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On the Smarandache pierced chain
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Abstract If n > 1, then c(n) = 101 x (10*"™* 4 10*"% 4 ... + 10* 4+ 1) is called as the
Smarandache Pierced Chain. Its first few terms are:

101, 1010101, 10101010101, 101010101010101, 1010101010101010101, ------
c(n)

n > 27 The main purpose of this paper is using the elementary method to study this problem,
and prove that there are infinite positive integers n such that 9 divides 61(7(;11) That is to say,
c(n)

101
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In reference [2], Dr.Kashihara Kenichiro asked whether is a square-free number for all

is not a square-free number for infinite integers n > 2.

§1. Introduction and results

If n > 1, then ¢(n) = 101 x (10*"~* + 108 4 ...+ 10?4 1) is defined as the Smarandache

Pierced Chain. Its first few terms are:
101, 1010101, 10101010101, 101010101010101, 1010101010101010101, ~------
),

In reference [1], F.Smarandache asked the question: how many primes are there in o1’
Dr.Kashihara Kenichiro [2] solved this problem completely, and proved that there are no primes
cl(()nl)} At the same time, Dr. Kashihara Kenichiro [2] also proposed the
c(n)
101
About this problem, it seems that none had studied it yet, at least we have not seen

in the sequence {

following problem: Is a square-free for all n > 27

any related papers before. The problem is interesting, because it can help us to know more
c(n)

101 [°

The main purpose of this paper is using the elementary method to study this problem, and

properties about the sequence {

solved it completely. That is, we shall prove the following :

Theorem. For any positive integer n with 9 | n, we have 9 | ¢(n).

It is clear that (101, 9) = 1, so 9 divides % Therefore, from our Theorem we may

immediately deduce the following:
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c(n)
101

Corollary. There are infinite positive integers n such that is not a square-free

number.

§2. Proof of the theorem

In this section, we shall complete the proof of our Theorem. First we give the definition of
the k-free number: Let £ > 2 be any fixed integer. For any positive integer n > 1, we call n as a
k-free number, if for any prime p with p|n, then p* f n. We call 2-free number as the square-free
number; 3-free number as the cubic-free number. Now we prove our Theorem directly. It is
clear that
10 = 1(mod 9).

From the basic properties of the congruences we know that if « = b(mod m), then o™ =

b™(mod m) for every positive integer n (see reference [3] and [4]). So we have

10*"~* = 1(mod 9),
10778 = 1(mod 9),

107" = 1(mod 9).

Obviously
1= 1(mod 9).

Therefore,

% =101 410" % ... + 10" + 1 = n(mod 9).

Now for any positive integer n with 9|n, from the above congruence we may immediately get

% =10""* 410" % 4+... +10* +1= n = 0(mod 9).
From the definition of the square-free number and the above properties we know that %
is not a square-free number if 9|n. This completes the proof of Theorem.
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