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0. In 1999, the second author of this remarks published a book over 30 of Smarandache’s
problems in area of elementary number theory (see [1, 2]). After this, we worked over new 20
problems that we collected in our book [28]. These books contain Smarandache’s problems,
described in [10, 16]. The present paper contains some of the results from [28].

In [16] Florentin Smarandache formulated 105 unsolved problems, while in [10] C.Du-
mitresu and V. Seleacu formulated 140 unsolved problems of his. The second book contains
almost all the problems from [16], but now each problem has unique number and by this reason
in [1, 28] and here the authors use the numeration of the problems from [10].

In the text below the following notations are used.
N - the set of all natural numbers (i.e., the set of all positive integers);
[x] - ”floor function” (or also so called ”bracket function”) - the greatest integer which is not
greater than the real non-negative number x;
ζ - Riemann’s Zeta-function;
Γ - Euler’s Gamma-function;
π - the prime counting function, i.e., π(n) denotes the number of prime p such that p ≤ n;
]x[ - the largest natural number strongly smaller than the real (positive) number x;
dxe - the inferior integer part of x, i.e, the smallest integer greater than or equal to x.

For an arbitrary increasing sequence of natural number C ≡ {cn}∞n=1 we denote by πC(n)
the number of terms of C, which are not greater than n. When n < c1 we put πC(n) = 0.

1. The results in this section are taken from [8].
The second problem from [10] (see also 16-th problem from [16]) is the following:
Smarandache circular sequence:

1︸︷︷︸
1

, 12, 21︸ ︷︷ ︸
2

, 123, 231, 312︸ ︷︷ ︸
3

, 1234, 2341, 3412, 4123︸ ︷︷ ︸
4

,

12345, 23451, 34512, 45123, 51234︸ ︷︷ ︸
5

,
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123456, 234561, 345612, 456123, 561234, 612345︸ ︷︷ ︸
6

, · · ·

Let f(n) be the n-th member of the above sequence. We shall prove the following
Theorem 1.1. For each natural number n:

f(n) = s(s + 1) . . . k12 . . . (s− 1),

where

k ≡ k(n) =]
√

8n + 1− 1
2

[

and
s ≡ s(n) = n− k(k + 1)

2
.

2. The results in this section are taken from [25].
The eight problem from [10] (see also 16-th problem from [16]) is the following:
Smarandache mobile periodicals (I):

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .
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. . . 0 0 0 0 0 0 1 0 0 0 0 0 0 . . .

. . . 0 0 0 0 0 1 1 1 0 0 0 0 0 . . .

. . . 0 0 0 0 1 1 0 1 1 0 0 0 0 . . .

. . . 0 0 0 1 1 0 0 0 1 1 0 0 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

. . . 0 1 1 0 0 0 0 0 0 0 1 1 0 . . .

. . . 0 0 1 1 0 0 0 0 0 1 1 0 0 . . .

· · ·
· · ·

This sequence has the form

1, 111, 11011, 111, 1︸ ︷︷ ︸
3

, 1, 111, 11011, 1100011, 11011, 111, 1︸ ︷︷ ︸
7

,

1, 111, 11011, 1100011, 110000011, 1100011, 11011, 111, 1︸ ︷︷ ︸
9

, . . .

All digits from the above table generate an infinite matrix A. We described the elements
of A.

Let us take a Cartesian coordinate system C with origin in the point containing element
”1” in the topmost (i.e., the first) row of A. We assume that this row belongs to the ordinate
axis of C (see Fig. 1) and that the points to the right of the origin have positive ordinates.

The above digits generate an infinite sequence of squares, located in the half-plane (de-
termined by C) where the abscissa of the points are nonnegative. Their diameters have the
form

”110 . . . 011”.

Exactly one of the diameters of each of considered square lies on the abscissa of C. It can
be seen (and proved, e.g.,by induction) that the s-th square, denoted by Gs(s = 0, 1, 2, . . .)
has a diameter with length 2s + 4 and the same square has a highest vertex with coordinates
〈s2 + 3s, 0〉 in C and a lowest vertex with coordinates 〈s2 + 5s + 4, 0〉 in C.

Let us denote by ak,i an element of A with coordinates 〈k, i〉 in C.
First, we determine the minimal nonnegative s for which the inequality

s2 + 5s + 4 ≥ k

holds. We denote it by s(k). Directly it is seen the following
Lemma 2.1 The number s(k) admits the explicit representation:

s(k) =





0, if 0 ≤ k ≤ 4[√
4k+9−5

2

]
, if k ≥ 5 and 4k + 9 is

a square of an integer[√
4k+9−5

2

]
+ 1, if k ≥ 5 and 4k + 9 is

not a square of an integer

(2.1)
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and the inequality

(s(k))2 + 3s(k) ≤ k ≤ (s(k))2 + 5s(k) + 4 (2.2)

hold.
Second, we introduce the integer δ(k) and ε(k) by

δ(k) ≡ k − (s(k))2 − 3s(k), (2.3)

ε(k) ≡ (s(k))2 + 5s(k) + 4− k. (2.4)

From (2.2) we have δ(k) ≥ 0 and ε(k) ≥ 0. Let Pk be the infinite strip orthogonal to the
abscissa of C and lying between the straight lines passing through those vertices of the square
Gs(k) lying on the abscissa of C. Then δ(k) and ε(k) characterize the location of point with
coordinate 〈k, i〉 in C in strip Pk. Namely, the following assertion is true.
Proposition 2.1. The elements ak,i of the infinite matrix A are described as follows:
if k ≤ (s(k))2 + 4s(k) + 2, then

ak,i =





0, if δ(k) < |i| or δ(k) ≥ |i|+ 2,

1, if |i| ≤ δ(k) ≤ |i|+ 1

if k ≥ (s(k))2 + 4s(k) + 2, then

ak,i =





0, if ε(k) < |i| or ε(k) ≥ |i|+ 2,

1, if |i| ≤ ε(k) ≤ |i|+ 1

where here and below s(k) is given by (2.1), δ(k) and ε(k) are given by (2.3) and (2.4), respec-
tively.

Below, we propose another description of elements of A, which can be proved (e.g., by
induction) using the same considerations.

ak,i =





1, if 〈k, i〉 ∈
{〈(s(k))2 + 3s(k), 0〉, 〈(s(k))2 + 5s(k) + 4, 0〉}
⋃{〈(s(k))2 + 3s(k) + j,−j〉,
〈(s(k))2 + 3s(k) + j,−j + 1〉,
〈(s(k))2 + 3s(k) + j, j − 1〉,
〈(s(k))2 + 3s(k) + j, j〉 : 1 ≤ j ≤ s(k) + 2}
〈(s(k))2 + 5s(k) + 4− j,−j〉,
〈(s(k))2 + 5s(k) + 4− j,−j + 1〉,
〈(s(k))2 + 5s(k) + 4− j, j − 1〉,
〈(s(k))2 + 5s(k) + 4− j, j〉 :

1 ≤ j ≤ s(k) + 1}
0, otherwise
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Similar representations are possible for the ninth, tenth and eleventh problems. In [28]
we introduce eight modifications of these problems, giving formulae for their (k, i)-th members
ak,i.

Essentially more interesting is Problem 103 from [10]:
Smarandache numerical carpet:
has the general form

·
·
·
1

1 a 1

1 a b a 1

1 a b c b a 1

1 a b c d c b a 1

1 a b c d e d c b a 1

1 a b c d e f e d c b a 1

1 a b c d e f g f e d c b a 1

1 a b c d e f e d c b a 1

1 a b c d e d c b a 1

1 a b c d c b a 1

1 a b c b a 1

1 a b a 1

1 a 1

1

·
·
·

On the border of level 0, the elements are equal to ”1”;
they form a rhomb.

Next, on the border of level 1, the elements are equal to ”a”;
where ”a” is the sum of all elements of the previous border;
the ”a”s form a rhomb too inside the previous one.

Next again, on the border of level 2, the elements are equal to ”b”;
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where ”b” is the sum of all elements of the previous border;
the ”b”s form a rhomb too inside the previous one.

And so on . . .
The above square, that Smarandache named ”rhomb”, corresponds to the square from our

construction for the case of s = 6, if we begin to count from s = 1, instead of s = 0. In [10] a
particular solution of the Problem 103 is given, but there a complete solution is not introduced.
We will give a solution below firstly for the case of Problem 103 and then for a more general
case.

It can be easily seen that the number of the elements of the s-th square side is s + 2 and
therefore the number of the elements from the contour of this square is just equal to 4s + 4.

The s-th square can be represented as a set of sub-squares, each one included in the next.
Let us number them inwards, so that the outmost (boundary) square is the first one. As it is
written in Problem 103, all of its elements are equal to 1. Hence, the value of the elements of
the subsequent (second) square will be (using also the notation from problem 103):

a1 = a = (s + 2) + (s + 1) + (s + 1) + s = 4(s + 1);

the value of the elements of the third square will be

a2 = b = a(4(s− 1) + 4 + 1) = 4(s + 1)(4s + 1);

the value of the elements of the fourth square will be

a3 = c = b(4(s− 2) + 4 + 1) = 4(s + 1)(4s + 1)(4s− 3);

the value of the elements of the fifth square will be

a4 = d = c(4(s− 3) + 4 + 1) = 4(s + 1)(4s + 1)(4s− 3)(4s− 7);

etc.,where the square, corresponding to the initial square (rhomb), from Problem 103 has the
form

1

· · ·

1 a1 · · · a1 1

1 a1 a2 · · · a2 a1 1

1 a1 a2 a3 · · · a3 a2 a1 1

1 a1 a2 · · · a2 a1 1

1 a1 · · · a1 1

· · ·

1
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It can be proved by induction that the elements of this square that stay on t-th place are
given by the formula

at = 4(s + 1)
t−2∏

i=0

(4s + 1− 4i).

If we would like to generalize the above problem, we can construct, e.g., the following
extension:

x

· · ·
x a1 · · · a1 x

x a1 a2 · · · a2 a1 x

x a1 a2 a3 · · · a3 a2 a1 x

x a1 a2 · · · a2 a1 x

x a1 · · · a1 x

· · ·
x

where x is given number. Then we obtain

a1 = 4(s + 1)x

a2 = 4(s + 1)(4s + 1)x

a3 = 4(s + 1)(4s + 1)(4s− 3)x

a4 = 4(s + 1)(4s + 1)(4s− 3)(4s− 7)x

etc. and for t ≥ 1

at = 4(s + 1)
t−2∏

i=0

(4s + 1− 4i)x.

where it assumed that
−1∏

i=0

· = 1.

3. The results in this section are taken from [21].
The 15-th Smarandache’s problem from [10] is the following: “Smarandache’s simple num-

bers”:
2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 25, 26, 27,

29, 31, 33, . . .

A number n is called “Smarandache’s simple number” if the product of its proper divisors is
less than or equal to n. Generally speaking, n has the form n = p, or n = p2, or n = p3, or
n = pq, where p and q are distinct primes”.
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Let us denote: by S - the sequence of all Smarandache’s simple numbers and by sn - the
n-th term of S; by P - the sequence of all primes and by pn - the n-th term of P; by P2 - the
sequence {p2

n}∞n=1; by P3 - the sequence {p3
n}∞n=1; by PQ - the sequence {p.q}p,q ∈ P, where

p < q.
In the present section we find πS(n) in an explicit form and using this, we find the n-th

term of S in explicit form, too.
First, we note that instead of πP (n) we use the notation π(n).
Hence

πP2(n) = π(
√

n), πP3(n) = π( 3
√

n),

Thus, using the definition of S, we get

πS(n) = π(n) + π(
√

n) + π( 3
√

n) + πPQ(n) (4.1)

Our first aim is to express πS(n) in an explicit form. For π(n) some explicit formulae are
proposed in [18]. Other explicit formulae for π(n) are given in [14]. One of them is known as
Minác̈’s formula. It is given below

π(n) =
n∑

k=2

[
(k − 1)! + 1

k
− [

(k − 1)!
k

]]. (4.2)

Therefore, the problem of finding of explicit formulae for functions π(n), π(
√

n), π( 3
√

n) is solved
successfully. It remains only to express πPQ(n) in an explicit form.

Let k ∈ {1, 2, . . . , π(
√

n)} be fixed. We consider all numbers of the kind pkq, which p ∈ P,
q > pk for which pk.q ≤ n. The quality of these numbers is π( n

pk
)−π(pk), or which is the same

π(
n

pk
)− k. (4.3)

When k = 1, 2, . . . , π(
√

n), the number pk.q, as defined above, describe all numbers of the
kind p.q, with p, q ∈ P, p < q, p.q < n. But the quantity of the last numbers is equal to πPQ(n).
Hence

πPQ(n) =
π(
√

n)∑

k=1

(π(
n

pk
)− k), (4.4)

because of (4.3). The equality (4.4), after a simple computation yields the formula

πPQ(n) =
π(
√

n)∑

k=1

π(
n

pk
)− π(

√
n)(π(

√
n) + 1)

2
. (4.5)

In [20] the identity

π(b)∑

k=1

π(
n

pk
) = π(

n

b
).π(b) +

π( n
2 )−π( n

b )∑

k=1

π(
n

pπ( n
b )+k

) (4.6)

is proved, under the condition b > 2 (b is a real number). When π(n
2 ) = π(n

b ), the right hand-
side of (4.6) is reduced to π(n

b ).π(b). In the case b =
√

n and n ≥ 4 equality (4.6) yields

π(
√

n)∑

k=1

π(
n

pk
) = (π(

√
n))2 +

π( n
2 )−π(

√
n)∑

k=1

π(
n

pπ(
√

n)+k

). (4.7)
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If we compare (4.5) with (4.7) we obtain for n ≥ 4

πPQ(n) =
π(
√

n)(π(
√

n)− 1)
2

+
π( n

2 )−π(
√

n)∑

k=1

π(
n

pπ(
√

n)+k

). (4.8)

Thus, we have two different explicit representations for πPQ(n). These are formulae (4.5)
and (4.8). We note that the right hand side of (4.8) reduces to π(

√
n)(π(

√
n)−1)

2 , when π(n
2 ) =

π(
√

n).
Finally, we observe that (4.1) gives an explicit representation for πS(n), since we may use

formula (4.2) for π(n) (or other explicit formulae for π(n)) and (4.5), or (4.8) for πPQ(n).

The following assertion solves the problem for finding of the explicit representation of sn.
Theorem 4.1. The n-th term sn of S admits the following three different explicit representa-
tions:

sn =
θ(n)∑

k=0

[
1

1 + [πS(n)
n ]

]; (4.9)

sn = −2
θ(n)∑

k=0

ζ(−2[
πS(n)

n
]); (4.10)

sn =
θ(n)∑

k=0

1

Γ(1− [πS(n)
n ])

, (4.11)

where

θ(n) ≡ [
n2 + 3n + 4

4
], n = 1, 2, . . .

We note that (4.9)-(4.11) are representations using, respectively, “floor function”, Rie-
mann’s Zeta-function and Euler’s Gamma-function. Also, we note that in (4.9)-(4.11) πS(k) is
given by (4.1), π(k) is given by (4.2) (or by others formulae like (4.2)) and πPQ(n) is given by
(4.5), or by (4.8). Therefore, formulae (4.9)-(4.11) are explicit.

4. The results in this section are taken from [6].
The 17-th problem from [10] (see also the 22-nd problem from [16]) is the following:
Smarandache’s digital products:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9︸ ︷︷ ︸, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9︸ ︷︷ ︸,

0, 2, 4, 6, 8, 10, 12, 14, 16, 18︸ ︷︷ ︸, 0, 3, 6, 9, 12, 15, 18, 21, 24, 27︸ ︷︷ ︸,
0, 4, 8, 12, 16, 20, 24, 28, 32, 36︸ ︷︷ ︸, 0, 5, 10, 15, 20, 25 . . .︸ ︷︷ ︸

(dp(n)is the product of digits.)
Let the fixed natural number n have the form n = a1a2 . . . ak, where a1, a2, . . . , ak ∈

{0, 1, . . . , 9} and a1 ≥ 1. Therefore,

n =
k∑

i=1

ai10i−1.
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Hence, k = [log10 n] + 1 and

a1(n) ≡ a1 = [
n

10k−1
],

a2(n) ≡ a2 = [
n− a110k−1

10k−2
],

a3(n) ≡ a3 = [
n− a110k−1 − a210k−2

10k−3
],

. . .

a[log10(n)](n) ≡ ak−1 = [
n− a110k−1 − . . .− ak−2102

10
],

a[log10(n)]+1(n) ≡ ak = n− a110k−1 − . . .− ak−110.

Obviously, k, a1, a2, . . . , ak are functions only of n. Therefore,

dp(n) =
[log10(n)]+1∏

i=1

ai(n).

5. The results in this section are taken from [4, 27].
The 20-th problem from [10] is the following (see also Problem 25 from [16]):

Smarandache devisor products:

1, 2, 3, 8, 5, 36, 7, 64, 27, 100, 11, 1728, 13, 196, 225, 1024, 17, 5832, 19,

8000, 441, 484, 23, 331776, 125, 676, 729, 21952, 29, 810000, 31, 32768,

1089, 1156, 1225, 10077696, 37, 1444, 1521, 2560000, 41, . . .

(Pd(n) is the product of all positive divisors of n.)
The 21-st problem from [10] is the following (see also Problem 26 from [16]):

Smarandache proper devisor products:

1, 1, 1, 2, 1, 6, 1, 8, 3, 10, 1, 144, 1, 14, 15, 64, 1, 324, 1, 400, 21, 22, 1,

13824, 5, 26, 27, 784, 1, 27000, 1, 1024, 33, 34, 35, 279936, 1, 38, 39,

64000, 1, . . .

(pd(n) is the product of all positive divisors of n but n.)
Let us denote by τ(n) the number of all devisors of n. It is well-known (see, e.g., [13]) that

Pd(n) =
√

nτ(n) (6.1)

and of course, we have

pd(n) =
Pd(n)

n
. (6.2)

But (6.1) is not a good formula for Pd(n), because it depends on function τ and to express
τ(n) we need the prime number factorization of n.
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Below, we give other representations of Pd(n) and pd(n), which do not use the prime
number factorization of n.
Proposition 6.1. For n ≥ 1 representation

Pd(n) =
n∏

k=1

k[ n
k ]−[ n−1

k ] (6.3)

holds.
Here and further the symbols ∏

k/n

· and
∑

k/n

·

mean the product and the sum, respectively, of all divisors of n.
Let

θ(n, k) ≡ [
n

k
]− [

n− 1
k

]

=





1, if k is a divisor of n

0, otherwise

The following assertion is obtained as a corollary of (6.2) and (6.3).
Proposition 6.2. For n ≥ 1 representation

pd(n) =
n−1∏

k=1

k[ n
k ]−[ n−1

k ]

holds.
For n = 1 we have

pd(1) = 1.

Proposition 6.3. For n ≥ 1 representation

Pd(n) =
n∏

k=1

[n
k ]!

[n−1
k ]!

(6.5)

holds, where here and further we assume that 0! = 1.
Now (6.2) and (6.5) yield.

Proposition 6.4. For n ≥ 2 representation

pd(n) =
n∏

k=2

[n
k ]!

[n−1
k ]!

holds.
Another type of representation of pd(n) is the following

Proposition 6.5. For n ≥ 3 representation

pd(n) =
n−2∏

k=1

(k!)θ(n,k)−θ(n,k+1),
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where θ(n, k) is given by (6.4).
Further, we need the following

Theorem 6.1. [22] For n ≥ 2 the identity

n∏

k=2

[
n

k
]! =

n−1∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.6)

holds.
Now, we shall deduce some formulae for

n∏

k=1

Pd(k) and
n∏

k=1

pd(k).

Proposition 6.6. Let f be an arbitrary arithmetic function. then the identity

n∏

k=1

(Pd(k))f(k) =
n∏

k=1

kρ(n,k) (6.7)

holds, where

ρ(n, k) =
[ n

k ]∑
s=1

f(ks).

Now we need the following
Lemma 6.1. For n ≥ 1 the identity

n∏

k=1

[
n

k
]! =

n∏

k=1

k[ n
k ]

holds.
Proposition 6.7. For n ≥ 1 the identity

n∏

k=1

Pd(k) =
n∏

k=1

[
n

k
]! (6.8)

holds. As a corollary from (6.2) and (6.8), we also obtain
Proposition 6.8. For n ≥ 2 the identity

n∏

k=1

pd(k) =
n∏

k=2

[
n

k
]! (6.9)

holds.
From (6.6) and (6.9), we obtain

Proposition 6.9. For n ≥ 2 the identity

n∏

k=1

pd(k) =
n−1∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.10)

holds.
As a corollary from (6.10) we obtain, because of (6.2)
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Proposition 6.10. For n ≥ 1 the identity

n∏

k=1

Pd(k) =
n∏

k=1

(k!)[
n
k ]−[ n

k+1 ] (6.10)

holds.
Now, we return to (6.7) and suppose that

f(k) > 0 (k = 1, 2, . . .).

Then after some simple computations we obtain
Proposition 6.11. For n ≥ 1 representation

Pd(k) =
n∏

k=1

kσ(n,k) (6.11)

holds, where

σ(n, k) =
∑[ n

k ]
s=1 f(ks)−∑[ n−1

k ]
s=1 f(ks)

f(n)
.

For n ≥ 2 representation

pd(k) =
n−1∏

k=1

kσ(n,k) (6.12)

holds.
Note that although f is an arbitrary arithmetic function, the situation with (6.11) and

(6.12) is like the case f(x) ≡ 1, because

∑[ n
k ]

s=1 f(ks)−∑[ n−1
k ]

s=1 f(ks)
f(n)

=





1, if k is a divisor of n

0, otherwise

Finally, we use (6.7) to obtain some new inequalities, involving Pd(k) and pd(k) for k =
1, 2, . . . , n.

Putting

F (n) =
n∑

k=1

f(k)

we rewrite (6.7) as
n∏

k=1

(Pd(k))
f(k)
F (n) =

n∏

k=1

k(
∑[ n

k
]

s=1 f(ks))/(F (n)). (6.13)

Then we use the well-known Jensen’s inequality

n∑

k=1

αkxk ≥
n∏

k=1

xαk

k ,

that is valid for arbitrary positive numbers xk, αk(k = 1, 2, . . . , n) such that

n∑

k=1

αk = 1,
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for the case:
xk = Pd(k),

αk =
f(k)
F (n)

.

Thus we obtain from (6.13) inequality

n∑

k=1

f(k).Pd(k) ≥ (
n∑

k=1

f(k)).
n∏

k=1

k(
∑[ n

k
]

s=1 f(ks))/(
∑n

s=1 f(s)). (6.14)

If f(x) ≡ 1, then (6.14) yields the inequality

1
n

n∑

k=1

Pd(k) ≥
n∏

k=1

( n
√

k)[
n
k ].

If we put in (6.14)

f(k) =
g(k)
k

for k = 1, 2, . . . , n, then we obtain

n∑

k=1

g(k).pd(k) ≥ (
n∑

k=1

g(k)
k

).
n∏

k=1

( k
√

k)(
∑[ n

k
]

s=1
g(ks)

s )/(
∑n

s=1
g(s)

s ). (6.15)

because of (6.2).
Let g(x) ≡ 1. Then (6.15) yields the very interesting inequality

(
1

Hn

n∑

k=1

pd(k))Hn ≥
n∏

k=1

( k
√

k)H[ n
k

] ,

where Hm denotes the m-th partial sum of the harmonic series, i.e.,

Hm =
1
1

+
1
2

+ . . . +
1
m

.

All of the above inequalities become equalities if and only if n = 1.

6. The results in this section are taken from [29].
The 25-th and the 26-th problems from [10] (see also the 30-th and the 31-st problems

from [16]) are the following:

Smarandache’s cube free sieve:

2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26,

28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50,

51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, . . .

Definition: from the set of natural numbers (except 0 and 1):
- take off all multiples of 23 (i.e. 8,16,24,32,40,. . . )
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- take off all multiples of 33

- take off all multiples of 53

. . . and so on (take off all multiples of all cubic primes).

Smarandache’s m-power free sieve:
Definition: from the set of natural numbers (except 0 and 1) take off all multiples of 2m,
afterwards all multiples of 3m . . . and so on(take off all multiples of all m-power primes, m ≥ 2).
(One obtains all m-power free numbers.)

Here we introduce the solution for both of these problems.
For every natural number m we denote the increasing sequence a

(m)
1 , a

(m)
2 , a

(m)
3 , . . . of all

m-power free numbers by m. Then we have

∅ ≡ 1 ⊂ 2 ⊂ . . . ⊂ (m− 1) ⊂ m ⊂ (m + 1) ⊂ . . .

Also, for m ≥ 2 we have

m =
m−1⋃

k=1

(2)k

where
(2)k = {x|(∃x1, . . . , xk ∈ 2)(x = x1.x2 . . . xk)}

for each natural number k ≥ 1.
Let us consider m as an infinite sequence for m = 2, 3, . . .. Then 2 is a subsequence of m.

Therefore, the inequality
a(m)

n ≤ a(2)
n

holds for n = 1, 2, 3, . . . .
Let p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . be the sequence of all primes. It is obvious that this

sequence is a subsequence of 2. Hence the inequality

a(2)
n ≤ pn

holds for n = 1, 2, 3, . . .. But it is well-known that

pn ≤ θ(n) ≡ [
n2 + 3n + 4

4
]

(see [12]). Therefore, for any m ≥ 2 and n = 1, 2, 3, . . . we have

a(m)
n ≤ a(2)

n ≤ θ(n).

Hence, there exits λ(n) such that λ(n) ≤ θ(n) and inequality:

a(m)
n ≤ a(2)

n ≤ λ(n).

holds. In particular, it is possible to use θ(n) instead of λ(n).
In [28] we find the following explicit formulae for a

(m)
n when m ≥ 2 is fixed:

a(m)
n =

λ(n)∑

k=0

[
1

1 + [πm(k)
n ]

]; (7.1)
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a(m)
n = −2

λ(n)∑

k=0

ζ(−2[
πm(k)

n
]); (7.2)

a(m)
n =

λ(n)∑

k=0

1

Γ(1− [πm(k)
n ])

. (7.3)

Thus, the 26-th Smarandache’s problem is solved and for m = 3 the 25-th Smarandache’s
problem is solved, too.

The following problems are interesting.
Problem 7.1. Does there exist a constant C > 1, such that λ(n) ≤ C.n?
Problem 7.2. Is C ≤ 2?

Below we give the main explicit representation of function πm(n), that takes part in for-
mulae (7.1) - (7.3). In this way we find the main explicit representation for a

(m)
n , that is based

on formulae (7.1) - (7.3), too.
Theorem 7.1. Function πm(n) allows representation

πm(n) = n− 1 +
∑

s∈2
⋂{2,3,...,[ m

√
n]}

(−1)ω(s).[
n

sm
],

where ω(s) denotes the number of all different prime divisors of s.

7. The results in this section are taken from [24].
The 28-th problem from [10] (see also the 94-th problem from [16]) is the following:

Smarandache odd sieve:

7, 13, 19, 23, 25, 31, 33, 37, 43, 47, 49, 53, 55, 61, 63, 67, 73, 75, 83,

85, 91, 93, 97, . . .

(All odd numbers that are not equal to the difference of two primes).
A sieve is to get this sequence:
- subtract 2 from all prime numbers and obtain a temporary sequence;
- choose all odd numbers that do not belong to the temporary one.

We find an explicit form of the n-th term of the above sequence, that will be denoted by
C = {Cn}∞n=1 below.

Firstly, we shall note that the above definition of C can be interpreted to the following
equivalent form as follows, having in mind that every odd number is a difference of two prime
numbers if and only if it is a difference of a prime number and 2:

Smarandache’s odd sieve contains exactly these odd numbers that cannot be represented as
a difference of a prime and 2.

We rewrite the last definition to the following equivalent form, too:
Smarandache’s odd sieve contains exactly these odd numbers that are represented as a

difference of a composite odd number and 2.
We find an explicit form of the n-th term of the above sequence, using the third definition

of it. Initially, we use the following two assertions.
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Lemma 8.1. For every natural number n ≥ 1, Cn+1 is exactly one of the numbers: u ≡
Cn + 2, v ≡ Cn + 4 or w ≡ Cn + 6.
Corollary 8.1. For every natural number n ≥ 1:

Cn+1 ≤ Cn + 6.

Corollary 8.2. For every natural number n ≥ 1:

Cn ≤ 6n + 1. (8.1)

Now, we return to the Smarandache’s problem.
In [18] the following three universal explicit formulae are introduced, using numbers πC(k) (k =

0, 1, 2, . . .), that can be used to represent numbers Cn:

Cn =
∞∑

k=0

[
1

1 + [πC(k)
n ]

],

Cn = −2
∞∑

k=0

ζ(−2[
πC(k)

n
]),

Cn =
∞∑

k=0

1

Γ(1− [πC(k)
n ])

.

For the present case, having in mind (8.1), we substitute symbol ∞ with 6n + 1 in sum∑∞
k=0 for Cn and we obtain the following sums:

Cn =
6n+1∑

k=0

[
1

1 + [πC(k)
n ]

], (8.2)

Cn = −2
6n+1∑

k=0

ζ(−2[
πC(k)

n
]), (8.3)

Cn =
6n+1∑

k=0

1

Γ(1− [πC(k)
n ])

. (8.4)

We must explain why πC(n) (n = 1, 2, 3, . . .) is represented in an explicit form. It can be
directly seen that the number of the odd numbers, that are not bigger than n, is exactly equal
to

α(n) = n− [
n

2
], (8.5)

because the number of the even numbers that are not greater than n is exactly equal to [n
2 ].

Let us denote by β(n) the number of all odd numbers not bigger than n, that can be
represented as a difference of two primes. According to the second form of the above given
definition, β(n) coincides with the number of all odd numbers m such that m ≤ n and m has
the form m = p− 2, where p is an odd prime number. Therefore, we must study all odd prime
numbers, because of the inequality m ≤ n. The number of these prime numbers is exactly
π(n + 2)− 1. therefore,

β(n) = π(n + 2)− 1. (8.6)
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Omitting from the number of all odd numbers that are not greater than n the quantity of
those numbers that are a difference of two primes, we find exactly the quantity of these odd
numbers that are not greater than n and that are not a difference of two prime numbers, i.e.,
πC(n). Therefore, the equality

πC(n) = α(n)− β(n)

holds and from (8.5) and (8.6) we obtain:

πC(n) = (n− [
n

2
])− (π(n + 2)− 1) = n + 1− [

n

2
]− π(n + 2).

But π(n+2) can be represented in an explicit form, e.g., by Minác̈’s formula and therefore,
we obtain that the explicit form of πC(N) is

πC(N) = N + 1− [
N

2
]−

N+2∑

k=2

[
(k − 1)! + 1

k
− [

(k − 1)!
k

]], (8.7)

where N ≥ 1 is a fixed natural number.
It is possible to put [N+3

2 ] instead of N + 1− [N
2 ] into (8.7).

Now, using each of the formulae (8.2) - (8.4), we obtain Cn in an explicit form, using (8.7).
It can be checked directly that

C1 = 7, C2 = 13, C3 = 19, C4 = 23, C5 = 25, C6 = 31,

C7 = 33, . . .

and
πC(0) = πC(1) = πC(2) = πC(3) = πC(4) = πC(5) = πC(6) = 0.

Therefore from (8.2) - (8.4) we have the following explicit formulae for Cn

Cn = 7 +
6n+1∑

k=7

[
1

1 + [πC(k)
n ]

],

Cn = 7 +−2
6n+1∑

k=7

ζ(−2.[
πC(k)

n
]),

Cn = 7 +
6n+1∑

k=7

1

Γ(1− [πC(k)
n ])

,

where πC(k) is given by (8.7).

8. The results in this section are taken from [7, 26].
The 46-th Smarandache’s problem from [10] is the following:

Smarandache’s prime additive complements;

1, 0, 0, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 3, 2, 1, 0, 1, 0, 5, 4, 3, 2, 1,

0, 1, 0, 5, 4, 3, 2, 1, 0, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0 . . .
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(For each n to find the smallest k such that n + k is prime.)

Remarks: Smarandache asked if it is possible to get as large as we want but finite decreasing
k, k − 1, k − 2, . . . , 2, 1, 0 (odd k) sequence included in the previous sequence - i.e., for any
even integer are there two primes those difference is equal to it? He conjectured the answer is
negative.

Obviously, the members of the above sequence are differences between first prime number
that is greater or equal to the current natural number n and the same n. It is well-known that
the number of primes smaller than or equal to n is π(n). Therefore, the prime number smaller
than or equal to n is pπ(n). Hence, the prime number that is greater than or equal to n is the
next prime number, i.e., pπ(n)+1. Finally, the n-th member of the above sequence will be equal
to 




pπ(n)+1 − n, if n is not a prime number

0, otherwise

We shall note that in [3] the following new formula pn for every natural number n is given:

pn =
θ(n)∑

i=0

sg(n− π(i)),

where θ(n) = [n2+3n+4
4 ] and

sg(x) =





0, if x ≤ 0,

1, if x > 0.

Let us denote by an the n-th term of the above sequence. Next, we propose a way for
obtaining an explicit formula for an (n = 1, 2, 3, . . .). Extending the below results, we give an
answer to the Smarandache’s question from his own remark in [10]. At the end, we propose
a generalization of Problem 46 and present a proof of an assertion related to Smarandache’s
conjecture for Problem 46.
Proposition 9.1. an admits the representation

an = pπ(n−1)+1 − n, (9.1)

where n = 1, 2, 3, . . ., π is the prime counting function and pk is the k-th term of prime number
sequence.

It is clear that (9.1) gives an explicit representation for an since several explicit formulae
for π(k) and pk are known (see, e.g. [14]).

Let us define
n(m) = m! + 2.

Then all numbers

n(m), n(m) + 1, n(m) + 2, . . . , n(m) + m− 2

are composite. Hence
an(m) ≥ m− 1.
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This proves the Smarandache’s conjecture, since m may grow up to infinity. Therefore
{an}∞n=1 is unbounded sequence.

Now, we shall generalize Problem 46.
Let

c ≡ c1, c2, c3, . . .

be a strictly increasing sequence of positive integers.
Definition. Sequence

b ≡ b1, b2, b3, . . .

is called c-additive complement of c if and only if bn is the smallest non-negative integer, such
that n + bn is a term of c.

The following assertion generalizes Proposition 1.
Proposition 9.2. bn admits the representation

bn = cπc(n−1)+1 − n,

where n = 1, 2, 3, . . ., πc(n) is the counting function of c, i.e., πc(n) equals to the quantity of
cm, m = 1, 2, 3, . . ., such that cm ≤ n.

Let
dn ≡ cn+1 − cn (n = 1, 2, 3, . . .).

The following assertion is related to the Smarandache’s conjecture from Problem 46.
Proposition 9.3. If {dn}∞n=1 is unbounded sequence, then {bn}∞n=1 is unbounded sequence,
too.
Open Problem. Formulate necessary conditions for the sequence {bn}∞n=1 to be unbounded.

9. The results in this section are taken from [23].
Solving of the Diophantine equation

2x2 − 3y2 = 5 (10.1)

i.e.,
2x2 − 3y2 − 5 = 0

was put as an open Problem 78 by F. Smarandache in [16]. In [28] this problem is solved
completely. Also, we consider here the Diophantine equation

l2 − 6m2 = −5,

i.e.,
l2 − 6m2 + 5 = 0

and the Pellian equation
u2 − 6v2 = 1,

i.e.,
u2 − 6v2 − 1 = 0.
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In [28] we introduce a generalization of the Smarandache’s problem 78 from [16].
If we consider the Diophantine equation

2x2 − 3y2 = p, (10.2)

where p 6= 2 is a prime number, then using [13], Chapter VII, exercise 2 and the same method
as in the case of (10.1), we obtain the following result.
Theorem 10.1. (1) The necessary and sufficient condition for solvability of (10.2) is:

p ≡ 5(mod24) or p ≡ 23(mod24) (10.3)

(2) if (10.3) is valid, then there exist exactly one solution < x, y >∈ N 2 of (10.2) such that
the inequalities

x <

√
3
2
.p

and

y <

√
3
2
.p

holds. Every other solution < x, y >∈ N 2 of (10.2) has the form:

x = l + 3m

y = l + 2m,

where < l, m >∈ N 2 is a solution of the Diophantine equation

l2 − 6m2 = −p.

The problem how to solve the Diophantine equation, a special case of which is the above
one, is considered in Theorem 110 from [13].

10. The results in this section are taken from [9]. In [15, 17] F. Smarandache formulates
the following four problems:

Problem 1. Let p be an integer ≥ 3. Then:

p is a prime if and only if

(p− 3)! is congruent to
p− 1

2
(modp).

Problem 2. Let p be an integer ≥ 4. Then:

p is a prime if and only if

(p− 4)! is congruent to (−1)d
p
3 e+1dp + 1

6
e(modp). (11.1)

Problem 3. Let p be an integer ≥ 5. Then:

p is a prime if and only if
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(p− 5)! is congruent to rh +
r2 − 1

24
(modp), (11.2)

with h = d p
24e and r = p− 24.

Problem 4. Let p = (k − 1)!h + 1 be a positive integer k > 5, h natural number. Then:

p is a prime if and only if

(p− k)! is congruent to (−1)th(modp). (11.3)

with t = h + d p
he+ 1.

Everywhere above dxe means the inferior integer part of x, i.e., the smallest integer greater
than or equal to x.

In [28] we discussed these four problems.
Problem 1. Admits the following representation:

Let p ≥ 3 be an odd number. Then:

p is a prime if and only if (p− 3)! ≡ p− 1
2

(modp).

Different than Smarandache’s proof of this assertion is given in [28].
Problem 2. Is false, because, for example, if p = 7, then (11.1) obtains the form

6 ≡ (−1)42(mod7),

where
6 = (7− 4)!

and
(−1)42 = (−1)d

7
3 e+1d8

6
e,

i.e.,
6 ≡ 2(mod7),

which is impossible.
Problem 3. Can be modified, having in mind that from r = p− 24h it follows:

rh +
r2 − 1

24
= (p− 24h).h +

p2 − 48ph + 242h2 − 1
24

= ph− 24h2 +
p2 − 1

24
− 2ph + 24h2 =

p2 − 1
24

− ph,

i.e., (11.2) has the form

p is a prime if and only if

(p− 5)! is congruent to
p2 − 1

24
(modp),
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Different than the Smarandache’s proof of this assertion is given in [28].
Problem 4. Also can be simplified, because

t = h + d p

h
e+ 1

= h + d (k − 1)!h + 1
h

e+ 1

= h + (k − 1)! + 1 + 1 = h + (k − 1)! + 2,

i.e.,
(−1)t = (−1)h,

because for k > 2: (k − 1)! + 2 is an even number. Therefore, (11.3) obtains the form

p is a prime if and only if

(p− k)! is congruent to (−1)hh(modp),

Let us assume that (11.4) is valid. We use again the congruences

(p− 1) ≡ −1(modp)

(p− 2) ≡ −2(modp)

. . .

(p− (k − 1)) ≡ −(k − 1)(modp)

and obtain the next form of (11.4)

p is a prime if and only if

(p− 1)! ≡ (−1)h.(−1)k−1.(k − 1)!.h(modp)

or
p is a prime if and only if

(p− 1)! ≡ (−1)h+k−1.(p− 1)(modp).

But the last congruence is not valid, because, e.g., for k = 5, h = 3, p = 73 = (5− 1)! + 11

holds
72! ≡ (−1)9.72(mod73), 2

i.e.,
72! ≡ 1(mod73),

1In [28] there is a misprint: 3! instead of 3.
2In [28] there is a misprint: (−1)9 instead of (−1)7.
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while from Wilson’s Theorem follows that

72! ≡ −1(mod73).

11. The results in this section are taken from [5].
In [17] F. Smarandache discussed the following particular cases of the well-known charac-

teristic functions (see, e.g., [11, 30]).
12.1) Prime function: P : N → {0, 1}, with

P (n) =





0, if n is a prime

1, otherwise

More generally: Pk : Nk → {0, 1}, where k ≥ 2 is an integer, and

Pk(n1, n2, . . . , nk) =





0, if n1, n2, . . . , nk are all prime numbers

1, otherwise

12.2) Coprime function is defined similarly: Ck : Nk → {0, 1}, where k ≥ 2 is an integer,
and

Ck(n1, n2, . . . , nk) =





0, if n1, n2, . . . , nk are coprime numbers

1, otherwise

In [28] we formulate and prove four assertions related to these functions.
Proposition 12.1. For each k, n1, n2, . . . , nk natural numbers:

Pk(n1, n2, . . . , nk) = 1−
k∏

i=1

(1− P (ni)).

Proposition 12.2. For each k, n1, n2, . . . , nk natural numbers:

Ck(n1, n2, . . . , nk) = 1−
k∏

i=1

k∏

j=i+1

(1− C2(ni, nj)).

Proposition 12.3. For each natural number n:

Cπ(n)+P (n)(p1, p2, . . . , pπ(n)+P (n)−1, n) = P (n).

Proposition 12.4. For each natural number n:

P (n) = 1−
π(n)+P (n)−1∏

i=1

(1− C2(pi, n)).

Corollary 12.1. For each natural number k, n1, n2, . . . , nk:

Pk(n1, n2, . . . , nk) = 1−
k∏

i=1

π(ni)+P (ni)−1∏

j=1

(1− C2(pj , ni)).
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