ON SMARANDACHE GENERAL CONTINUED FRACTIONS

Maohua Le

Department of Mathematics, Zhanjiang Normal College Zhanjiang, Guangdong, P.R.China.

Abstract. Let $A = \{a_n\}_{n=1}^{a}$ and $B = \{b_n\}_{n=1}^{a}$ be two Smarandache type sequences. In this paper we prove that if $a_{n+1} \ge b_n > 0$ and $b_{n+1} \ge b_n$ for any positive integer n, the continued fraction

(2)
$$a_1 + \frac{b_1}{a_2 + a_3} + \frac{b_2}{a_3 + \dots}$$
 is convergent.

ω Let $A=\{a_n\}_{n=1}$ and $B=\{b_n\}_{n=1}$ be two Smarandache type sequences. Then the continued fraction

 ∞

is called a Smarandache general continued fraction associated with A and B (see [1]). By using Roger's symbol, the continued fraction (1) can be written as

Recently, Castillo [1] posed the following question:

21 1 321 Question. Is the continued fractions 1 + -----12 + 123 + 1234 + ...

convergent?

In this paper we prove a general result as follows.

Theorem. If $a_{n+1} \ge b_n \ge 0$ and $b_{n+1} \ge b_n$ for any positive integer n, then the continued fraction (2) is convergent.

Proof. It is a well known fact that (2) is equal to the simple continued fraction

(2)
$$a_1 + \frac{1}{c_1 + c_2 + \dots},$$

where

(4)
$$c_{2t-1} = \frac{b_2 b_4 \dots b_{2t-2}}{b_1 b_3 \dots b_{2t-1}} a_{2t}$$

$$c_{2t} = \frac{b_1 b_3 \dots b_{2t-1}}{b_2 b_4 \dots b_{2t}} a_{2t+1}, \quad t = 1, 2, \dots$$

Since $a_{n+1} \ge b_n > 0$ and $b_{n+1} \ge b_n$ for any positive n, we see from (4) that $c_n \ge 1$ for any n. It implees that the simple continued fraction (3) is convergent. Thus, the Smarandache general continued fraction (2) is convergent too. The theorem is proved.

Reference

1. J.Castillo, Smarandache continued fractions, Smarandache Notions J., Vol.9, No.1-2, 40-42, 1998.