

Smarandache-lattice and algorithms

N. Kannappa ${ }^{a, *}$ and K. Suresh ${ }^{b}$
${ }^{a}$ Head and Associate professor, PG\& Research Department of Mathematics, T.B.M.L, College, Porayar-609307, TamilNadu, India.
${ }^{b}$ Assistant Professor, Department of Mathematics, Mailam Engineering college, Mailam-604304, TamilNadu, India.

Abstract

In this paper we introduced algorithms for constructing Smarandache-lattice from the Boolean algebra through Atomic lattice, weakly atomic modular lattice, Normal ideals, Minimal subspaces, Structural matrix algebra, Residuated lattice. We also obtained algorithms for Smarandache-lattice from the Boolean algebra. For basic concept we refer to Gratzer [3].

Keywords: Smarandache-lattice, Lattice, Boolean algebra.
2010 MSC: 54A05, 54D10.
(C) 2012 MJM. All rights reserved.

1 Introduction

In this paper we have introduced algorithms to construct Smarandache-lattice. Smarandache-lattice is one the Smarandache-2-Algebraic Structure. By [7] Smarandache n-structure on a set S means a weak structure $\left\{w_{0}\right\}$ on S such that there exists a chain of proper subsets $P_{n-1}<P_{n-2}<\cdots<P_{2}<P_{1}<S$, where ' $<$ ' means 'included in', whose corresponding structures verify the inverse chain $\left\{w_{n-1}\right\}>\left\{w_{n-2}\right\}>\cdots>$ $\left\{w_{2}\right\}>\left\{w_{1}\right\}>\left\{w_{0}\right\}$, where ' $>$ ' signifies 'strictly stronger' (i.e., structure satisfying more axioms)By proper subset of a set S, we mean a subset P of S , different from the empty set, from the original set S, and from the idempotent elements if any. And by structure on S we mean the strongest possible structure $\{w\}$ on S under the given operation(s). As a particular case, a Smarandache 2-algebraic structure (two levels only of structures in algebra) on a set S, is a weak structure $\left\{w_{0}\right\}$ on S such that there exists a proper subset P of S, which is embedded with a stronger structure $\left\{w_{1}\right\}$.
Example: Semi lattice $<$ Lattice $<$ Boolean algebra.

2 Preliminaries

Definition 2.1. The Lattice L is called complemented Lattice. If L has a greatest element and least element and each element has at least one complement; that is, for $b \in L$, there exists $a \in L$ such that $a \vee b=1, a \wedge b=0$.

Definition 2.2. The Smarandache-lattice is defined to be a lattice S, such that a proper subset of S, is a Boolean algebra (with respect to with same induced operations). By proper subset we understand a set included in S, different from the empty set, from the unit element if any, and from S.

Definition 2.3 (Alternative Definition 2.2). If there exists a non empty set L which is a Boolean algebra such that its Superset S of L is a Lattice with respect same induced operations. Then S is called Smarandache-lattice.

Definition 2.4. A Residuated lattice is an algebraic structure $(R, \wedge, \vee, \rightarrow, \otimes, \oplus, 0,1)$ such that

[^0](i) $(R, \wedge, \vee, \rightarrow, \otimes, \oplus, 1,30)$ is bounded lattice with least element 1 and greatest element 30 .
(ii) $(R, \otimes, 30)$ is Commutative monoid where 30 is a unit element.
(iii) $a * b \leq c$ if and only if $a \leq b \rightarrow c$.

Definition 2.5. Let $(L, \wedge, \vee, 0,1)$ be a Boolean algebra. A subset I of L is called an ideal of B if
(i) $0 \in I$.
(ii) $a, b \in I \Rightarrow a \vee b \in I$.
(iii) $a \in I$ and $b \leq a \Rightarrow b \in I$.

Definition 2.6. Given an element a of a Boolean algebra (or other poset) A, recall that a is atomic in A if a is minimal among non-trivial (non-bottom) elements of A. That is, given any $b \in A$ such that $b \leq a$, either $b=0$ or $b=a$. A Boolean algebra A is atomic if we have $b=\bigvee_{I} a_{i}$ for every $b \in A$, where $\left\{a_{i}\right\}_{I}$ is some set of atoms in A.

Definition 2.7. Boolean algebra is a distributive lattice which satisfies lattices whose congruences form a Boolean algebra.
(i) Involution: $\left(a^{\prime}\right)^{\prime}=a$.
(ii) Complements: $a \vee a^{\prime}=1$ and $a \wedge a^{\prime}=0$.
(iii) Identities: $a \wedge 1=a$ and $a \vee 0=a, a \vee 1=1$ and $a \wedge 0=0$.
(iv) De Morgan's laws: $(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime},(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

3 Characterizations

3.1 Atomic lattice: Algorithm-3.1

Peter Crawly has introduced the notion, "Lattices whose congruence's form a Boolean algebra 1960. In [6] it has been proved that S is an arbitrary lattice, L is s a Boolean algebra if and only if for each proper quotient a / b of S there exists a finite chain $a=x_{0}>x_{1}>\cdots>x_{k}=b$ such that each c_{i-1} / c_{i} is minimal. We have proved that Boolean algebra itself is a atomic lattice $\left(L=A_{0}\right)$, and hence every element of L is join of atoms c_{i-1} / c_{i} generated by minimal quotients x_{i} / y_{j}, we must have $c_{i-1} / c_{i}=x_{i} / x_{j} \in S$. The union of atomic lattice is called as a Lattice at the same time the intersection of atomic Lattice is non-zero unique set included in a lattice. By Gratze [3], S is a Lattice by definition S is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra L.
Step 2: Let $L=A_{0}$.
Step 3: Let $A_{i}=\theta_{c_{i-1} / c_{i}}, i=1,2, \ldots$ be supersets of $\theta_{c_{0} / c_{1}}$.
Step 4: Let $S=\bigcup_{i=1}^{K} \theta_{c_{i-1} / c_{i}}$.
Step 5: Choose sets A_{j} from $A_{i}^{\prime} s$ subject to for all $a, b \in S$.
A Boolean algebra A is atomic if for every $b \in A$ such that $b=V_{I} a_{i} b \in A$, where $\left(a_{i}\right)_{I}$ is some set of atoms in A.

Step 6: Verify that $\cap A_{j}=\theta_{c_{0} / c_{1}} \cap \theta_{c_{1} / c_{2}} \cap \theta_{c_{2} / c_{3}} \cap \theta_{c_{3} / c_{4}} \ldots \cap \theta_{c_{k-1} / c_{k}}=\theta_{c_{0} / c_{1}} \neq\{0\} \subset S$.
Step 7: If Step (6) is a true, then we write S is a Smarandache-lattice.

3.2 Weakly atomic modular lattice: Algorithm-3.2

Peter Crawly has introduced the notion, "Lattices whose congruence's form a Boolean algebra 1960. In [6] it has been proved that S be a weakly atomic modular lattice. Then $\theta(L)$ is a Boolean algebra if and only if every quotient of L is finite dimensional. We have proved L be a weakly atomic modular Lattice itself Boolean algebra ($L=M_{0}$). The union of weakly atomic modular Lattice called as a Lattice at the same time the intersection of weakly atomic modular Lattice is non-zero unique set included in a Lattice. By Gratzer [3], S is a lattice by definition S is a Smarandache-latticeAccording to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra L.
Step 2: Let $L=M_{0}$.
Step 3: Let $M_{i}, i=0,1,2 \ldots$ be supersets of M_{0}.
Step 4: Let $S=\cup M_{i}$.
Step 5: Choose sets M_{j} from $M_{i} s$ subject to for all $a, b \in S,\left(a^{\prime}\right)^{\prime}=a, a \vee a^{\prime}=1$ and $a \wedge a^{\prime}=0, a \wedge 1=a$ and $a \vee 0=a, a \vee 1=1$ and $a \wedge 0=0,(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime},(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime}$.

Step 6: Verify that for every $\cap M_{j}=M_{0} \neq\{0\} \subset S$.
Step 7: If step (6) is a true, then we write S is a Smarandache-lattice

3.3 Normal ideals: Algorithm-3.3

In [4], it has been proved that NI is a Normal ideals itself complete semi-Lattice(Boolean algebra). The union of Normal ideals called as a Lattice at the same time the intersection of Normal ideals contained in all other nonzero normal ideals of Lattice. By Gratzer [3], S is a Lattice by definition S is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra L.
Step 2: Let $L=I_{0}$.
Step 3: Let $I_{i}, i=0,1,2, \ldots$ be supersets of I_{0}.
Step 4: Let $S=\cup I_{i}$.
Step 5: Choose sets I_{j} from I_{i} 's, subject to for all $a, b \in S$.
(i) $0 \in I$
(ii) $a, b \in I \Rightarrow \mathrm{a} \vee b \in I$
(iii) $a \in I$ and $b \leq a \Rightarrow b \in I$.

Step 6: Verify that for every $\cap I_{j}=I_{0} \neq\{0\} \subset S$.
Step 7: If Step (6) is a true, then we write L is a Smarandache-lattice.

3.4 Minimal subspaces: Algorithem 3.4

In 2013, Emira, Barker George Philip have introduced the notion of a Lattice to be a Boolean algebra. Emira, Barker George Philip in their paper [1] have proved, if the Lattice L of subspaces of a structural algebra is complemented then the complement W is unique. Suppose $V \in S, V$ is a sum of minimal subspaces, each of which is in other irreducible subspaces then V has complement in $S . L$ is a Boolean algebra if and only if there is no chain of non zero irreducible elements. We have proved V_{0} be a Minimal subspaces itself Boolean algebra. The union of Minimal subspaces called as a Lattice at the same time the intersection of Minimal subspaces is nonzero unique set included in a Lattice. By Gratzer, [3], S is a lattice by definition S is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra L.
Step 2: Let $L=V_{0}$.
Step 3: Let $V_{i}, i=0,1,2, \ldots$ be supersets of V_{0}.
Step 4: Let $S=\cup V=\left(U_{i} \cap V_{i}\right)$.
Step 5: Choose sets V_{j} from V_{i} subject to for all $B_{1}, B_{2} \in S$ such that $B_{1}=B \cap V, B_{2}=B / B_{1} \Leftrightarrow \operatorname{span} B_{2} \in S, V$ has a complement in S where B is a basis for S. Each U_{j} has a complement W_{j} now suppose V is the sum of minimal subspaces
$V=U_{1}+U_{2}+\cdots+U_{S}$, $W=W_{1} \cap W_{2} \cap \cdots \cap W_{S} \in S$ $U \cap W=U_{1}+\cdots+U_{S} \cap W \subseteq\left(U_{1} \cap W_{1}\right)+\cdots+\left(U_{S} \cap W_{S}\right)$ $V+W=V+\left(W_{1} \cap \cdots \cap W_{S}\right) \supseteq\left(U_{1}+W_{1}\right) \cap \cdots \cap\left(U_{S}+W_{S}\right)=F^{n}$.

Step 6: $\cap V_{j}=V_{0} \neq\{0\} \subset S$.
Step 7: If step (6) is a true, then we write S is a Smarandache-lattice.

3.5 Point lattice: Algorithm-3.5

In 2013, Emira, Barker George Philip have introduced the notion of a Lattice to be a Boolean algebra. Akkurt,Mustafa,Emira,barker George Philip in their paper [1] have proved, If the Lattice L of subspaces of a structural algebra is complemented then the complement W is unique, where $W=V_{1}+V_{2}+\cdots+V_{k}$ is the collection of the irreducible subspaces contained in W. Let $M_{n}(F, \rho)$ be structural matrix algebra with $L=\operatorname{Lat}\left(M_{n}(F, \rho)\right)$ its lattice.L is Boolean algebra if and only if L is an atomic lattice. We have proved P_{0} be a Point Lattice itself Boolean algebra. The union of Point Lattice is called as a Lattice at the same time the intersection of Point Lattice is nonzero unique set included in a Lattice. By Gratzer [3], S is a Lattice by definition S is a Smarandache-lattice.

According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a Boolean algebra L.
Step 2: Let $L=P_{0}$ point lattice.
Step 3: Let $P_{i}, i=0,1,2, \ldots$ be super sets of P_{0}.
Step 4: Let $S=\cup P_{i}$.
Step 5: Choose sets P_{j} from P_{i} subject to for all $P_{1}, P_{2} \in L$ such that $P_{1}=B \cap P, P_{2}=B / B_{1} \Leftrightarrow$ span $B_{2} \in S, V$ has a complement in L, where S is a basis for L each U_{j} has a complement W_{j} now suppose V is the sum of minimal.

Step 6: $W=\cap P_{j}=P_{0} \neq\{0\} \subset S$.
Step 7: If step (6) is a true, then we write S is a Smarandache-lattice.

3.6 Residuated lattice: Algorithm-3.6

$L=\{1,30\}$ is a Boolean algebra with respect to $(L, \vee, \wedge, 1,30)$ [5]. We have proved that all axioms are satisfied for Boolean algebra and this Boolean algebra itself is a Residuated Lattice. The union of Residuated Lattice is called as a Lattice at the same time the intersection of Residuated lattices is a unique nonzero set included in Lattice. By Gratzer [3], S is a Lattice by definition S is a Smarandache-lattice. According to this hypothesis, we have to write an Algorithm for constructing a Smarandache-lattice from the Boolean algebra as follows.

Step 1: Consider a nonempty Set $L=\{1,30\}$.
Step 2: Verify that $L=\{1,30\}$ is a Boolean algebra with respect to \wedge, \vee.
For, check the following conditions
(i) Associative Law: For any $a, b, c \in L, a \vee(b \vee c)=(a \vee b) \vee c \vee$ is defined as follows:

$$
\begin{aligned}
1 \vee(1 \vee 1) & =1 \vee 1=1 \in L \\
(1 \vee 1) \vee 1 & =1 \vee 1=1 \in L \\
1 \vee(1 \vee 1) & =(1 \vee 1) \vee 1 \\
30 \vee(30 \vee 30) & =30 \vee 30=30 \in L \\
(30 \vee 30) \vee 30 & =30 \vee 30=30 \in L \\
30 \vee(30 \vee 30) & =(30 \vee 30) \vee 30 \\
1 \vee(30 \vee 30) & =1 \vee 30=30 \in L \\
(1 \vee 30) \vee 30 & =30 \vee 30=30 \in L \\
1 \vee(30 \vee 30) & =(1 \vee 30) \vee 30 \\
1 \vee(30 \vee 1) & =1 \vee 30=30 \in L \\
(1 \vee 30) \vee 1 & =30 \vee 1=30 \in L \\
1 \vee(30 \vee 1) & =(1 \vee 30) \vee 1 \\
1 \wedge(1 \wedge 1) & =1 \wedge 1=1 \in L \\
(1 \wedge 1) \wedge 1 & =1 \wedge 1=1 \in L \\
1 \wedge(1 \wedge 1) & =(1 \wedge 1) \wedge 1 \\
30 \wedge(30 \wedge 30) & =30 \wedge 30=30 \in L \\
(30 \wedge 30) \wedge 30 & =30 \wedge 30=30 \in L \\
30 \wedge(30 \wedge 30) & =(30 \wedge 30) \wedge 30
\end{aligned}
$$

\wedge is defined as follows:

$$
\begin{aligned}
1 \wedge(30 \wedge 30) & =1 \wedge 30=1 \in L \\
(1 \wedge 30) \wedge 30 & =1 \wedge 30=1 \in L \\
1 \wedge(30 \wedge 30) & =(1 \wedge 30) \wedge 30 \\
1 \wedge(30 \wedge 1) & =1 \wedge 1=1 \in L \\
(1 \wedge 30) \wedge 1 & =1 \wedge 1=1 \in L \\
1 \wedge(30 \wedge 1) & =(1 \wedge 30) \wedge 1
\end{aligned}
$$

(ii) Commutative law: For any $a, b \in \mathrm{~L},(a \vee b)=(b \vee a)$

$$
\begin{aligned}
1 \vee 1 & =1 \vee 1=1 \in L \\
30 \vee 30 & =30 \vee 30=30 \in L \\
1 \vee 30 & =30 \vee 1=30 \in L
\end{aligned}
$$

(iii) Distributive law: For all

$$
\begin{aligned}
a, b, c \in L a \vee(b \wedge c) & =(a \vee b) \wedge(a \vee c) \\
a, b, c \in L a \wedge(b \vee c) & =(a \wedge b) \vee(a \wedge c) \\
1 \vee(30 \wedge 30) & =(1 \vee 30) \wedge(1 \vee 30)=30 \in L \\
1 \vee(1 \wedge 1) & =(1 \vee 1) \wedge(1 \vee 1)=1 \in L \\
30 \vee(30 \wedge 30) & =(30 \vee 30) \wedge(30 \vee 30)=30 \in L \\
30 \vee(1 \wedge 30) & =(30 \vee 1) \wedge(30 \vee 30)=30 \in L \\
1 \wedge(30 \vee 30) & =(1 \wedge 30) \vee(1 \wedge 30)=1 \in L \\
1 \wedge(1 \vee 1) & =(1 \wedge 1) \vee(1 \wedge 1)=1 \in L \\
30 \wedge(30 \vee 30) & =(30 \wedge 30) \vee(30 \wedge 30)=30 \in L \\
30 \wedge(1 \vee 30) & =(30 \wedge 1) \vee(30 \wedge 30)=30 \in L
\end{aligned}
$$

(iv) Identity element there exists identity 1 (' 0 'element) for \vee and 30 (' 1 ' element) for \wedge

For any $a \in L(a \vee 1)=a, a \wedge 30=a$
For $1 \in L(1 \vee 1)=1,1 \wedge 30=1 \in L$
For $30 \in L(1 \vee 30)=30,30 \wedge 30=30 \in L$
(v) Complement every element of L has a complement with in L there exists a' is the complement of a then $a \in L, a \vee a^{\prime}=30, a \wedge a^{\prime}=1,1^{\prime}=3030^{\prime}=1$.
(vi) Idempotent Laws: For any $a \in L, a \vee a=a, a \wedge a=a, 1 \vee 1=1,1 \wedge 1=1,30 \vee 30=30,30 \wedge 30=30$
(vii) Null Law: For any $a \in L, a \vee 1=1, a \wedge 0=0,0$ element is 1 and 1 element is 30 .
$30 \vee 1=30,30 \vee 30=30,1 \wedge 1=1,30 \wedge 1=1$.
(viii) Absorption Law: For any $a, b \in \mathrm{~L}, a \wedge(a \vee b)=a, a \vee(a \wedge b)=a$

$$
\begin{aligned}
30 \wedge(30 \vee 1) & =30,30 \vee(30 \wedge 1)=30 \\
1 \wedge(1 \vee 30) & =1,1 \vee(1 \wedge 30)=1
\end{aligned}
$$

(ix) De-Morgan's Law: For any $a, b \in L,(a \vee b)^{\prime}=a^{\prime} \wedge b^{\prime},(a \wedge b)^{\prime}=a^{\prime} \vee b^{\prime}$.

$$
\begin{aligned}
(1 \vee 30)^{\prime} & =30^{\prime}=1 \\
1^{\prime} \wedge 30^{\prime} & =30 \wedge 1=1 \\
(1 \vee 30)^{\prime} & =1^{\prime} \wedge 30^{\prime}=30 \\
(1 \wedge 30)^{\prime} & =1^{\prime}=30 \\
1^{\prime} \vee 30^{\prime} & =30 \vee 1=30 \\
(1 \wedge 30)^{\prime} & =1^{\prime} \vee 30^{\prime}
\end{aligned}
$$

(x) Involution Law: $a \in L,\left(a^{\prime}\right)^{\prime}=a,\left(1^{\prime}\right)^{\prime}=30^{\prime}=1$ and $\left(30^{\prime}\right)^{\prime}=1^{\prime}=30$.
$L=\{1,30\}$ satisfies all the conditions of Boolean algebra.
Hence $L=\left(L, \wedge, \vee, 1,30^{\prime}\right)$ is a Boolean algebra.
Step 3: Let $L=R_{0}$ be a Residuated lattice. Let $R_{0}=L=\{1,30\}$.
Step 4: Consider super sets $R_{i} ; i=01,2,3$ of R_{0}.

$$
\begin{aligned}
& R_{0}=\{1,30\} \\
& R_{1}=\{1,2,15,30\} \\
& R_{2}=\{1,2,3,10,15,30\} \\
& R_{3}=\{1,2,3,5,6,10,15,30\}
\end{aligned}
$$

Step 5:

$$
\begin{aligned}
S & =\bigcup_{i=0}^{3} R_{i} \\
S & =R_{0} \cup R_{1} \cup R_{2} \cup R_{3} \\
S & =\{1,30\}, \cup\{1,2,15,30\} \cup\{1,2,3,10,15,30\} \cup\{1,2,3,5,6,10,15,30\} \\
& =\{1,2,3,5,6,10,15,30\} \supseteq L
\end{aligned}
$$

Step 6: A Residuated lattice is an algebraic structure $(R, \wedge, \vee, \rightarrow, \otimes, \oplus, 0,1)$ such that
(i) $(R, \wedge, \vee, \rightarrow, \otimes, \oplus, 1,30)$ is bounded lattice with least element 1 and greatest element 30 .
(ii) $(R, \otimes, 30)$ is Commutative monoid where 30 is a unit element.
(iii) $a * b \leq c$ if and only if $a \leq b \rightarrow c$ for all $a, b, c \in R$.

Step 7: $(R, \oplus, \otimes, \rightarrow, 1,30)$ is a Residuated Lattice. $\oplus, \otimes, \rightarrow$ is defined as follows.
(i) $a \otimes b=G L B\{a, b\}$.
$1 \otimes 1=1,1 \otimes 30=1,30 \otimes 1=1$ and $30 \otimes 30=30$.
(ii) $a \oplus b=L U B\{a, b\}$.
$1 \oplus 1=1,1 \oplus 30=30,30 \oplus 1=30$ and $30 \oplus 30=30$.
(iii) $a \rightarrow b=a^{\prime} \oplus b$.
$1 \rightarrow 1=30,1 \rightarrow 30=30,30 \rightarrow 1=1,30 \rightarrow 30=30$.
Hence R_{0} satisfies required condition. We observe that $a^{*} b \leq c$ if and only if $a \leq b \rightarrow c$ for all $a, b, c \in R$.
Hence for $R_{1}=\{1,2,15,30\}$ and $S=\{1,2,3,5,6,10,15,30\}$.
Step 8: Verify $\cap R_{j}=\{1,30\} \cap\{1,2,15,30\} \cap\{1,2,3,10,15,30\} \cap\{1,2,3,5,6,10,15,30\}=R_{0} \subseteq S$.
Step 9: If the Step 8 is true, then write S is Smarandache-lattice

4 Conclusion

In this paper we have to study Algorithm for construct a Smarandache-lattice from the Boolean algebra by an algorithmic approach through its substructures and smarandache lattice has been introduced in some applications.

References

[1] Akkurt, Mustafa and Emira, Barker George Philip, Complemented invariant subspaces of structural matrix algebras, (2013) No.37, 993-1000.
[2] Florentin Smarandache, Special Algebraic structures, University of New Mexico MSC: 06A 99 (1991).
[3] Gratzer, G, Universal Algebra.
[4] Horn, A, A property of free Boolean algebras, Proc. Amer. Math. Soc, 19 (1968).
[5] Monk, J. Donald, Bonnet and Robert, Hand book of Boolean Algebras, Amsterdam, North Holland Publishing Co. (1989).
[6] Peter Crawley, Lattices whose congruences form a booleanalgebra, California Institute of Tech., Vol. 10 (1960). No 3, 787-795.
[7] Padilla Raul, Smarandache Algebraic Structure, Smarandache Notions Journal, USA, Vol. 9 (1998), No 1-2, 36-38.
[8] Www.gallup.unm.edu/Smarandache/algebra.htm.

Received: August 27, 2015; Accepted: September 29, 2015

UNIVERSITY PRESS

Website: http:/ /www.malayajournal.org/

[^0]: *Corresponding author.
 E-mail address: sivaguru91@yahoo.com (N. Kannappa), Sureshphd2009@gmail.com(K. Suresh).

