## THE SMARANDACHE NEAR-TO-PRIMORIAL (S.N.T.P.) FUNCTION

> by
M. R. Mudge

## Definition $A$.

The PRIMORIAL Function, $p^{*}$, of a prime number, $p$, is defined be the product of the prime numbers less than or equal to p. e.g. $7^{*}=2 \cdot 3 \cdot 5 \cdot 7=210$ similarly $11^{*}=2310$. A number, q , is said to be near to prime if and only if either $\mathrm{q}+1$ or $\mathrm{q}-1$ are primes it is said to be the mean-of-a-prime-pair if and only if both $\mathrm{q}+1$ and $\mathrm{q}-1$ are prime.
p such that $\mathrm{p}^{*}$ is near to prime: $2,7,13,37,41,53,59,67,71,79,83,89, \ldots$
p such that $\mathrm{p}^{*}$ is mean-of-a-prime-pair: $3,5,11,31, \ldots$
TABLE I

| p | 2 | 3 | 5 | 7 | 11 | 13 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}^{*}-1$ | 1 | 5 | 29 p | $209=11 \cdot 19$ | 2309 p | 30029 p |
| $\mathrm{p}^{*}$ | 2 | 6 | 30 | 210 | 2310 | 30030 |
| $\mathrm{p}^{*+1}$ | 3 | 7 | 31 p | 211 p | 2311 p | $30031=59.509$ |

## Definition $B$.

The SMARANDACHE Near-To-Primorial Function, $\operatorname{SPr}(\mathrm{n})$, is defined as the smallest prime $p$ such that either $p^{*}$ or $p^{*} \pm 1$ is divisible by $n$.

| n | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | $\ldots 59 \ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{SPr}(\mathrm{n})$ | 2 | 2 | 2 | 5 | 3 | 3 | 3 | 5 | $?$ | 5 | 11 | 13 |

Questions relating to this function include:

1. Is $\operatorname{SPr}(\mathrm{n})$ defined for all positive integers n ?
2. What is the distribution of values of $\operatorname{SPr}(\mathrm{n})$ ?
3. Is this problem fundamentally altereted by replacing $p^{*} \pm 1$ by $p^{*} \pm 3,5, \ldots$

Current address:
22 Gors Fach, Pwll-Trap,
St. Clears, Carmarthen,
DYFED SA 33 4AQ
United Kingdom

