_{6}^{(3)}\right) \leq 5 t+2$.

Figure 5
Therefore $\operatorname{rmn}\left(C_{6}^{(3)}\right)=5 t+2$.
Case 3. $t \neq 2,3$.
When $t=1$, the vertex labels given in Figure 6 satisfies the requirements.

Figure 6
Hence $\operatorname{rmn}\left(C_{6}^{1}\right)=8$. Assume $t \geq 4$. Here we describe a labeling f as follows.

$$
\begin{array}{lll}
f\left(u_{4}^{i}\right) & =i & \\
\hline f\left(u_{2}^{t-i+1}\right) & =t+i & \\
1 \leq i \leq t \\
f\left(u_{6}^{t-i+1}\right) & =2 t+i & \\
1 \leq i \leq t \\
f\left(u_{3}^{t-i+1}\right) & =3 t+i & \\
1 \leq i \leq t \\
f\left(u_{5}^{t-i+1}\right) & =4 t+i & \\
f\left(u_{1}^{i}\right) & & 1 \leq i \leq t \\
5 t+1 & &
\end{array}
$$

We now check whether the vertex labeling f is a valid labeling.
Case 3.1 Consider the pair $\left(u_{1}^{i}, u_{j}^{r}\right)$.

$$
d\left(u_{1}^{i}, u_{j}^{r}\right)+\left\lceil\frac{f\left(u_{1}^{i}\right)+f\left(u_{j}^{r}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{5 t+1+1}{2}\right\rceil \geq 12
$$

Case 3.2 Consider the pair $\left(u_{4}^{i}, u_{4}^{j}\right)$.

$$
d\left(u_{4}^{i}, u_{4}^{j}\right)+\left\lceil\frac{f\left(u_{4}^{i}\right)+f\left(u_{4}^{j}\right)}{2}\right\rceil \geq 6+\left\lceil\frac{1+2}{2}\right\rceil \geq 8
$$

Case 3.3 Consider the pair $\left(u_{4}^{i}, u_{2}^{i}\right)$.

$$
d\left(u_{4}^{i}, u_{2}^{i}\right)+\left\lceil\frac{f\left(u_{4}^{i}\right)+f\left(u_{2}^{i}\right)}{2}\right\rceil \geq 2+\left\lceil\frac{1+2 t}{2}\right\rceil \geq 7
$$

It is easy to verify that all the other pair of distinct vertices are also satisfies the radio mean condition. Hence $\operatorname{rmn}\left(C_{6}^{(t)}\right)=5 t+1$ where $t \neq 2,3$.

References

[1] Chartrand, Gray and Erwin, David and Zhang, Ping and Harary, Frank, Radio labeling of graphs, Bull. Inst. Combin. Appl., 33(2001), 77-85.
[2] G.Chang, C.Ke, D.Kuo, D.Liu, and R.Yeh, A generalized distance two labeling of graphs, Disc. Math., 220(2000), 57-66.
[3] J.A.Gallian, A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19(2012) \#Ds6.
[4] J.R.Griggs and R.K.Yeh, Labeling graphs with a condition at distance 2, SIAM J. Disc. Math., 5(1992), 586-595.
[5] W.K.Hale, Frequency assignment: theory and applications, Proc. IEEE, 68(1980), 14971514.
[6] F.Harary, Graph Theory, Addision wesley, New Delhi (1969).
[7] D.Liu and R.K.Yeh, On distance two labellings of graphs, Ars Comb., 47(1997), 13-22.
[8] R.Ponraj, S.Sathish Narayanan and R.Kala, Radio mean labeling of graphs, (communicated).
[9] J.Van den Heuvel, R.Leese, and M.Shepherd, Graph labeling and radio channel assignment, J. Graph Theory, 29(1998), 263-283.

[^0]: ${ }^{1}$ Received February 19, 2014, Accepted August 20, 2014.

