Malaya
Journal of
MatematikMJM
an international journal of mathematical sciences with
computer applications...

Smarandache-lattice and algorithms

N. Kannappa^{*a*,*} and K. Suresh^{*b*}

^a Head and Associate professor, PG& Research Department of Mathematics, T.B.M.L, College, Porayar–609307, TamilNadu, India.

^b Assistant Professor, Department of Mathematics, Mailam Engineering college, Mailam–604304, TamilNadu, India.

Abstract

www.malayajournal.org

In this paper we introduced algorithms for constructing Smarandache-lattice from the Boolean algebra through Atomic lattice, weakly atomic modular lattice, Normal ideals, Minimal subspaces, Structural matrix algebra, Residuated lattice. We also obtained algorithms for Smarandache-lattice from the Boolean algebra. For basic concept we refer to Gratzer [3].

Keywords: Smarandache-lattice, Lattice, Boolean algebra.

2010 MSC: 54A05, 54D10.

©2012 MJM. All rights reserved.

1 Introduction

In this paper we have introduced algorithms to construct Smarandache-lattice. Smarandache-lattice is one the Smarandache-2-Algebraic Structure. By [7] Smarandache *n*-structure on a set *S* means a weak structure $\{w_0\}$ on *S* such that there exists a chain of proper subsets $P_{n-1} < P_{n-2} < \cdots < P_2 < P_1 < S$, where '<' means 'included in', whose corresponding structures verify the inverse chain $\{w_{n-1}\} > \{w_{n-2}\} > \cdots > \{w_2\} > \{w_1\} > \{w_0\}$, where '>' signifies 'strictly stronger' (i.e., structure satisfying more axioms)By proper subset of a set *S*, we mean a subset *P* of *S*, different from the empty set, from the original set *S*, and from the idempotent elements if any. And by structure on *S* we mean the strongest possible structure $\{w\}$ on *S* under the given operation(s). As a particular case, a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set *S*, is a weak structure $\{w_0\}$ on *S* such that there exists a proper subset *P* of *S*, which is embedded with a stronger structure $\{w_1\}$.

Example: Semi lattice < Lattice < Boolean algebra.

2 Preliminaries

Definition 2.1. The Lattice *L* is called complemented Lattice. If *L* has a greatest element and least element and each element has at least one complement; that is, for $b \in L$, there exists $a \in L$ such that $a \lor b = 1$, $a \land b = 0$.

Definition 2.2. The Smarandache-lattice is defined to be a lattice *S*, such that a proper subset of *S*, is a Boolean algebra (with respect to with same induced operations). By proper subset we understand a set included in *S*, different from the empty set, from the unit element if any, and from *S*.

Definition 2.3 (Alternative Definition 2.2). *If there exists a non empty set L which is a Boolean algebra such that its Superset S of L is a Lattice with respect same induced operations. Then S is called Smarandache-lattice.*

Definition 2.4. *A Residuated lattice is an algebraic structure* $(R, \land, \lor, \rightarrow, \otimes, \oplus, 0, 1)$ *such that*

^{*}Corresponding author.

E-mail address: sivaguru91@yahoo.com (N. Kannappa), Sureshphd2009@gmail.com(K. Suresh).

- (i) $(R, \land, \lor, \rightarrow, \otimes, \oplus, 1, 30)$ is bounded lattice with least element 1 and greatest element 30.
- (ii) $(R, \otimes, 30)$ is Commutative monoid where 30 is a unit element.
- (iii) $a * b \le c$ if and only if $a \le b \rightarrow c$.

Definition 2.5. Let $(L, \land, \lor, 0, 1)$ be a Boolean algebra. A subset I of L is called an ideal of B if

- (*i*) $0 \in I$.
- (ii) $a, b \in I \Rightarrow a \lor b \in I$.
- (iii) $a \in I$ and $b \leq a \Rightarrow b \in I$.

Definition 2.6. Given an element a of a Boolean algebra (or other poset) A, recall that a is atomic in A if a is minimal among non-trivial (non-bottom) elements of A. That is, given any $b \in A$ such that $b \leq a$, either b = 0 or b = a. A Boolean algebra A is atomic if we have $b = \bigvee_{I} a_i$ for every $b \in A$, where $\{a_i\}_{I}$ is some set of atoms in A.

Definition 2.7. Boolean algebra is a distributive lattice which satisfies lattices whose congruences form a Boolean algebra.

- (i) Involution: (a')' = a.
- (ii) Complements: $a \lor a' = 1$ and $a \land a' = 0$.
- (iii) Identities: $a \wedge 1 = a$ and $a \vee 0 = a$, $a \vee 1 = 1$ and $a \wedge 0 = 0$.
- (iv) De Morgan's laws: $(a \land b)' = a' \lor b', (a \lor b)' = a' \land b'.$

3 Characterizations

3.1 Atomic lattice: Algorithm-3.1

Peter Crawly has introduced the notion, "Lattices whose congruence's form a Boolean algebra 1960. In [6] it has been proved that *S* is an arbitrary lattice, L is *s* a Boolean algebra if and only if for each proper quotient a/b of *S* there exists a finite chain $a = x_0 > x_1 > \cdots > x_k = b$ such that each c_{i-1}/c_i is minimal. We have proved that Boolean algebra itself is a atomic lattice ($L = A_0$), and hence every element of *L* is join of atoms c_{i-1}/c_i generated by minimal quotients x_i/y_j , we must have $c_{i-1}/c_i = x_i/x_j \in S$. The union of atomic lattice is called as a Lattice at the same time the intersection of atomic Lattice is non-zero unique set included in a lattice. By Gratze [3], *S* is a Lattice by definition *S* is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra *L*.

Step 2: Let $L = A_0$.

Step 3: Let $A_i = \theta_{c_{i-1}/c_i}$, $i = 1, 2, \dots$ be supersets of θ_{c_0/c_1} .

Step 4: Let $S = \bigcup_{i=1}^{K} \theta_{c_{i-1}/c_i}$.

Step 5: Choose sets A_j from $A'_i s$ subject to for all $a, b \in S$. A Boolean algebra A is atomic if for every $b \in A$ such that $b = V_I a_i b \in A$, where $(a_i)_I$ is some set of atoms in A.

Step 6: Verify that $\cap A_j = \theta_{c_0/c_1} \cap \theta_{c_1/c_2} \cap \theta_{c_2/c_3} \cap \theta_{c_3/c_4} \dots \cap \theta_{c_{k-1}/c_k} = \theta_{c_0/c_1} \neq \{0\} \subset S.$

Step 7: If Step (6) is a true, then we write *S* is a Smarandache-lattice.

3.2 Weakly atomic modular lattice: Algorithm-3.2

Peter Crawly has introduced the notion, "Lattices whose congruence's form a Boolean algebra 1960. In [6] it has been proved that *S* be a weakly atomic modular lattice. Then $\theta(L)$ is a Boolean algebra if and only if every quotient of *L* is finite dimensional. We have proved *L* be a weakly atomic modular Lattice itself Boolean algebra $(L = M_0)$. The union of weakly atomic modular Lattice called as a Lattice at the same time the intersection of weakly atomic modular Lattice is non-zero unique set included in a Lattice. By Gratzer [3], *S* is a lattice by definition *S* is a Smarandache-latticeAccording to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra *L*.

Step 2: Let $L = M_0$.

Step 3: Let M_i , i = 0, 1, 2... be supersets of M_0 .

- Step 4: Let $S = \bigcup M_i$.
- Step 5: Choose sets M_j from $M_i s$ subject to for all $a, b \in S$, $(a')' = a, a \lor a' = 1$ and $a \land a' = 0$, $a \land 1 = a$ and $a \lor 0 = a, a \lor 1 = 1$ and $a \land 0 = 0$, $(a \land b)' = a' \lor b'$, $(a \lor b)' = a' \land b'$.

Step 6: Verify that for every $\cap M_j = M_0 \neq \{0\} \subset S$.

Step 7: If step (6) is a true, then we write *S* is a Smarandache-lattice

3.3 Normal ideals: Algorithm-3.3

In [4], it has been proved that NI is a Normal ideals itself complete semi-Lattice(Boolean algebra). The union of Normal ideals called as a Lattice at the same time the intersection of Normal ideals contained in all other nonzero normal ideals of Lattice. By Gratzer [3], S is a Lattice by definition S is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra *L*.

Step 2: Let $L = I_0$.

Step 3: Let I_i , i = 0, 1, 2, ... be supersets of I_0 .

```
Step 4: Let S = \cup I_i.
```

Step 5: Choose sets I_j from I_i 's, subject to for all $a, b \in S$.

```
(i) 0 \in I
(ii) a, b \in I \Rightarrow a \lor b \in I
```

(iii) $a \in I$ and $b \le a \Rightarrow b \in I$.

Step 6: Verify that for every $\cap I_j = I_0 \neq \{0\} \subset S$.

Step 7: If Step (6) is a true, then we write *L* is a Smarandache-lattice.

3.4 Minimal subspaces: Algorithem 3.4

In 2013, Emira, Barker George Philip have introduced the notion of a Lattice to be a Boolean algebra. Emira, Barker George Philip in their paper [1] have proved, if the Lattice *L* of subspaces of a structural algebra is complemented then the complement *W* is unique. Suppose $V \in S$, *V* is a sum of minimal subspaces, each of which is in other irreducible subspaces then *V* has complement in *S*. *L* is a Boolean algebra if and only if there is no chain of non zero irreducible elements. We have proved V_0 be a Minimal subspaces itself Boolean algebra. The union of Minimal subspaces called as a Lattice at the same time the intersection of Minimal subspaces is nonzero unique set included in a Lattice. By Gratzer, [3], *S* is a lattice by definition *S* is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra *L*.

Step 2: Let $L = V_0$.

Step 3: Let V_i , i = 0, 1, 2, ... be supersets of V_0 .

Step 4: Let $S = \bigcup V = (U_i \cap V_i)$.

Step 5: Choose sets V_j from V_i subject to for all $B_1, B_2 \in S$ such that $B_1 = B \cap V, B_2 = B/B_1 \Leftrightarrow \text{span } B_2 \in S, V$ has a complement in *S* where *B* is a basis for *S*. Each U_j has a complement W_j now suppose *V* is the sum of minimal subspaces

 $V = U_1 + U_2 + \dots + U_S,$ $W = W_1 \cap W_2 \cap \dots \cap W_S \in S$ $U \cap W = U_1 + \dots + U_S \cap W \subseteq (U_1 \cap W_1) + \dots + (U_S \cap W_S)$ $V + W = V + (W_1 \cap \dots \cap W_S) \supseteq (U_1 + W_1) \cap \dots \cap (U_S + W_S) = F^n.$

Step 6: $\cap V_j = V_0 \neq \{0\} \subset S$.

Step 7: If step (6) is a true, then we write *S* is a Smarandache-lattice.

3.5 Point lattice: Algorithm-3.5

In 2013, Emira, Barker George Philip have introduced the notion of a Lattice to be a Boolean algebra. Akkurt,Mustafa,Emira,barker George Philip in their paper [1] have proved, If the Lattice *L* of subspaces of a structural algebra is complemented then the complement *W* is unique, where $W = V_1 + V_2 + \cdots + V_k$ is the collection of the irreducible subspaces contained in *W*. Let $M_n(F,\rho)$ be structural matrix algebra with $L = Lat(M_n(F,\rho))$ its lattice.L is Boolean algebra if and only if *L* is an atomic lattice. We have proved P_0 be a Point Lattice itself Boolean algebra. The union of Point Lattice is called as a Lattice at the same time the intersection of Point Lattice is nonzero unique set included in a Lattice. By Gratzer [3], *S* is a Lattice by definition *S* is a Smarandache-lattice.

According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra *L*.

Step 2: Let $L = P_0$ point lattice.

- Step 3: Let P_i , i = 0, 1, 2, ... be super sets of P_0 .
- Step 4: Let $S = \cup P_i$.
- Step 5: Choose sets P_j from P_i subject to for all $P_1, P_2 \in L$ such that $P_1 = B \cap P$, $P_2 = B/B_1 \Leftrightarrow \text{span } B_2 \in S, V$ has a complement in L, where S is a basis for L each U_j has a complement W_j now suppose V is the sum of minimal.

Step 6: $W = \cap P_j = P_0 \neq \{0\} \subset S$.

Step 7: If step (6) is a true, then we write *S* is a Smarandache-lattice.

3.6 Residuated lattice: Algorithm-3.6

 $L = \{1, 30\}$ is a Boolean algebra with respect to $(L, \lor, \land, 1, 30)$ [5]. We have proved that all axioms are satisfied for Boolean algebra and this Boolean algebra itself is a Residuated Lattice. The union of Residuated Lattice is called as a Lattice at the same time the intersection of Residuated lattices is a unique nonzero set included in Lattice. By Gratzer [3], *S* is a Lattice by definition *S* is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

- Step 1: Consider a nonempty Set $L = \{1, 30\}$.
- Step 2: Verify that $L = \{1, 30\}$ is a Boolean algebra with respect to \land, \lor .

For, check the following conditions

(i) Associative Law: For any $a, b, c \in L$, $a \lor (b \lor c) = (a \lor b) \lor c \lor$ is defined as follows:

$$1 \lor (1 \lor 1) = 1 \lor 1 = 1 \in L$$

$$(1 \lor 1) \lor 1 = 1 \lor 1 = 1 \in L$$

$$1 \lor (1 \lor 1) = (1 \lor 1) \lor 1$$

$$30 \lor (30 \lor 30) = 30 \lor 30 = 30 \in L$$

$$(30 \lor 30) \lor 30 = 30 \lor 30 = 30 \in L$$

$$(30 \lor 30) \lor 30 = (30 \lor 30) \lor 30$$

$$1 \lor (30 \lor 30) = 1 \lor 30 = 30 \in L$$

$$(1 \lor 30) \lor 30 = 30 \lor 30 = 30 \in L$$

$$1 \lor (30 \lor 30) = (1 \lor 30) \lor 30$$

$$1 \lor (30 \lor 1) = 1 \lor 30 = 30 \in L$$

$$(1 \lor 30) \lor 1 = 30 \lor 1 = 30 \in L$$

$$1 \lor (30 \lor 1) = (1 \lor 30) \lor 1$$

$$1 \land (1 \land 1) = 1 \land 1 = 1 \in L$$

$$(1 \land 1) \land 1 = 1 \land 1 = 1 \in L$$

$$1 \land (1 \land 1) = (1 \land 1) \land 1$$

$$30 \land (30 \land 30) = 30 \land 30 = 30 \in L$$

$$(30 \land 30) = 30 \land 30 = 30 \in L$$

$$(30 \land 30) = (30 \land 30) \land 30$$

 \wedge is defined as follows:

$$1 \wedge (30 \wedge 30) = 1 \wedge 30 = 1 \in L$$

$$(1 \wedge 30) \wedge 30 = 1 \wedge 30 = 1 \in L$$

$$1 \wedge (30 \wedge 30) = (1 \wedge 30) \wedge 30$$

$$1 \wedge (30 \wedge 1) = 1 \wedge 1 = 1 \in L$$

$$(1 \wedge 30) \wedge 1 = 1 \wedge 1 = 1 \in L$$

$$1 \wedge (30 \wedge 1) = (1 \wedge 30) \wedge 1$$

(ii) Commutative law: For any $a,b \in \mathcal{L}, (a \lor b) = (b \lor a)$

$$1 \lor 1 = 1 \lor 1 = 1 \in L$$

 $30 \lor 30 = 30 \lor 30 = 30 \in L$
 $1 \lor 30 = 30 \lor 1 = 30 \in L$

(iii) Distributive law: For all

$$\begin{aligned} a, b, c \in L \ a \lor (b \land c) &= (a \lor b) \land (a \lor c) \\ a, b, c \in L \ a \land (b \lor c) &= (a \land b) \lor (a \land c) \\ 1 \lor (30 \land 30) &= (1 \lor 30) \land (1 \lor 30) = 30 \in L \\ 1 \lor (1 \land 1) &= (1 \lor 1) \land (1 \lor 1) = 1 \in L \\ 30 \lor (30 \land 30) &= (30 \lor 30) \land (30 \lor 30) = 30 \in L \\ 30 \lor (1 \land 30) &= (30 \lor 1) \land (30 \lor 30) = 30 \in L \\ 1 \land (30 \lor 30) &= (1 \land 30) \lor (1 \land 30) = 1 \in L \\ 1 \land (1 \lor 1) &= (1 \land 1) \lor (1 \land 1) = 1 \in L \\ 30 \land (30 \lor 30) &= (30 \land 30) \lor (30 \land 30) = 30 \in L \\ 30 \land (1 \lor 30) &= (30 \land 1) \lor (30 \land 30) = 30 \in L. \end{aligned}$$

- (iv) Identity element there exists identity 1 ('0'element) for \lor and 30('1' element) for \land For any $a \in L(a \lor 1) = a$, $a \land 30 = a$ For $1 \in L(1 \lor 1) = 1$, $1 \land 30 = 1 \in L$ For $30 \in L(1 \lor 30) = 30$, $30 \land 30 = 30 \in L$
- (v) Complement every element of *L* has a complement with in *L* there exists a' is the complement of a then $a \in L$, $a \lor a' = 30$, $a \land a' = 1$, $1' = 30 \ 30' = 1$.
- (vi) Idempotent Laws: For any $a \in L$, $a \lor a = a$, $a \land a = a$, $1 \lor 1 = 1$, $1 \land 1 = 1$, $30 \lor 30 = 30$, $30 \land 30 = 30$
- (vii) Null Law: For any $a \in L$, $a \lor 1 = 1$, $a \land 0 = 0$, 0 element is 1 and 1 element is 30. $30 \lor 1 = 30$, $30 \lor 30 = 30$, $1 \land 1 = 1$, $30 \land 1 = 1$.
- (viii) Absorption Law: For any $a, b \in L, a \land (a \lor b) = a, a \lor (a \land b) = a$

$$30 \land (30 \lor 1) = 30, 30 \lor (30 \land 1) = 30$$
$$1 \land (1 \lor 30) = 1, 1 \lor (1 \land 30) = 1$$

- (ix) De-Morgan's Law: For any $a, b \in L$, $(a \lor b)' = a' \land b'$, $(a \land b)' = a' \lor b'$.
 - $(1 \lor 30)' = 30' = 1$ $1' \land 30' = 30 \land 1 = 1$ $(1 \lor 30)' = 1' \land 30' = 30$ $(1 \land 30)' = 1' = 30$ $1' \lor 30' = 30 \lor 1 = 30$ $(1 \land 30)' = 1' \lor 30'$
- (x) Involution Law: $a \in L$, (a')' = a, (1')' = 30' = 1 and (30')' = 1' = 30. $L = \{1, 30\}$ satisfies all the conditions of Boolean algebra. Hence $L = (L, \land, \lor, 1, 30')$ is a Boolean algebra.
- Step 3: Let $L = R_0$ be a Residuated lattice. Let $R_0 = L = \{1, 30\}$.

Step 4: Consider super sets R_i ; i = 01, 2, 3 of R_0 .

$$R_0 = \{1, 30\},$$

$$R_1 = \{1, 2, 15, 30\},$$

$$R_2 = \{1, 2, 3, 10, 15, 30\},$$

$$R_3 = \{1, 2, 3, 5, 6, 10, 15, 30\}$$

Step 5:

$$S = \bigcup_{i=0}^{3} R_{i}.$$

$$S = R_{0} \cup R_{1} \cup R_{2} \cup R_{3}$$

$$S = \{1, 30\}, \cup\{1, 2, 15, 30\} \cup \{1, 2, 3, 10, 15, 30\} \cup \{1, 2, 3, 5, 6, 10, 15, 30\}$$

$$= \{1, 2, 3, 5, 6, 10, 15, 30\} \supseteq L$$

Step 6: A Residuated lattice is an algebraic structure $(R, \land, \lor, \rightarrow, \otimes, \oplus, 0, 1)$ such that

- (i) $(R, \land, \lor, \rightarrow, \otimes, \oplus, 1, 30)$ is bounded lattice with least element 1 and greatest element 30.
- (ii) $(R, \otimes, 30)$ is Commutative monoid where 30 is a unit element.
- (iii) $a * b \le c$ if and only if $a \le b \to c$ for all $a, b, c \in R$.

Step 7: $(R, \oplus, \otimes, \rightarrow, 1, 30)$ is a Residuated Lattice. $\oplus, \otimes, \rightarrow$ is defined as follows.

- (i) $a \otimes b = GLB\{a, b\}$. $1 \otimes 1 = 1, 1 \otimes 30 = 1, 30 \otimes 1 = 1 \text{ and } 30 \otimes 30 = 30.$
- (ii) $a \oplus b = LUB\{a, b\}$. $1 \oplus 1 = 1, 1 \oplus 30 = 30, 30 \oplus 1 = 30 \text{ and } 30 \oplus 30 = 30.$
- (iii) $a \to b = a' \oplus b$. $1 \to 1 = 30, 1 \to 30 = 30, 30 \to 1 = 1, 30 \to 30 = 30$. Hence R_0 satisfies required condition. We observe that $a^*b \le c$ if and only if $a \le b \to c$ for all $a, b, c \in R$. Hence for $R_1 = \{1, 2, 15, 30\}$ and $S = \{1, 2, 3, 5, 6, 10, 15, 30\}$.

Step 8: Verify $\cap R_j = \{1, 30\} \cap \{1, 2, 15, 30\} \cap \{1, 2, 3, 10, 15, 30\} \cap \{1, 2, 3, 5, 6, 10, 15, 30\} = R_0 \subseteq S$.

Step 9: If the Step 8 is true, then write S is Smarandache-lattice

4 Conclusion

In this paper we have to study Algorithm for construct a Smarandache-lattice from the Boolean algebra by an algorithmic approach through its substructures and smarandache lattice has been introduced in some applications.

References

- [1] Akkurt, Mustafa and Emira, Barker George Philip, Complemented invariant subspaces of structural matrix algebras, (2013) No.37, 993–1000.
- [2] Florentin Smarandache, Special Algebraic structures, University of New Mexico MSC: 06A 99 (1991).
- [3] Gratzer, G, Universal Algebra.
- [4] Horn, A, A property of free Boolean algebras, Proc. Amer. Math. Soc, 19 (1968).
- [5] Monk, J. Donald, Bonnet and Robert, Hand book of Boolean Algebras, Amsterdam, North Holland Publishing Co. (1989).
- [6] Peter Crawley, Lattices whose congruences form a booleanalgebra, California Institute of Tech., Vol. 10 (1960). No 3, 787–795.
- [7] Padilla Raul, Smarandache Algebraic Structure, Smarandache Notions Journal, USA, Vol. 9 (1998), No 1–2, 36–38.
- [8] www.gallup.unm.edu/Smarandache/algebra.htm.

Received: August 27, 2015; Accepted: September 29, 2015

UNIVERSITY PRESS

Website: http://www.malayajournal.org/