ABOUT THE SMARANDACHE COMPLEMENTARY PRIME FUNCTION

by

Marcela POPESCU and Vasile SELEACU

Let $c: N \rightarrow N$ be the function defined by the condition that $n+c(n)=p_{i}$, where p_{i} is the smallest prime number, $p_{i} \geq n$.

Example

$$
c(0)=2, c(1)=1, c(2)=0, c(3)=0, c(4)=1, c(5)=0, c(6)=1,
$$

$\mathrm{c}(7)=0$ and so on.

1) If p_{k} and p_{t-1} are two consecutive primes and $p_{k}<n \leq p_{k-1}$, then
$c(n) \in\left\{p_{k-1}-p_{k}-1, p_{k-1}-p_{k}-2, \ldots, 1,0\right\}$, because:
$c\left(p_{k}-1\right)=p_{k-1}-p_{k}-1$ and so on, $c\left(p_{k-1}\right)=0$.
$2) c(p)=c(p-1)-1=0$ for every p prime, because $c(p)=0$ and $c(p-1)=1$.
We also can observe that $c(n) \neq c(n+1)$ for every $n \in N$.

1. Property

The equation $c(n)=n, n>1$ has no solutions.

Proof

If n is a prime it results $c(n)=0<n$.
It is wellknown that between n and $2 n, n>1$ there exists at least a prime number. Let p_{k} be the smallest prime of them. Then if n is a composite number we have :
$\mathrm{c}(\mathrm{n})=\mathrm{p}_{\mathrm{t}}-\mathrm{n}<2 \mathrm{n}-\mathrm{n}=\mathrm{n}$, therefore $\mathrm{c}(\mathrm{n})<\mathrm{n}$.

It results that for every $n=p$. where p is a prime. we have $\frac{1}{n} \leq \frac{c(n)}{n}<1$, therefore $\sum_{n \times 1} \frac{c(n)}{n}$ diverges. Because for the primes $c(p) / p=0$ we can say that $\sum_{n \geq 1} \frac{c(n)}{n}$ diverges

2. Property

If n is a composite number, then $\mathrm{c}(\mathrm{n})=\mathrm{c}(\mathrm{n}-1)-1$.

Proof

Obviously
It results that for n and $(n-1)$ composite numbers we have $\frac{c(n)}{c(n-1)}>1$. Now. if $\mathrm{p}_{\mathrm{h}}<\mathrm{n}<\mathrm{p}_{\mathrm{h}-1}$ where p_{h} and $\mathrm{p}_{\mathrm{k}-1}$ are consecutive primes, then we have
$c(n) c(n-1) \ldots c\left(p_{k-1}-1\right)=\left(p_{h-1}-n\right)!$
and if $n \leq p_{k}<p_{h-1}$ then $c(n) c(n-1) \ldots c\left(p_{h-1}-1\right)=0$.
Of course, every $\prod_{n=k}^{r} c(n)=0$ if there exists a prime number $p, k \leq p \leq r$.
If $n=p_{k}$ is any prime number, then $c(n)=0$ and because $c(n-1)=p_{k-1}-n-1$ it results that $c(n)-c(n+1)=1$ if and only if n and $(n+2)$ are primes (friend prime numbers)

3. Property

For every k - th prime number p_{k} we have :
$c\left(p_{k}-1\right)<\left(\log p_{k}\right)^{2}-1$.

Proof

Because $c\left(p_{k}-1\right)=p_{k-1}-p_{k}-1$ we have $p_{k-1}-p_{k}=c\left(p_{k}-1\right)+1$.
But. on the other hand we have $p_{k-1}-p_{k}<\left(\log p_{k}\right)^{2}$, then the assertion follows.

4. Property

$c(c(n))<c(n)$ and $c^{m}(n)<c(n)<n$, for every $n>1$ and $m \geq 2$.

Proof

If we denote $c(n)=r$ then we have :
$\mathrm{c}(\mathrm{c}(\mathrm{n}))=\mathrm{c}(\mathrm{r})<\mathrm{r}=\mathrm{c}(\mathrm{n})$.
Then we suppose that the assertion is true for m : $c^{m}(n)<c(n)<n$, and we prove it
for $(m-1)$, 100

$$
c^{\mathrm{m} \cdot 1}(n)=c\left(c^{\mathrm{m}}(n)\right)<c^{\mathrm{m}}(n)<c(n)<n .
$$

5. Property

For every prime p we have $(c(p-1))^{n} \leq c\left((p-1)^{n}\right)$.

Proof

$c(p-1)=1 \Rightarrow(c(p-1))^{n}=1$ while $(p-1)^{n}$ is a composite number, therefore $c\left((p-1)^{n}\right) \geq 1$.

6. Property

The following kind of Fibonacci equation
$c(n)-c(n-1)=c(n-2)$
has solutions.
Proof
If n and $(n-1)$ are both composite numbers, then $c(n)>c(n+1) \geq 1$. If $(n-2)$ is a prime, then $c(n+2)=0$ and we have no solutions in this case. If $(n+2)$ is also a composite number, then

$$
c(n)>c(n+1)>c(n+2) \geq 1 \text {, therefore } c(n)+c(n+1)>c(n+2)
$$

and we have no solutions also in this case.
Therefore n and $(\mathrm{n}+\mathrm{l})$ are not both composite numbers in the equality (1).
If n is a prime, then $(n-1)$ is a composite number and we must have
$0-c(n-1)=c(n-2)$, wich is not possible $(\operatorname{see}(2))$
We have only the case when $(n-1)$ is a prime; in this case we must have :
$1-0=c(n-2)$ but this implies that $(n+3)$ is a prime number, so the only solutions are when $(\mathrm{n}-1)$ and $(\mathrm{n}-2)$ are friend prime numbers.

7. Property

The following equation:

$$
\begin{equation*}
\frac{c(n)+c(n-2)}{2}=c(n-1) \tag{2}
\end{equation*}
$$

has an infinite number of solutions.

Proof

Let p_{h} and p_{h-1} be two consecutive prime numbers. but not friend prime numbers.
Then. for every integer i between $p_{h}-1$ and $p_{k-1}-1$ we have:

$$
\frac{c(i-1)-c(i-1)}{2}=\frac{\left(p_{h+1}-i-1\right)-\left(p_{h+1}-i-1\right)}{2}=p_{h+1}-i=c(i) .
$$

So. for the equation (2) all positive integer n between $p_{k}-1$ and $p_{k, 1}-1$ is a solution

If n is prime the equation becomes $\frac{c(n+2)}{2}=c(n-1)$.
But $(n-1)$ is a composite number, therefore $c(n-1) \neq 0 \Rightarrow c(n-2)$ must be composite number. Because in this case $c(n+1)=c(n+2)+1$ and the equation has the form $\frac{c(n+2)}{2}=c(n+2)+1$, so we have no solutions.

If $(n+1)$ is prime, then we must have $\frac{c(n)+c(n+2)}{2}=0$, where n and $(n+2)$ are composite numbers. So we have no solutions in this case, because $c(n) \geq 1$ and $c(n-2) \geq 1$.

If $(n+2)$ is a prime, the equation has the form $\frac{c(n)}{2}=c(n+1)$, where $(n-1)$ is a composite number, therefore $c(n-1) \neq 0$. From (2) it rezuits that $c(n) \neq 0$, so n is also a composite number. This case is the same with the first considered case.

Therefore the only solutions are for $\overline{p_{k}, p_{k+1}-2}$, where p_{k}, p_{k-1} are consecutive primes, but not friend consecutive primes.

8. Property

The greatest common divisor of n and $\mathrm{c}(\mathrm{x})$ is 1 :
$(x, c(x))=1$, for every composite number x.

Proof

Taking into account of the definition of the function c, we have $x+c(x)=p$, where p is a prime number

If there exists $d \neq 1$ so that d / x and $d / c(x)$, then it implies that d / p. But p is a prime number, therefore $\mathrm{d}=\mathrm{p}$.

This is not possibile because c (x$)<\mathrm{p}$.
If p is a prime number, then $(p, c(p))=(p, 0)=p$.

9. Property

The equation $[x, y]=[c(x), c(y)]$, where $[x, y]$ is the least common multiple of x and y has no solutions for $x, y>1$.

Proof

Let us suppose that $x=d k_{1}$ and $y=d k_{2}$, where $d=(x, y)$. Then we must have

$$
[x . y]=d k_{1} k_{2}=[c(x), c(y)] .
$$

But $(\mathrm{x}, \mathrm{c}(\mathrm{x}))=\left(\mathrm{dk}_{1}, \mathrm{c}(\mathrm{x})\right)=1$, therefore dk_{1} is given in the least common multiple $[\mathrm{c}(\mathrm{x}), \mathrm{c}(\mathrm{y}) \mathrm{]}$ by $\mathrm{c}(\mathrm{y})$.
$\operatorname{But}(y, c(y))=\left(d k_{1}, c(y)\right)=1 \Rightarrow d=1 \Rightarrow(x, y)=1 \Rightarrow$ $\Rightarrow[x, y]=x y>c(x) c(y) \geq[c(x), c(y)]$, therefore the above equation has no solutions. for $\mathrm{x}, \mathrm{y}>1$.

For $\mathrm{x}=1=\mathrm{y}$ we have $[\mathrm{x}, \mathrm{y}]=[\mathrm{c}(\mathrm{x}), \mathrm{c}(\mathrm{y})]=1$.

10. Property

The equation

$$
\begin{equation*}
(x, y)=(c(x), c(y)) \tag{3}
\end{equation*}
$$

has an infinite number of solutions.

Proof

If $x=1$ and $y=p-1$ then $(x, y)=1$ and $(c(x), c(y))=(1,1)=1$, for an arbitrary prime p.

Easily we observe that every pair ($n, n-1$) of numbers is a solutions for the equation (3), if n is not a prime.

11. Property

The equation

$$
\begin{equation*}
c(x)-x=c(y)+y \tag{4}
\end{equation*}
$$

has an infinite number of solutions.

Proof

From the definition of the function c it results that for every x and y satisfying
$p_{h}<x \leq y \leq p_{h-1}$ we have $c(x)-x=c(y)+y=p_{h-1}$. Therefore we have $\left(p_{h-1}-p_{h}\right)^{2}$ couples (x, y) as different solutions. Then. until the n-th prime p_{n}, we have $\sum_{k=1}^{n-1}\left(p_{k-1}-p_{k}\right)^{2}$ different solutions

Remark

It seems that the equation $c(x)+y=c(y)+x$ has no solutions $x \neq y$, but it is not true.

Indeed. let p_{k} and p_{k-1} be consecutive primes such that $p_{k-1}-p_{k}=6$ (is possibile : for example 29-23 $=6,37-31=6,53-47=6$ and so on) and $p_{k}-2$ is not a prime.

Then $c\left(p_{k}-2\right)=2, c\left(p_{k}-1\right)=1, c\left(p_{k}\right)=0, c\left(p_{k}+1\right)=5, c\left(p_{k}+2\right)=4$, $c\left(p_{1}+3\right)=3$ and we have :

$$
\begin{aligned}
& \text { 1. } c\left(p_{k}+1\right)-c\left(p_{k}-2\right)=5-2=3=\left(p_{k}+1\right)-\left(p_{k}-2\right) \\
& \text { 2. } c\left(p_{k}+2\right)-c\left(p_{k}-1\right)=3=\left(p_{k}+2\right)-\left(p_{k}-1\right) \\
& \text { 3. } c\left(p_{k}+3\right)-c\left(p_{k}\right)=3=\left(p_{k}+3\right)-p_{k} \text {, thus }
\end{aligned}
$$

$c(x)-c(y)=x-y(\Leftrightarrow c(x)+y=c(y)+x)$ has the above solutions if $p_{k}-p_{k-1}>3$
If $p_{k}-p_{k-1}=2$ we have only the two last solutions.
In the general case, when $p_{k-1}-p_{k}=2 h, h \in N^{*}$, let $x=p_{k}-u$ and $y=p_{k}+v, u, v \in N$ be the solutions of the above equation.

Then $c(x)=c\left(p_{k}-u\right)=u$ and $c(y)=c\left(p_{k}+v\right)=2 h-v$.
The equation becomes:
$u+\left(p_{k}+v\right)=(2 h-v)+\left(p_{k}-u\right)$, thus $u+v=h$.
Therefore, the solutions are $x=p_{k}-u$ and $y=p_{k}+h-u$, for every $u=\overline{0, h}$ if $p_{k}-p_{k-1}>h$ and $x=p_{k}-u, y=p_{k}+h-u$, for every $u=\overline{0, l}$ if $p_{k}-p_{k-1}=l+1 \leq h$.

Remark

$c\left(p_{k}+1\right)$ is an odd number, because if p_{k} and p_{k-1} are consecutive primes, $p_{k}>2$, then p_{k} and p_{k-1} are, of course, odd numbers; then $p_{k-1}-p_{k}-1=c\left(p_{k}+1\right)$ are always odd.

12. Property

The sumatory function of $c, F_{c}(n) \stackrel{\text { def }}{=} \sum_{\substack{d \in X \\ d / n}} c(d)$ has the properties:
a) $F(2 p)=1+c(2 p)$
b) $F_{i}(p q)=1-c(p q)$. where p and q are prime numbers.

Proof

a) $F(2 p)=c(1)+c(2)+c(p)+c(2 p)=1+c(2 p)$.
b) $F_{i}(p q)=c(l)+c(p)+c(q)+c(p q)=1+c(p q)$.

Remark

The function c is not multiplicative : $0=\mathrm{c}(2) \cdot \mathrm{c}(\mathrm{p})<\mathrm{c}(2 \mathrm{p})$.

13. Property

$$
c^{k}(p)=\left\{\begin{array}{l}
0 \text { for } k \text { odd number } \\
2 \text { for } k \text { even number, } k \geq 1
\end{array}\right.
$$

Proof
We have

$$
\begin{aligned}
& c^{\prime}(p)=0 \\
& c^{2}(p)=c(c(p))=c(0)=2 \\
& c^{3}(p)=c(2)=0 \\
& c^{4}(p)=c(0)=2
\end{aligned}
$$

Using the complete mathematical induction, the property holds.

Consequences

1) We have $\frac{c^{k}(p)+c^{k+1}(p)}{2}=1$ for every $k \geq 1$ and p prime number.
2) $\sum_{k=1}^{r} c^{k}(p)=\left[\frac{r}{2}\right] \cdot 2$, where $[x]$ is the integer part of x, and $\sum_{\substack{k=2 \\ k \text { even }}}^{r} \frac{1}{c^{k}(p)}=\left[\frac{r}{2}\right] \cdot \frac{1}{2}$, thus $\sum_{k \geq 1} c^{k}(p)$ and $\sum_{\substack{k \geq 2 \\ k \text { even }}} \frac{1}{c^{k}(p)}$ are divergent series.

Remark

$c^{\mathrm{k}}(\mathrm{p}-1)=\mathrm{c}^{\mathrm{k}-1}(\mathrm{c}(\mathrm{p}-1))=\mathrm{c}^{\mathrm{l}-1}(1)=1$, for every prime $\mathrm{p}>3$ and $\mathrm{k} \in \mathrm{N}^{*}$, therefore $c^{k_{1}}\left(p_{1}-1\right)=c^{k_{2}}\left(p_{2}-1\right)$ for every primes $p_{1}, p_{2}>3$ and $k_{1}, k_{2} \in N^{*}$.

14.Property

The equation :

$$
\begin{equation*}
c(x)+c(y)+c(z)=c(x) c(y) c(z) \tag{5}
\end{equation*}
$$

has an infinite number of solutions.

Proof

The only non-negative solutions for the diofantine equation $a+b-c=a b c$ are $a=1$, $\mathrm{b}=2$ and $\mathrm{c}=3$ and all circular permutations of:1.2.3;

Then
$c(x)=1 \Rightarrow x=p_{k}-1, p_{k}$ prime number, $p_{t}>3$
$c(y)=2 \Rightarrow y=p_{h}-2$, where p_{r-1} and p_{r} are consecutive prime numbers such that $p_{t}-p_{r-1} \geq 3$
$c(z)=3 \Rightarrow z=p_{t}-3$, where p_{t-1} and p_{t} are consecutive prime numbers such that
$p_{1}-p_{t-1} \geq 4$
and all circular permutations of the above values of x, y and z.
Of course, the equation $c(x)=c(y)$ has an infinite number of solutions.

Remark

We can consider $c^{+}(y)$, for every $y \in N^{*}$, defined as $c^{+}(y)=\{x \in N \mid c(x)=y\}$. For example $c^{\leftarrow}(0)$ is the set of all primes, and $c^{\leftarrow}(1)$ is the set $\left\{1, p_{k-1}\right\}_{\text {p p prime }}$ and so on. $p_{k}>3$
A study of these sets may be interesting.

Remark

If we have the equation

$$
\begin{equation*}
c^{k}(x)=c(y), k \geq 2 \tag{6}
\end{equation*}
$$

then. using property 13 , we have two cases.
If x is prime and k is odd, then $\mathrm{c}^{\mathrm{k}}(\mathrm{x})=0$ and (5) implies that y is prime.
In the case when x is prime and k is even it results $c^{k}(x)=2=c(y)$, which implies that y is a prime, such that $\mathrm{y}-2$ is not prime.

If $x=p, y=q, p$ and q primes, $p, q>3$, then $(p-1, q-1)$ are also solutions, because $c^{k}(p-1)=1=c(q-1)$, so the above equation has an infinite number of couples as solutions.

Also a study of $\left(c^{k}(x)\right)^{\star}$ seems to be interesting.

Remark

The equation
$c(n)+c(n-1)-c(n+2)=c(n-1)$
has solutions when $c(n-1)=3 . c(n)=2, c(n+1)=1, c(n+2)=0$. so the solutions are $n=p-2$ for every p prime number such that between $p-4$ and p there is not another prime

The equation
$c(n-2)-c(n-1)-c(n-1)-c(n-2)=4 c(n)$
has as solutions $n=p-3$, where p is a prime such that between $p-6$ and p there is not another prime, because $4 c(n)=12$ and $c(n-2)+c(n-1)+c(n+1)+c(n+2)=12$.

For example $n=29-3=26$ is a solution of the equation (7).
The equation
$c(n)+c(n-1)+c(n-2)+c(n-3)+c(n-4)=2 c(n-5)$
(see property 7) has as solution $n=p-5$, where p is a prime, such that between $p-6$ and p there is not another prime. Indeed we have $0+1+2+3+4=2 \cdot 5$.

Thus. using the properties of the function c we can decide if an equation, which has a similar form with the above equations, has or has not solutions.

But a difficult problem is:" For any even number a, can we find consecutive primes such that $p_{k-1}-p_{b}=a$? "

The answer is useful to find the solutions of the above kind of equations, but is also important to give the answer in order to solve another open problem
" Can we get. as large as we want, but finite decreasing sequence $\mathrm{k}, \mathrm{k}-1, \ldots, 2,1,0$ (odd \mathbf{k}), included in the sequence of the values of c ?"

If someone gives an answer to this problem, then it is easy to give the answer (it will be the same) at the similar following problem
" Can we get, as large as we want. but finite decreasing sequence $\mathrm{k}, \mathrm{k}-1, \ldots, 2,1,0$ (even k), included in the sequence of the values of c ?"

We suppose the answer is negative.
In the same order of ideea. it is interesting to find $\max _{n} \frac{c(n)}{n}$.
It is weilknown (see [4]. page 147) that $p_{n-1}-p_{n}<\left(\ln p_{n}\right)^{2}$, where p_{n} and $p_{n \cdot 1}$ are two consecutive primes.

Moreover. $\frac{c(n)}{n}, p_{h}<n \leq p_{h-1}$ reaches its maximum value for $n=p_{h}-1$, where p_{h} is a prime.

So, in this case
$\frac{c(n)}{n}=\frac{p_{h+1}-p_{h}-1}{p_{k}-1}<\frac{\left(\ln p_{k}\right)^{2}-1}{p_{k}+1} \xrightarrow{k \rightarrow \infty} 0$
Using this result. we can find the maximum value of $\frac{c(n)}{n}$
For $p>100$ we have $\frac{(\ln p)^{2}-1}{p+1}<\frac{(\ln 100)^{2}-1}{101}<\frac{1}{4}$.
Using the computer, by a straight forward computation, it is easy to prove that $\max _{2 \leq n \leq 100} \frac{c(n)}{n}=\frac{3}{8}$, wich is reached for $n=8$.

Because $\frac{c(n)}{n}<\frac{1}{4}$ for every $n>100$ it results that $\max _{n \geq 2} \frac{c(n)}{n}=\frac{3}{8}$ reached for $n=8$.

Remark

There exists an infinite number of finite sequences $\left\{\mathrm{c}\left(\mathrm{k}_{1}\right), \mathrm{c}\left(\mathrm{k}_{1}+1\right), \ldots, \mathrm{c}\left(\mathrm{k}_{2}\right)\right\}$ such that $\sum_{h=h_{1}}^{h_{2}} c(k)$ is a three-cornered number for $k_{1}, k_{2} \in N^{*}$ (the n-th three-cornered number is $\left.T_{n} \stackrel{\text { det }}{=} \frac{n(n+1)}{2}, n \in N^{*}\right)$.

For example, in the case $k_{1}=p_{k}$ and $k_{2}=p_{k-1}$, two consecutive primes, we have the finite sequence $\left\{c\left(p_{k}\right), c\left(p_{k}+1\right), \ldots, c\left(p_{k-1}-1\right), c\left(p_{k+1}\right)\right\}$ and $\sum_{k=T_{i}}^{p_{k-i}} c(k)=0+\left(p_{k+1}-p_{k}-1\right)+\ldots+2+1+0=\frac{\left(p_{k+1}-p_{k}-1\right)\left(p_{k+1}-p_{k)}\right.}{2}=T_{p_{k-1}-p_{k}-1}$

Of course. we can define the function $\mathrm{c}^{\prime}: N \backslash\{0.1\} \rightarrow \mathrm{N}, \mathrm{c}^{\prime}(\mathrm{n})=\mathrm{n}-\mathrm{k}$, where k is the smallest natural number such that $n-k$ is a prime number, but we shall give some properties of this function in another paper.

References

[1] I. Cucurezeanu - " Probleme de aritmetica si teoria numerelor ". Editura Tehnica. Bucuresti. 1976.
[2] P. Radovici - Marculescu - " Probleme de teoria elementara a numerelor ". Editura Tehnica. Bucuresti. 1986;
[3] C. Popovici - " Teoria numerelor ".
Editura Didactica si Pedagogica. Bucuresti. 1973:
[4] W Sierpinski - Elementary Theory of Numbers, Warszawa. 1964:
[5] F. Smarandache - " Only problems, not solutions! "
Xiquan Publishing House. Phoenix - Chicago, 1990, 1991, 1993.

Current address

University of Craiova,
Department of Mathematics,
13, " A. I. Cuza " street.
Craiova - 1100,
ROMANIA

