ON SMARANDACHE GENERAL CONTINUED FRACTIONS

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let $A=\left\{a_{n}\right\}_{n=1}^{\infty}$ and $B=\left\{b_{n}\right\}_{n=1}^{\infty}$ be two Smarandache type sequences. In this paper we prove that if $a_{n+1} \geq b_{n}>0$ and $b_{n+1} \geq b_{n}$ for any positive integer n, the continued fraction

∞
∞
Let $A=\left\{a_{n}\right\}_{n=1}$ and $B=\left\{b_{n}\right\}_{n=1}$ be two Smarandache type sequences. Then the continued fraction

is called a Smarandache general continued fraction associated with A and B (see [1]). By using Roger's symbol, the continued fraction (1) can be written as

$$
\begin{equation*}
\underset{a_{1}+\ldots}{b_{1}} \underset{a_{2}+}{b_{2}}+\frac{a_{3}}{a_{3}}+\ldots . \tag{2}
\end{equation*}
$$

Recently, Castillo [1] posed the following question:
Question. Is the continued fractions $1+\ldots--------$

$$
12+123+1234+\ldots
$$

convergent?

In this paper we prove a general result as follows.
Theorem. If $a_{n+1} \geq b_{n}>0$ and $b_{n+1} \geq b_{n}$ for any positive integer n, then the continued fraction (2) is convergent.

Proof. It is a well known fact that (2) is equal to the simple continued fraction

$$
\begin{equation*}
\underset{a_{1}+\ldots}{c_{1}+} \stackrel{1}{c_{2}+\ldots} \tag{2}
\end{equation*}
$$

where

$$
\begin{align*}
& c_{2 t-1}= \frac{b_{2} b_{4} \ldots b_{2 t-2}}{b_{1} b_{3} \ldots b_{2 t-1}} a_{2 t,} \tag{4}\\
& c_{2 t}= b_{1} b_{3} \ldots b_{2 t-1} \\
& b_{2} b_{4} \ldots b_{2 t}
\end{align*}
$$

Since $a_{n+1} \geq b_{n}>0$ and $b_{n+1} \geq b_{n}$ for any positive n, we see from (4) that $\mathrm{c}_{\mathrm{n}} \geq 1$ for any n. It implees that the simple continued fraction (3) is convergent. Thus, the Smarandache general continued fraction (2) is convergent too. The theorem is proved.

Reference
 1. J.Castillo, Smarandache continued fractions, Smarandache

 Notions J., Vol.9, No .1-2,40-42,1998.