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Abstract. The notions of a Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache

fuzzy clean(fresh) ideal of a Smarandache BCI-algebra are introduced. Examples are given, and several related

properties are investigated.

1. Introduction

Generally, in any human field, a Smarandache structure on a set A means a weak structure W on A such that

there exists a proper subset B of A with a strong structure S which is embedded in A. In [4], R. Padilla showed

that Smarandache semigroups are very important for the study of congruences. Y. B. Jun ([1,2]) introduced the

notion of Smarandache BCI-algebras, Smarandache fresh and clean ideals of Smarandache BCI-algebras, and

obtained many interesting results about them.

In this paper, we discuss a Smarandache fuzzy structure on BCI-algebras and introduce the notions of a

Smarandache fuzzy subalgebra (ideal) of a Smarandache BCI-algebra, a Smarandache fuzzy clean (fresh) ideal of

a Smarandache BCI-algebra are introduced, and we investigate their properties.

2. Preliminaries

An algebra (X; ∗, 0) of type (2,0) is called a BCI-algebra if it satisfies the following conditions:

(I) (∀x, y, z ∈ X)(((x ∗ y) ∗ (x ∗ z)) ∗ (z ∗ y) = 0),

(II) (∀x, y ∈ X)((x ∗ (x ∗ (x ∗ y)) ∗ y = 0),

(III) (∀x ∈ X)((x ∗ x = 0),

(IV) (∀x, y ∈ X)(x ∗ y = 0 and y ∗ x = 0 imply x = y).

If a BCI-algebra X satisfies the following identity;

(V) (∀x ∈ X)(0 ∗ x = 0),

then X is said to be a BCK-algebra. We can define a partial order “ ≤ ” on X by x ≤ y if and only if x ∗ y = 0.

Every BCI-algebra X has the following properties:

(a1) (∀x ∈ X)(x ∗ 0 = x),

(a1) (∀x, y, z ∈ X)(x ≤ y implies x ∗ z ≤ y ∗ z, z ∗ y ≤ z ∗ x).

A non-empty subset I of a BCI-algebra X is called an ideal of X if it satisfies the following conditions:

(i) 0 ∈ I,

(ii) (∀x ∈ X)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I).
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Definition 2.1. ([1]) A Smarandache BCI-algebra is defined to be a BCI-algebra X in which there exists a

proper subset Q of X such that

(i) 0 ∈ Q and |Q| ≥ 2,

(ii) Q is a BCK-algebra under the same operation of X.

By a Smarandache positive implicative (resp. commutative and implicative) BCI-algebra, we mean a BCI-

algebra X which has a proper subset Q of X such that

(i) 0 ∈ Q and |Q| ≥ 2,

(ii) Q is a positive implicative (resp. commutative and implicative) BCK-algebra under the same operation

of X.

Let (X; ∗, 0) be a Smarandache BCI-algebra and H be a subset of X such that 0 ∈ H and |H| ≥ 2. Then H

is called a Smarandache subalgebra of X if (H; ∗, 0) is a Smarandache BCI-algebra.

A non-empty subset I of X is called a Smarandache ideal of X related to Q if it satisfies:

(i) 0 ∈ I,

(ii) (∀x ∈ Q)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I),

where Q is a BCK-algebra contained in X. If I is a Smarandache ideal of X related to every BCK-algebra

contained in X, we simply say that I is a Smarandache ideal of X.

In what follows, let X and Q denote a Smarandache BCI-algebra and a BCK-algebra which is properly

contained in X, respectively.

Definition 2.2. ([2]) A non-empty subset I of X is called a Smarandache ideal of X related to Q (or briefly, a

Q-Smarandache ideal) of X if it satisfies:

(c1) 0 ∈ I,

(c2) (∀x ∈ Q)(∀y ∈ I)(x ∗ y ∈ I implies x ∈ I).

If I is a Smarandache ideal of X related to every BCK-algebra contained in X, we simply say that I is a

Smarandache ideal of X.

Definition 2.3. ([2]) A non-empty subset I of X is called a Smarandache fresh ideal of X related to Q (or briefly,

a Q-Smarandache fresh ideal of X) if it satisfies the conditions (c1) and

(c3) (∀x, y, z ∈ Q)(((x ∗ y) ∗ z) ∈ I and y ∗ z ∈ I imply x ∗ z ∈ I).

Theorem 2.4. ([2]) Every Q-Smarandache fresh ideal which is contained in Q is a Q-Smarandache ideal.

The converse of Theorem 2.4 need not be true in general.

Theorem 2.5. ([2]) Let I and J be Q-Smarandache ideals of X and I ⊂ J . If I is a Q-Smarandache fresh ideal

of X, then so is J .

Definition 2.6. ([2]) A non-empty subset I of X is called a Smarandache clean ideal of X related to Q (or briefly,

a Q-Smarandache clean ideal of X) if it satisfies the conditions (c1) and

(c4) (∀x, y ∈ Q)(z ∈ I)((x ∗ (y ∗ x)) ∗ z ∈ I implies x ∈ I).
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Theorem 2.7. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache ideal.

The converse of Theorem 2.7 need not be true in general.

Theorem 2.8. ([2]) Every Q-Smarandache clean ideal of X is a Q-Smarandache fresh ideal.

Theorem 2.9. ([2]) Let I and J be Q-Smarandache ideals of X and I ⊂ J . If I is a Q-Smarandache clean ideal

of X, then so is J .

A fuzzy set µ in X is called a fuzzy subalgebra of a BCI-algebra X if µ(x∗y) ≥ min{µ(x), µ(y)} for all x, y ∈ X.

A fuzzy set µ in X is called a fuzzy ideal of X if

(F1) µ(0) ≥ µ(x) for all x ∈ X,

(F2) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ X.

Let µ be a fuzzy set in a set X. For t ∈ [0, 1], the set µt := {x ∈ X|µ(x) ≥ t} is called a level subset of µ.

3. Smarandache fuzzy ideals

Definition 3.1. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

subalgebra of X if it satisfies

(SF1) µ(0) ≥ µ(x) for all x ∈ P ,

(SF2) µ(x ∗ y) ≥ min{µ(x), µ(y)} for all x, y ∈ P ,

where P ( X, P is a BCK-algebra with |P | ≥ 2.

A map µ : X → [0, 1] is called a Smarandache fuzzy ideal of X if it satisfies (SF1) and

(SF2) µ(x) ≥ min{µ(x ∗ y), µ(y)} for all x, y ∈ P ,

where P ( X, P is a BCK-algebra with |P | ≥ 2. This Smarandache fuzzy subalgebra (ideal) is denoted by µP ,

i.e., µP : P → [0, 1] is a fuzzy subalgebra(ideal) of X.

Example 3.2. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([1]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 3 3 3

1 1 0 1 3 3 3

2 2 2 0 3 3 3

3 3 3 3 0 0 0

4 4 3 4 1 0 0

5 5 3 5 1 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2, 3},
0.7 otherwise

Clearly µ is a Samrandache fuzzy subalgebra of X. It is verified that µ restricted to a subset {0, 1, 2, 3} which is

a subalgebra of X is a fuzzy subalgebra of X, i.e., µ{0,1,2,3} : {0, 1, 2, 3} → [0, 1] is a fuzzy subalgebra of X. Thus

µ : X → [0, 1] is a Smarandache fuzzy subalgebra of X. Note that µ : X → [0, 1] is not a fuzzy subalgebra of X,

since µ(5 ∗ 4) = µ(0) = 0.5 ≯ min{µ(5), µ(4)} = 0.7.
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Example 3.3. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([1]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 4 4

1 1 0 0 1 4 4

2 2 2 0 2 4 4

3 3 3 3 0 4 4

4 4 44 4 0 0

5 5 4 4 5 1 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 2}
0.7 otherwise

Clearly µ is a Samrandache fuzzy ideal of X. It is verified that µ restricted to a subset {0, 1, 2} which is an ideal of

X is a fuzzy ideal of X, i.e., µ{0,1,2} : {0, 1, 2} → [0, 1] is a fuzzy ideal of X. Thus µ : X → [0, 1] is a Smarandache

fuzzy ideal of X. Note that µ : X → [0, 1] is not a fuzzy ideal of X, since µ(2) = 0.5 ≯ min{µ(2∗4) = µ(4), µ(4)} =

µ(4) = 0.7.

Lemma 3.4. Every Smarandache fuzzy ideal µP of a Smarandache BCI-algebra X is order reversing.

Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. If x, y ∈ P with x ≤ y, then x ∗ y = 0. Hence we have

µ(x) ≥ min{µ(x ∗ y), µ(y)} = min{µ(0), µ(y)} = µ(y). �

Theorem 3.5. Any Smarandache fuzzy ideal µP of a Smarandache BCI-algebra X must be a Smarandache

fuzzy subalgebra of X.

Proof. Let P be a BCK-algebra with P ( X and |X| ≥ 2. Since x ∗ y ≤ x for any x, y ∈ P , it follows from

Lemma 3.4 that µ(x) ≤ µ(x ∗ y), so by (SF2) we obtain µ(x ∗ y) ≥ µ(x) ≥ min{µ(x ∗ y), µ(y)} ≥ min{µ(x), µ(y)}.
This shows that µ is a Smarandache fuzzy subalgebra of X, proving the theorem. �

Proposition 3.6. Let µP be a Smarandache fuzzy ideal of a Smarandache BCI-algebra X. If the inequality

x ∗ y ≤ z holds in P , then µ(x) ≥ min{µ(x), µ(z)} for all x, y, z ∈ P.

Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. If x ∗ y ≤ z in P , then (x ∗ y) ∗ z = 0. Hence we

have µ(x ∗ y) ≥ min{µ((x ∗ y) ∗ z), µ(z)} = min{µ(0), µ(z)} = µ(z). It follows that µ(x) ≥ min{µ(x ∗ y), µ(y)} ≥
min{µ(y), µ(z)}. �

Theorem 3.7. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy subalgebra µP of X is a Smaran-

dache fuzzy ideal of X if and only if for all x, y ∈ P , the inequality x ∗ y ≤ z implies µ(x) ≥ min{µ(y), µ(z)}.

Proof. Suppose that µP is a Smarandache fuzzy subalgebra of X satisfying the condition x ∗ y ≤ z implies

µ(x) ≥ min{µ(y), µ(z)}. Since x ∗ (x ∗ y) ≤ y for all x, y ∈ P , it follows that µ(x) ≥ min{µ(x ∗ y), µ(y)}. Hence

µP is a Smarandache fuzzy ideal of X. The converse follows from Proposition 3.6. �

Definition 3.8. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

clean ideal of X if it satisfies (SF1) and

(SF3) µ(x) ≥ min{µ(x ∗ (y ∗ x)) ∗ z), µ(z)} for all x, y, z ∈ P ,
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where P ( X and P is a BCK-algebra with |P | ≥ 2. This Smarandache fuzzy clean ideal is denoted by µP , i.e.,

µP : P → [0, 1] is a Smarandache fuzzy clean ideal of X.

Example 3.9. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 0 0 0 5

2 2 1 0 1 0 5

3 3 4 4 4 0 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.4 if x ∈ {0, 1, 2, 3}
0.8 otherwise

Clearly µ is a Samrandache fuzzy clean ideal of X, but µ is not a fuzzy clean ideal of X, since µ(3) = 0.4 ≯
min{µ((3 ∗ (0 ∗ 3)) ∗ 5), µ(5)} = min{µ(5), µ(5)} = µ(5) = 0.8.

Theorem 3.10. Let X be a Smarandache BCI-algebra. Any Smarandache fuzzy clean ideal µP of X must be a

Smarandache fuzzy ideal of X.

Proof. Let X be a BCK-algebra with P ( X and |P | ≥ 2. Let µP : P → [0, 1] be a Smarndache fuzzy clean

ideal of X. If we let y := x in (SF3), then µ(x) ≥ min{µ((x ∗ (x ∗ x)) ∗ z), µ(z)} = min{µ((x ∗ 0) ∗ z), µ(z)} =

min{µ(x ∗ z), µ(z)}, for all x, y, z ∈ P . This shows that µ satisfies (SF2). Combining (SF1), µP is a Smarandache

fuzzy ideal of X, proving the theorem. �

Corollary 3.11. Every Smarandache fuzzy clean ideal µP of a Smarndache BCI-algebra X must be a Smaran-

dache fuzzy subalgebra of X.

Proof. It follows from Theorem 3.5 and Theorem 3.10. �

The converse of Theorem 3.10 may not be true as shown in the following example.

Example 3.12. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 0 5

2 2 2 0 0 0 5

3 3 3 3 0 0 5

4 4 3 4 1 0 5

5 5 5 5 5 5 0

Let µP be a fuzzy set in P = {0, 1, 2, 3, 4} defined by µ(0) = µ(2) = 0.8 and µ(1) = µ(3) = µ(4) = 0.3. It is easy

to check that µP is a fuzzy ideal of X. Hence µ : X → [0, 1] is a Smarandache fuzzy ideal of X. But it is not a

Smarandache fuzzy clean ideal of X since µ(1) = 0.3 ≯ min{µ((1 ∗ (3 ∗ 1)) ∗ 2), µ(2)} = min{µ(0), µ(2)} = 0.8.

Theorem 3.13. Let X be a Smarandache implicative BCI-algebra. Every Smarandache fuzzy ideal µP of X is

a Smarandache fuzzy clean ideal of X.
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Proof. Let P be a BCK-algebra with P ( X and |P | ≥ 2. Since X is a Smarandache implicative BCI-algebra,

we have x = x ∗ (y ∗ x) for all x, y ∈ P . Let µP be a Smarandache fuzzy ideal of X. It follows from (SF2) that

µ(x) ≥ min{µ(x ∗ z), µ(z)} ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}, for all x, y, z ∈ P . Hence µP is a Smarandache clean

ideal of X. The proof is complete. �

In what follows, we give characterizations of fuzzy implicative ideals.

Theorem 3.14. Let X be a Smarandache BCI-algebra. Suppose that µP is a Smarandache fuzzy ideal of X.

Then the following equivalent:

(i) µP is Smarandache fuzzy clean,

(ii) µ(x) ≥ µ(x ∗ (y ∗ x)) for all x, y ∈ P ,

(iii) µ(x) = µ(x ∗ (y ∗ x)) for all x, y ∈ P .

Proof. (i) ⇒ (ii): Let µP be a Smarandache fuzzy clean ideal of X. It follows from (SF3) that µ(x) ≥ min{µ((x ∗
(y ∗ x)) ∗ 0), µ(0)} = min{µ(x ∗ (y ∗ x)), µ(0)} = µ(x ∗ (y ∗ x)), ∀x, y ∈ P. Hence the condition (ii) holds.

(ii) ⇒ (iii): Since X is a Smarnadache BCI-algebra, we have x ∗ (y ∗ x) ≤ x for all x, y ∈ P . It follows from

Lemma 3.4 that µ(x) ≤ µ(x ∗ (y ∗ x)). By (ii), µ(x) ≥ µ(x ∗ (y ∗ x)). Thus the condition (iii) holds.

(iii) ⇒ (i): Suppose that the condition (iii) holds. Since µP is a Smarandache fuzzy ideal, by (SF2), we have

µ(x ∗ (y ∗ x)) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}. Combining (iii), we obtain µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}.
Hence µ satisfies the condition (SF3). Obviously, µ satisfies (SF1). Therefore µ is a fuzzy clean ideal of X. Hence

the condition (i) holds. The proof is complete. �

For any fuzzy sets µ and ν in X, we write µ ≤ ν if and only if µ(x) ≤ ν(x) for any x ∈ X.

Definition 3.15. Let X be a Smarandache BCI-algebra and let µP : P → [0, 1] be a Smarandache fuzzy

BCI-algebra of X. For t ≤ µ(0), the set µt := {x ∈ P |µ(x) ≥ t} is called a level subset of µP .

Theorem 3.16. A fuzzy set µ in P is a Smarandache fuzzy clean ideal of X if and only if, for all t ∈ [0, 1], µt is

either empty or a Smarandache clean ideal of X.

Proof. Suppose that µP is a Smarandache fuzzy clean ideal of X and µt 6= ∅ for any t ∈ [0, 1]. It is clear

that 0 ∈ µt since µ(0) ≥ t. Let µ((x ∗ (y ∗ x)) ∗ z) ≥ t and µ(z) ≥ t. It follows from (SF3) that µ(x) ≥
min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)} ≥ t, namely, x ∈ µt. This shows that µt is a Smarandache clean ideal of X.

Conversely, assume that for each t ∈ [0, 1], µt is either empty or a Smaranadche clean ideal of X. For any x ∈ P ,

let µ(x) = t. Then x ∈ µt. Since µt(6= ∅) is a Smarandache clean ideal of X, therefore 0 ∈ µt and hence µ(0) ≥
µ(x) = t. Thus µ(0) ≥ µ(x) for all x ∈ P . Now we show that µ satisfies (SF3). If not, then there exist x′, y′, z′ ∈ P
such that µ(x′) < min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}. Taking t0 := 1

2{µ(x′) + min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}}, we

have µ(x′) < t0 < min{µ((x′ ∗ (y′ ∗ z′)) ∗ z′), µ(z′)}. Hence x′ /∈ µt0 , (x′ ∗ (y′ ∗ x′)) ∗ z ∈ µt0 , and z′ ∈ µt0 , i.e.,

µt0 is not a Smaraqndache clean of X, which is a contradiction. Therefore, µP is a Smarnadche fuzzy clean ideal,

completing the proof. �

Theorem 3.17. ([2]) (Extension Property) Let X be a Smarandache BCI-algebra. Let I and J be Q-

Smarandache ideals of X and I ⊆ J ⊆ Q. If I is a Q-Smarandache clean ideal of X, then so is J .

Next we give the extension theorem of Smarandache fuzzy clean ideals.
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Theorem 3.18. Let X be a Smarandache BCI-algebra. Let µ and ν be Smarandache fuzzy ideals of X such

that µ ≤ ν and µ(0) = ν(0). If µ is a Smarndache fuzzy clean ideal of X, then so is ν.

Proof. It suffices to show that for any t ∈ [0, 1], νt is either empty or a Smarandache clean ideal of X. If the level

subset νt is non-empty, then µt 6= ∅ and µt ⊆ νt. In fact, if x ∈ µt, then t ≤ µ(x); hence t ≤ ν(x), i.e, x ∈ νt. So

µt ⊆ νt. By the hypothesis, since µ is a Smarandache fuzzy clean ideal of X, µt is a Smarandache clean of X by

Theorem 3.16. It follows from Theorem 3.17 that νt is a Smarandache clean ideal of X. Hence ν is a Smarandache

fuzzy clean of X. The proof is complete. �

Definition 3.19. Let X be a Smarandache BCI-algebra. A map µ : X → [0, 1] is called a Smarandache fuzzy

fresh ideal of X if it satisfies (SF1) and

(SF4) µ(x ∗ z) ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)} for all x, y, z ∈ P ,

where P is a BCK-algebra with P ( X and |P | ≥ 2. This Smarandache fuzzy ideal is denoted by µP , i.e.,

µP : P → [0, 1] is a Smarandache fuzzy fresh ideal of X.

Example 3.20. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 1 0 1 5

2 2 2 0 2 0 5

3 3 1 3 0 3 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0

Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 1, 3},
0.9 otherwise

Clearly µ is a Samrandache fuzzy fresh ideal of X. But it is not a fuzzy fresh ideal of X, since µ(2 ∗ 4) = µ(0) =

0.5 ≯ min{µ((2 ∗ 5) ∗ 4), µ(5 ∗ 4)} = µ(5) = 0.9.

Theorem 3.21. Any Smarandache fuzzy fresh ideal of a Smarandache BCI-algebra X must be a Smarandache

fuzzy ideal of X.

Proof. Taking z := 0 in (SF4) and x ∗ 0 = x, we have µ(x ∗ 0) ≥ min{µ((x ∗ y) ∗ 0), µ(y ∗ 0)}. Hence µ(x) ≥
min{µ(x ∗ y), µ(y)}. Thus (SF2) holds. �

The converse of Theorem 3.21 may not be true as show in the following example.

Example 3.22. Let X := {0, 1, 2, 3, 4, 5} be a Smarandache BCI-algebra ([2]) with the following Cayley table:

∗ 0 1 2 3 4 5

0 0 0 0 0 0 5

1 1 0 0 0 1 5

2 2 1 0 1 2 5

3 3 1 1 0 3 5

4 4 4 4 4 0 5

5 5 5 5 5 5 0
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Define a map µ : X → [0, 1] by

µ(x) :=

{
0.5 if x ∈ {0, 4},
0.4 otherwise

Clearly µ(x) is a Samrandache fuzzy ideal of X. But µ(x) is not a Samrandache fuzzy fresh ideal of X, since

µ(2 ∗ 3) = µ(1) = 0.4 ≯ min{µ((2 ∗ 1) ∗ 3), µ(1 ∗ 3)} = min{µ(1 ∗ 3), µ(0)} = µ(0) = 0.5.

Proposition 3.23. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal µP of X is a Smarandache

fuzzy fresh ideal of X if and only if it satisfies the condition µ(x ∗ y) ≥ µ((x ∗ y) ∗ y) for all x, y ∈ P .

Proof. Assume that µP is a Smarandache fuzzy fresh ideal of X. Putting z := y in (SF4), we have µ(x ∗ y) ≥
min{µ((x ∗ y) ∗ y), µ(y ∗ y)} = min{µ((x ∗ y) ∗ y), µ(0)} = µ((x ∗ y) ∗ y), ∀x, y ∈ P.

Conversely, let µP be Smarandache fuzzy ideal of X such that µ(x∗y) ≥ µ((x∗y)∗y). Since, for all x, y, z ∈ P ,

((x ∗ z) ∗ z) ∗ (y ∗ z) ≤ (x ∗ z) ∗ y = (x ∗ y) ∗ z, we have µ((x ∗ y) ∗ z) ≤ µ(((x ∗ z) ∗ z) ∗ (y ∗ z)). Hence

µ(x ∗ z) ≥ µ((x ∗ z) ∗ z) ≥ min{µ(((x ∗ z) ∗ z) ∗ (y ∗ z)), µ(y ∗ z)} ≥ min{µ((x ∗ y) ∗ z), µ(y ∗ z)}. This completes

the proof. �

Since (x ∗ y) ∗ y ≤ x ∗ y, it follows from Lemma 3.4 that µ(x ∗ y) ≤ µ((x ∗ y) ∗ y). Thus we have the following

theorem.

Theorem 3.24. Let X be a Smarandache BCI-algebra. A Smarandache fuzzy ideal µP of X is a Smarandache

fuzzy fresh if and only if it satisfies the identity

µ(x ∗ y) = µ((x ∗ y) ∗ y), textfor all x, y ∈ X.

We give an equivalent condition for which a Smarandache fuzzy subalgebra of a Smarandache BCI-algebra to

be a Smarandache fuzzy clean ideal of X.

Theorem 3.25. A Smarandache fuzzy subalghebra µP of X is a Smarandache fuzzy clean ideal of X if and only

if it satisfies

(x ∗ (y ∗ x)) ∗ z ≤ u implies µ(x) ≥ min{µ(z), µ(u)} for allx, y, z, u ∈ P. (∗)

Proof. Assume that µP is a Smarandache fuzzy clean ideal of X. Let x, y, z, u ∈ P be such that (x∗(y∗x))∗z ≤ u.

Since µ is a Smarandache fuzzy ideal of X, we have µ(x∗ (y ∗x)) ≥ min{µ(z), µ(u)} by Theorem 3.7. By Theorem

3.14-(iii), we obtain µ(x) ≥ min{µ(z), µ(u)}.
Conversely, suppose that µP satisfies (∗). Obviously, µP satisfies (SF1), since (x∗ (y ∗x))∗ ((x∗ (y ∗x))∗z) ≤ z,

by (∗), we obtain µ(x) ≥ min{µ((x ∗ (y ∗ x)) ∗ z), µ(z)}, which shows that µP satisfies (SF3). Hence µP is a

Smarandache fuzzy clean ideal of X. The proof is complete. �
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