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Abstract: According to different conditions, researchers have defined a great deal of coloring problems and the corresponding 

chromatic numbers. Such as, adjacent-vertex-distinguishing total chromatic number, adjacent-vertex-distinguishing proper edge 

chromatic number, smarandachely-adjacent-vertex-distinguishing proper edge chromatic number, 

smarandachely-adjacent-vertex-distinguishing proper total chromatic number. And we focus on the smarandachely 

adjacent-vertex-distinguishing proper edge chromatic number in this paper, study the smarandachely 

adjacent-vertex-distinguishing proper edge chromatic number of joint graph Cm∨Kn. 
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1. Introduction 

Coloring problem in graph theory, is one of the most 

famous NP-complete problems. Four color conjecture which 

is one of the world’s three major mathematical conjecture says 

that each map can be used only four colors to dye, and no two 

adjacent areas dyed the same color. In the spring of 1976, with 

the help of the computer, the four color conjecture was proved. 

The conjecture finally became a theorem. The significance of 

graph coloring theory is much more than that. Known to all, 

coloring problems can solve many problems such as 

scheduling problem, time tabling, transportation, arrangement, 

circuit design and storage problems. 

In recent years, more and more coloring problems was put 

forward by experts of graph theory, such as proper-adjacent- 

vertex-distinguishing edge coloring, proper -adjacent- 

vertex-distinguishing total coloring, smarandachely adjacent- 

vertex-distinguishing proper edge coloring. 

2. Smarandachely 

Adjacent-Vertex-Distinguishing 

Proper Edge Coloring 

Definition 1[1] A k-proper edge coloring of a graph G  is 

a mapping f
 

from ( )E G to {1,2, }k…， that satisfies the 

condition described as below: 

For , ( )i je e E G∀ ∈ , i je e≠ , if ,i je e  have a common end 

vertex, then ( ) ( )i jf e f e≠ . 

The number min{ |k G has a k-proper edge coloring of 

graph G } is called the proper edge chromatic number of G , 

denoted by ( )Gχ . If ( )
i

f e l= , then we call the number l to 

be the color of edge 
i

e . 

Definition 2[1] A k-proper edge coloring f  is called a 

k-proper-adjacent-vertex-distinguishing proper edge coloring, 

short for k-AVDPEC when f satisfies condition described as 

below: 

Denote ( ) { ( ) | ( ) ( )}C u f uv v V G uv E G= ∈ ∧ ∈ for every 

vertex ( )u V G∈ , if for , ( ), ( )u v V G uv E G∀ ∈ ∈ , we have 

( ) ( )C u C v≠ . 

The number min{ |k G has a k-proper-adjacent- 

vertex-distinguishing proper edge coloring} is called the 

adjacent –vertex-distinguishing proper edge chromatic 

number and denoted by ' ( )
a

Gχ . Set ( )C u is called the color 

set of the vertex. 

Definition 3[1] A k-proper edge coloring f
 
is called a 

smarandachely adjacent- vertex-distinguishing proper edge 
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coloring, short for k-SA when f
 

satisfies conditions 

described as below: 

Denote ( ) { ( ) | ( ) ( )}C u f uv v V G uv E G= ∈ ∧ ∈ for every 

vertex ( )u V G∈ , if , ( ), ( )u v V G uv E G∀ ∈ ∈ , we have 

( ) ( )C u C v⊄ and ( ) ( )C v C u⊄  mean well. 

The number min{ | }k G has a k SA−  is called the 

smarandachely adjacent-vertex-distinguishing proper edge 

chromatic number of G , denoted by ' ( )
sa

Gχ . 

It’s obviously of below conclusion: when G have a vertex 

who’s degree equal to 1, then G have no k-SA for all nature 

number k. 

The paper use m
C  to denote the graph of circle with m

vertices and n
K to denote the complete graph with n vertices, 

use m n
C K∨  to denote the joint graph of m

C and n
K . We 

denote the vertex sets and the edge set of the graphs such 

that:  

1 2( ) { , , , }m mV C u u u= ⋅⋅⋅ , 1 1( ) {( ) | 2 } {( )}m i i mE C u u i m u u−= ≤ ≤ ∪ , 

1 2
( ) { , , , }

n n
V K v v v= ⋅⋅⋅ . 

( )d u is the degree of the vertex u , ∆ is the maximum 

degree of the graph discussed, S is the universal set of the 

color used, that ( )
( )

u V G
S C u

∈
= ∪ , ( )C u  is the complement of 

( )C u . 

Lemma 1 [1] If G denote the graph have no one degree 

vertex, then  

1) ' ( ) ' ( )sa aG Gχ χ≥ , if G  is a regular graph then

' ( ) ' ( )sa aG Gχ χ= . 

2) ' ( ) 1sa Gχ ≥ ∆ + . 

Lemma 2 [1] If nK is the complete graph with vertices n ,

3n ≥ , then  

, .
' ( )

1,
a n

n n is odd
K

n n is even
χ


=  +

. 

Lemma 3[2] If nK is the complete graph with vertices n ,

4n ≥ and n is even, then ( ) 1nK nχ = − . 

3. Smarandachely 

Adjacent-Vertex-Distinguishing 

Proper Edge Coloring of Cm∨Kn 

Theorem 1 If 3m ≥ , 3n ≥ , ,m n are both even, then 

m nC K∨ have no m n SA+ − . 

Proof Suppose that m nC K∨  have a m n SA+ − , then 

{1,2, , }S m n= ⋅⋅⋅ + . Be aware of the facts that: 

1 2( ) ( ) ( )= 1nd v d v d v m n= = ⋅⋅⋅ = + −
 

Then 1 2| ( ) | | ( ) | | ( ) | = 1nC v C v C v m n= = ⋅⋅⋅ = + −  

 

1 2| ( ) | | ( ) | | ( ) | =1nC v C v C v= = ⋅⋅ ⋅ =       (1) 

, 1 , 1i j i n j n∀ ≠ ≤ ≤ ≤ ≤ , iv is adjacent to jv ,so 

( ) ( )i jC v C v≠ , so  

1 , 1i j i n j n∀ ≠ ≤ ≤ ≤ ≤ , ( ) ( )i jC v C v≠     (2) 

Inferred from (1) and (2), then each vertex (1 )iv i n≤ ≤ has 

one different color from each other. 

Then we may as well suppose that ( )ii C v∉ , for

1 i n∀ ≤ ≤ . 

Then it must have the result such as {1,2, , } ( )jn C u⋅ ⋅ ⋅ ⊂ , 

1 j m∀ ≤ ≤
 

(otherwise, if there exists a color ,1 ,k k n≤ ≤
and exists a vertex ju

 
satisfies ( )jk C u∉ , then we can 

deduce the result such as ( ) ( ), 1j iC u C v i n⊂ ∀ ≤ ≤ , but the 

vertex ju is adjacent to the vertex iv , this result is in 

contradiction with the definition of k SA− ). Now we 

consider all vertices of the whole graph m nC K∨
 

who satisfy 

( ) 1f u = , according to previous discussion, except vertex 1v , 

all the remaining 1m n+ −  vertices of the graph m nC K∨  

satisfied the condition ( ) 1f u = , that is to say, except the 

vertex 1v , the remaining 1m n+ −  vertices form a matching, 

this result is in contradiction with the fact such as that 

1m n+ − is odd. 

So, m nC K∨ have no m n SA+ − . 

Theorem 2 If 6n ≥ , n  is even, then  

2' ( ) 2 1sa n nC K nχ − ∨ = − . 

Proof Be aware of the fact that the maximum degree of 

graph 2n nC K− ∨ is 2 3n∆ = − , by the 2) of Lemma 1, we get 

the result such as 2' ( ) 2 2sa n nC K nχ − ∨ ≥ − , also because of the 

fact that n is even, then by theorem 1, the graph 2n nC K− ∨
have no (2 2)n SA− − , so we get the result such as 

2' ( ) 2 1sa n nC K nχ − ∨ ≥ − .  

For the subgraph nK , by lemma 3, there is a 1n − -proper 

edge coloring on nK , that is to say, there is a mapping g from 

( )nE K to {1, 2, 1}n… −，  satisfied that , ( )i j ne e E K∀ ∈ ,

i je e≠ , if ,i je e have a common end vertex, then 

( ) ( )i jg e g e≠ . 

Now we define a mapping f from 2( )n nE C K− ∨  to

{1,2, 1, , 1, 2, , 2 1}n n n n n… − + + ⋅⋅⋅ −，  described as below: 

If ne K∈ , then ( ) ( )f e g e= , then {1, 2, 1}n… −，  

( )iC v⊂ , for 1 i n∀ ≤ ≤ , 

1( ) 1, 1jf u v n j j n= + − ≤ ≤ , 

2 2( ) , 1 1, ( )j nf u v n j j n f u v n= + ≤ ≤ − = , 

3( ) 1, 1 2jf u v n j j n= + + ≤ ≤ − , 
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3 1 3
( ) , ( ) 1

n n
f u v n f u v n− = = + , 

4( ) 2, 1 3jf u v n j j n= + + ≤ ≤ − , 

4 2 4 1
( ) , ( ) 1

n n
f u v n f u v n− −= = + , 

4
( ) 2

n
f u v n= + , 

… 

2 1 2 2
( ) 2 3, ( ) 2 2

n n
f u v n f u v n− −= − = − , 

2 3
( ) 2 1

n
f u v n− = − , 

2( ) 4, 4n jf u v n j j n− = + − ≤ ≤ , 

1
( ) , 2 2

i i
f u u i i n− = ≤ ≤ − , 2 1

( ) 1
n

f u u− = . 

By the definition of f , we get the ( )C u and ( )C u of every 

vertex of the graph such as below: 

1
( ) {1,2,3, , 1} { , 1, 2, , 2 3}C v n n n n n= ⋅⋅⋅ − ∪ + + ⋅⋅⋅ −  

1( ) {2 2, 2 1}C v n n= − − ,
2( ) { , 2 1}C v n n= − , 

3( ) { , 1}C v n n= + ,
4( ) { 1, 2}C v n n= + + ,  

… 

( ) {2 3, 2 2}nC v n n= − − , 

1
( ) { , 1, 2, , 2 1} {1,2}C u n n n n= + + ⋅⋅⋅ − ∪  

1( ) {3, 4, , 1} {1, 2, , 1} \{1, 2}C u n n= ⋅⋅ ⋅ − = ⋅⋅⋅ − , 

2( ) {1, 2, , 1} \{2,3}C u n= ⋅⋅ ⋅ − , 

… 

( ) {1, 2,3, , 1} \{ , 1}iC u n i i= ⋅⋅ ⋅ − + , 2 3i n∀ ≤ ≤ − ,
 

2( ) {1, 2, , 1} \{ 2,1}nC u n n− = ⋅⋅⋅ − − . 

We can see that  

( ) ( ), 1 2, 1i jC u C v i n j n⊄ ≤ ≤ − ≤ ≤ ,
 

( ) ( ), 1 2, 1j iC v C u i n j n⊄ ≤ ≤ − ≤ ≤ , 

( ) ( ), 1 , 2,| | 1i jC u C u i j n i j⊄ ≤ ≤ − − = , 

1 2 2 1( ) ( ), ( ) ( )n nC u C u C u C u− −⊄ ⊄ , 

( ) ( ), 1 , 1 ,i jC v C v i n j n i j⊄ ≤ ≤ ≤ ≤ ≠ . 

So the given f is a (2 1)n SA− −  for 2n nC K− ∨ . 

That is to say 

2
' ( ) 2 1sa n nC K nχ − ∨ = − . 

Example 1 For 6n = , then 4 6
' ( ) 11sa C Kχ ∨ = . 

In fact, for the subgraph 
6

K  of 
4 6

C K∨ , we defined a 

5-proper edge coloring g  such that: 

1 2 3 6 4 5
( ) ( ) ( ) 1g v v g v v g v v= = = , 

1 3 2 4 5 6
( ) ( ) ( ) 2g v v g v v g v v= = = , 

1 4 3 5 2 6
( ) ( ) ( ) 3g v v g v v g v v= = = , 

1 5 4 6 2 3
( ) ( ) ( ) 4g v v g v v g v v= = = , 

1 6 2 5 3 4
( ) ( ) ( ) 5g v v g v v g v v= = = . 

Obviously,
 
every adjacent edge have different colors, so g

is a 5-proper edge coloring of
6

K . 

Then, for graph 4 6
C K∨ , we define the mapping f from

4 6
( )E C K∨  to {1, 2, ,3, 10,11}…，  described as below: 

For edge i jv v , ( ) ( ), 1 6i j i jf v v g v v i j= ≤ ≠ ≤ , 

1( ) 1, 1 6jf u v n j j= + − ≤ ≤
, 

2 2 6( ) , 1 5, ( ) 6jf u v n j j f u v= + ≤ ≤ =
, 

3( ) 1, 1 4jf u v n j j= + + ≤ ≤
, 

3 5 3 6
( ) 6, ( ) 7f u v f u v= = , 

4( ) 2, 1 3jf u v n j j= + + ≤ ≤ ,
 

4 4 4 5 4 6
( ) 6, ( ) 7, ( ) 8f u v f u v f u v= = = , 

1
( ) , 2 4i if u u i i− = ≤ ≤ ,

2 1
( ) 1nf u u− = . 

We can see that the ( )C u  and ( )C u of every vertex for 

graph 4 6
C K∨

 
are described as below: 

1
( ) {1,2,3,4,5} {6,7,8,9}C v = ∪ , 

1( ) {10,11}C v = , 

2( ) {6,11}C v = ,
3( ) {6,7}C v = , 

4( ) {7,8}C v = ,
5( ) {8,9}C v = ,

6( ) {9,10}C v = , 

1( ) {3, 4,5}C u = ,
2( ) {1, 4,5}C u = , 

3( ) {1, 2,5}C u = ,
4( ) {2,3,5}C u = . 

We can see that the color set of the adjacent vertices meet 

the requirements of definition[3], so f is a 11 SA−  for 

4 6
C K∨ , then

4 6
' ( ) 11sa C Kχ ∨ = . 

Theorem 3 If 4n ≥ , n  is even, then  



205 Shunqin Liu:  Smarandachely Adjacent-Vertex-Distinguishing Proper Edge Chromatic Number of Cm∨Kn  

 

1
' ( ) 2 1
sa n n

C K nχ − ∨ = − . 

Proof Because of the fact that the maximum degree of the 

graph
1n n

C K− ∨ is 2 2n∆ = − , by the 2) of Lemma 1, we get 

the result such as 
1

' ( ) 2 1
sa n n

C K nχ − ∨ ≥ − .  

For the subgraph n
K  of the graph 1n n

C K− ∨ , by lemma 3, 

there is a 1n − -proper edge coloring on n
K , that is to say, 

there is a mapping g from ( )
n

E K to {1, 2, 1}n… −， that is 

satisfied the conditions such as:  

, ( )i j ne e E K∀ ∈ , i je e≠ , if ,i je e have a common end 

vertex, then ( ) ( )i jg e g e≠ . 

Now we define a mapping f from 1
( )

n n
E C K− ∨  to

{1,2, 1, , 1, 2, , 2 1}n n n n n… − + + ⋅⋅⋅ −，  as below: 

If n
e K∈ , then ( ) ( )f e g e= , then {1, 2, 1}n… −，  

( )
i

C v⊂ , 1 i n∀ ≤ ≤ , 

1( ) 1, 1jf u v n j j n= + − ≤ ≤ , 

2 2( ) , 1 1, ( )j nf u v n j j n f u v n= + ≤ ≤ − = , 

3( ) 1, 1 2jf u v n j j n= + + ≤ ≤ − , 

3 1 3
( ) , ( ) 1− = = +

n n
f u v n f u v n , 

… 

1 1 1 2
( ) 2 2, ( ) 2 1

n n
f u v n f u v n− −= − = − , 

1( ) 3, 3n jf u v n j j n− = + − ≤ ≤ , 

1
( ) , 2 1

i i
f u u i i n− = ≤ ≤ −  

1 1
( ) 1, 2 1

n
f u u i n− = ≤ ≤ − . 

By the definition of f , we get that the ( )C u and ( )C u of 

every vertex as below: 

1
( ) {1,2, , 1} { , 1, , 2 2}C v n n n n= ⋅⋅⋅ − ∪ + ⋅⋅⋅ − , 

1( ) {2 1}C v n= − ,
2( ) { }C v n= , 

( ) { 2}, 2jC v n j j n= + − ≤ ≤ , 

1
( ) { , 1, 2, , 2 1} {1,2}C u n n n n= + + ⋅⋅⋅ − ∪ , 

1( ) {1, 2, , 1} \{1, 2}C u n= ⋅⋅ ⋅ − , 

2( ) {1, 2, , 1} \{2,3}C u n= ⋅⋅ ⋅ − , 

… 

( ) {1, 2,3, , 1} \{ , 1}iC u n i i= ⋅⋅ ⋅ − + , 

2 2i n∀ ≤ ≤ − , 

1( ) {1, 2,3, , 1} \{ 1,1}nC u n n− = ⋅⋅⋅ − − . 

We can see that  

( ) ( ), 1 1, 1i jC u C v i n j n⊄ ≤ ≤ − ≤ ≤ , 

( ) ( ), 1 1, 1j iC v C u i n j n⊄ ≤ ≤ − ≤ ≤ , 

( ) ( ), 1 1, | | 1i jC u C u i j n i j⊄ ≤ ≠ ≤ − − = , 

1 1( ) ( )nC u C u −⊄ , 
1 1( ) ( )nC u C u− ⊄ ,

 

( ) ( ), 1 , 1 ,i jC v C v i n j n i j⊄ ≤ ≤ ≤ ≤ ≠ . 

That is to say, all the vertices have color sets that are not 

contained in other color set of the adjacent vertices. So the 

given f is a (2 1)n SA− −  for 
1n nC K− ∨ . 

So 1
' ( ) 2 1sa n nC K nχ − ∨ = − . 

Example 2 For 4n = , then 3 4
' ( ) 7sa C Kχ ∨ = . 

In fact, we defined the mapping f from 3 4
( )E C K∨  to

{1,2,3, 4,5,6,7}  as below: 

1 2 3 4 1 3
( ) ( ) ( ) 1f v v f v v f u u= = = , 

1 2 2 4 1 2
( ) ( ) ( ) 2f v v f v v f u u= = = , 

1 4 2 3 2 3
( ) ( ) ( ) 3f v v f v v f u u= = = , 

1 1 1 2( ) 4, ( ) 5,f u v f u v= =
 

1 3 1 4( ) 6, ( ) 7f u v f u v= = , 

2 1 2 2
( ) 5, ( ) 6,f u v f u v= =

  

2 3 2 4
( ) 7, ( ) 4f u v f u v= = , 

3 1 3 2
( ) 6, ( ) 7f u v f u v= = , 

3 3 3 4
( ) 4, ( ) 5f u v f u v= = . 

We can see that  

1( ) {6,7}C v = ,
2( ) {7, 4}C v = , 

3( ) {4,5}C v = ,
4( ) {5,6}C v = , 

1( ) {3}C u = ,
2( ) {1}C u = ,

3( ) {2}C u = . 

Obviously, f
 

is a 7 SA−  for 
3 4

C K∨ . 

So 3 4
' ( ) 7sa C Kχ ∨ = . 

4. Conclusion 

Coloring problem is a classical difficult problem of graph 

theory. Smarandachely adjacent- vertex-distinguishing proper 

edge coloring was first put forward by Zhang Zhong-fu in 

2008. A lot of problems need to be solved urgently, such as 

finding out the smarandachely adjacent-vertex-distinguishing 

proper edge chromatic number, such as how smarandachely 

adjacent-vertex-distinguishing proper edge chromatic number 
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changes when the vertices n grows.  

In the paper, we deduce the smarandachely adjacent-vertex 

-distinguishing proper edge chromatic number of the joint 

graph 
m n

C K∨  by the methods of combination analysis and 

reduction to absurdity, also the method of apagoge. 
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