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Abstract 

  In this paper, we study Smarandache special definite groups. We give necessary and sufficient conditions 

for a group to be Smarandache special definite group(S-special definite group). Moreover we study Smarandache 

special definite subgroups, Smarandache special definite maximal ideals, Smarandache special definite minmal 

ideals. 
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Introduction 

marandache algebraic structures introduced by Raul Padilla and Florentine

Smarandache [1],[2]. Smarandache special definite structures such as Smarandache

special definite group, Smarandache  special definite ring, Smarandache special definite 

field defined by Vasantha Kandasamy in 2009 as those  strong algebraic structures which 

have in them a proper subset  which is a  weak algebraic structure[3]. In this paper we study 

Smarandache special definite groups. In section one we give a necessary and sufficient 

condition for a group to be Smarandache special definite group. We prove that the direct 

product of two groups G1 ,G2 is a Smarandache special definite group if and only if at least 

one of G1 or G2 is a Smarandache special definite group . In section two, we study many 

S-special definite substructures such as Smarandache special definite subgroups, 

Smarandache special definite ideals, we give a characterization of a Smarandache special 

definite group using its Smarandache special definite substructures. Moreover we study 

Smarandache special definite simple groups, it is shown that a commutative Smarandache 

special  definite group can not be a S-special definite simple group and that a commutative 

Smarandache special definite group has no Smarandache special definite minimal ideal. 

Conditions are given under which a Smarandache special definite maximal ideal of a 

Smarandache special definite group is Smarandache special definite prime ideal.

1. Smarandache special definite groups (S-special definite group)

         In this section we study Smarandache special definite groups (S- special definite group) 

we give a characterization of an S-special definite group. Condition under which every non 

trivial subgroups is S-special definite subgroup is given. We show that no finite group is 

Smarandache special definite group.   

Definition 1.1, [3] A group (G, *) is said to be Smarandache special definite group if there is 

a non empty subset S in G such that S is just a semigroup (By just semigroup S of a group G 

we mean a subset S of G which is a semigroup under the induced operation of G but not a 

group). 

Definition 1.2, [4]  A group G is said to be a torsion group if every element of G is of finite 

order and is said to be torsion free group if every element of G except the identity is of an 

infinite order. An element of finite order called a torsion element, otherwise called torsion 

free element. 

S 
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Lemma 1.3 If G is a group and S is just a semigroup of G, then S is an infinite set containing 

a torsion free element. 

Proof: Let G be a group and S be a semigroup of G which is not a group. If S is a finite set, 

then S is a finite semigroup which satisfies cancelation laws. Then S is a group [5.p.50], 

which is a contradiction. So S is an infinite set. Now suppose that the order of any element of 

S is finite .Since S is just a semigroup, then there exists an element a in S such that 

a has no inverse in S, but a is of finite order, hence there exists n
+
 such that a

n
 = eG , so

a a
n-1

= eG, thus a
-1

= a
n-1

 S, which is a contradiction. This means that S contains a torsion free

element.  

          Now we give necessary and sufficient condition under which a group is S-special 

definite group. 

Theorem 1.4 Let G be a group. Then G is a S-special definite group if and only if G contains 

a torsion free element. 

Proof: Suppose that G contains a torsion free element a. Then S= { a
n
; n  

+
} is just a

semigroup, so G is a S-special definite group. Conversely suppose that G is a S-special 

definite group. Then there exists S  G which is just a semigroup. By Lemma 1.3, 

S contains a torsion free element, which is an element of G.   

        Since every infinite cyclic group contain elements of infinite order we get the following 

result.  

Corollary 1.5 Every infinite cyclic group is a S-special definite group. 

        Recall that every element of a torsion group is of finite order, we get the following result. 

Corollary 1.6  If G is torsion group, then G can not be S-special definite group. 

        From Corollary 1.6, we deduce that a finite group can not be S-special definite group. 

Examples 1.7 

1. (,+) is a S-special definite group because it contains  (
+
,+) or follows from

corollary 1.5,

2. (P(X),∆) where X is an infinite set is an infinite group but can not be S-special definite

group because p(X) is a torsion group.

3. (p
∞
, +) is an infinite torsion group [6]. This means that (p

∞
, +) is not a S-special

definite group for every prime number p.

       In the following proposition a necessary and sufficient condition is given under which the 

direct product of two group is a S-special definite group. 

Proposition 1.8  Let G1, G2 be two groups. Then G1× G2 is a S-special definite group if and 

only if  at least one of G1 or G2 is a S-special definite group . 

Proof:  Suppose G1 is a S-special definite group. Then there exists S  G1 such that S is just a 

semigroup . Now , S× { eG2}  G1× G2  and S×{ eG2} is just  a semigroup of G1× G2,  then  

G1× G2 is a S-special definite group .Similarly if G2  is a S-special definite group, then 

G1 × G2 is S-special definite group. Conversely suppose that G1× G2 is a S-special definite 

group. Then by Theorem 1.4, there exists a torsion free element (a,b) of  G1× G2 . Hence  a  is 

a torsion free element of G1 or b  is a torsion free element of G2,  because if a is a torsion 

element of G1 and b  is a torsion element of G2, then there exist n, m 
+
 such that

a
n
 =eG1 and  b

m
=eG2, thus (a,b)

nm
=(a

 nm
,b

 nm
) =((a 

n
 )

m
,(b

m
 )

n
 )=(eG1,eG2) which is a contradiction

with (a,b) is a torsion free element, so at least one of G1 or G2 is a S-special definite group.   

Proposition 1.9 Every group can be imbedded in a S-special definite group. 
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Proof: Let G be a group. Since (, +) is a S-special definite group, then by Theorem 1.8, G×Z 

is a S-special definite group. G × {0} is subgroup of G×Z which is isomorphic to G. Then 

G imbedded in G×Z.  

Proposition 1.10 Let N be a normal subgroup of a S-special definite group G. Then at least 

one of N or G N is a S-special definite group. 

Proof:  If N is not a S-special definite group, then every element of N is of finite order. Since 

G is a S-special definite group, then by Theorem 1.4, there exists x G such that x is a torsion 

free element. We claim that x+N is a torsion free element of G N. If x+N is a torsion element 

of G N, then there exists n
+
 such that (x+N )

n 
=N. So x

n
+N = N, hence x

n
N,

consequently x
n
 is of finite order, thus (x

n
)
m

=e for some m
+
, which means x is a torsion

element of G which is a contradiction.  Then x+N is a torsion free element of G N and G N is 

a S-special definite group. Then at least one of N or G N is a S-special definite group.  

Proposition 1.11  Let G be a S-special definite group and H a group isomorphic to G. Then H 

is S-special definite group.  

Proof: Since G  H, then there exists a group isomorphism : G→H. G is S-special definite 

group, means that there exists S  G such that S is just a semigroup. Then clearly (S) is a 

semigroup of H. Since S is just a semigroup, then there exists x S such that x has no inverse 

in S. If  (y)   (S) such that   (x)  (y) =eH , then   (xy)=  (eG) , thus x y= eG , so 

x
-1

=yS  which is a contradiction with  x has no inverse in S. Hence  (x) has no inverse in

 (S), then  (S) is just a semigroup of H, consequently H is a S-special definite group.   

    Now we give the following useful lemma. 

Lemma 1.12 Let G be a group and S be a semigroup of G.  Then S is a subgroup of G if and 

only if x S=S for all x  S.  

Proof: Suppose that xS=S for all x  S. Choose any x  S, then xS=S. Hence there exists 

xl  S such that x xl=x  so  x xl =x = x e , then  e= xl  S , thus e x S. So there exists x2  S 

such that x x2=e .Consequently x x2=e= x x
-1 

. Then x
-1

=
 
x2 S, which means that every

element in S has inverse in S, then S is a subgroup. Conversely suppose that S is a subgroup 

of G.  Let yS, then y=x (x
-1

y)  x S, so S  x S. But x S  S, hence   x S=S for all x S.

Corollary 1.13  Let G be a group and S be a semigroup of G which is not a group, then there 

exists an element x in S such that x S  S.  

Definition 1.14 ,[7] A Smarandache semigroup is a semigroup S such that a proper subset A 

of S is a group with respect to the induced operation of S. A Smarandache semigroup called 

Smarandache weakly cyclic semigroup If there exists at least a proper subset M of S, which is 

a non trivial cyclic subgroup. 

Theorem 1.15 Let G be a S-special definite group and S be a semigroup of G.  Then S is a 

Smarandache weakly cyclic semigroup if and only if there exists x≠e in S such that   x S=S. 

Proof:  Suppose that there exists x≠eS such that xS=S. Then xxS, thus x x1=x for some 

x1 S, so xx1=x=x e, so e=x1 S, hence e xS, then there exists  x2 S such that e =x x2, so  

e =x x2 =x x
-1

, which implies that x
-1

=x2 S. Therefore  x  is cyclic group contained in S,

then S is Smarandache weakly cyclic semigroup. Conversely suppose that S is Smarandache 

weakly cyclic semigroup, then there exist a non trivial cyclic subgroup  x  of S. Let yS, 

then y=x (x
-1

y)  x S, thus S xS but xS  S, hence x S=S for every x
n
  x . 

Example 1.16 (5, +) is a group and 
+
Z5 is a semigroup of Z5.

(0,a)+ 
+
5 = 

+
5 for all a 5  and  

+
5   contains the cyclic subgroup {0} 5 .

Hence 
+
5 is a smarandache weakly cyclic semigroup.

Remark 1.17 Let G be a group and S is a semigroup of G with identity, then es= eG where 

es , eG  are the identity of G and S respectively. 
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Proof: Since es es= es= eG es  , then es es= eG es  so  es= eG .  

Theorem 1.18 If G be is a S-special definite group, then G contains an infinite countable 

number of semigroups which are not group. 

Proof: Let G be a  S-special definite group. Then there exists S  G such that S is just a 

semigroup. By Corollary 1.13, there exists x S such that x S  S. We claim that x S is just a 

semigroup. If x S contains an identity element es , then by Remark 1.17, es= eG , so  eG x S , 

therefore there exists xl S such that x xl= eG , but x x
-1 

= eG  hence  x xl= eG= x x
-1

which

implies that x
-1

 = xl S , then xS=S which is a contradiction, then  xS does not contain

identity consequently xS is just a semigroup .Then S1= x S is just a semigroup and S1 is an 

infinite set . By the same manner one can show the existence of a semigroup S2 S1 which is 

not a group, then G contains an infinite countable number of semigroups which are not 

groups.  

2. Smarandache special definite substructures

         In this section, we study many S-special definite substructures such as S-special definite 

subgroups, S-special definite ideals, we give characterizations of a S-special definite group 

using its S-special definite substructures. Moreover we study Smarandache special definite 

simple group. Conditions are given under which a Smarandache special definite maximal 

ideal of a Smarandache special definite group is Smarandache special definite prime ideal. 

We give many examples illustrating the results. 

Definition 2.1,[3] Let G be a S-special definite group and H be a subgroup of G .If H is itself 

a S-special definite group then we call H a Smarandache special definite subgroup of G (S-

special definite subgroup). 

       It is clear that if G has a subgroup H which is S-special definite subgroup, then G is also 

S-special definite group but the converse in general is not true as it is shown in the following 

example.

Example 2.2  (×p,+) is S-special definite group, because it contains the semigroup 

(
+
×p,+) but the Subgroup ({0}×p,+) of (×p,+) is not a S-special definite subgroup  of G.

Theorem 2.3 Let G be a S-special definite group, Then G is a torsion free group if and only if 

every non trivial subgroups is S-special definite subgroup. 

Proof:  Suppose that every non trivial subgroup of G is a S-special definite subgroup. 

Let a G. Then <a> is S-special definite subgroup, so by Theorem 1.4, for some k
+
, a

k
 is a

torsion free element. This imply that a is a torsion free element because if a
m

=e  for some

k
+
,then (a

k
 )

m
=(a

m
)
k
=(e)

k
=e, which is a contradiction .Conversely suppose that G is a

torsion free group . Then every non trivial subgroup contains a torsion free element. By 

Theorem 1.4 , every non trivial subgroup is a S-special definite subgroup.  

        The following theorem gives a characterization of a S-special definite group.    

Theorem 2.4 Let G be a group. If G is a S-special definite group, then G has a proper subset 

H which is a S-special definite group. 

Proof: Suppose that G is a S-special definite group. Then G contains a torsion free element a. 

Let H= { a
2n 

; n  }, then aH ,so H is a proper subgroup of G and a
2
  H is a torsion free

element, so H is S-special definite group. Consequently G has a proper subset H such that H is 

S-special definite group.  

Proposition 2.5 Let G be a group. If G is a S-special definite group, then G contains an 

infinite countable number of proper S-special definite subgroups. 

Proof: Suppose that G is S-special definite group. By Theorem 2.4, G contains a proper 

subset H1 such that H1 is S-special definite group, since H1 is S-special definite group, for the 

same reason H1 contains a proper subset H2 such that H2 is S-special definite group. Then for 
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all nN we get a proper subset Hn+1 of Hn such that Hn+1 is S-special definite group. Since Hn 

is S-special definite subgroup of G for all nN, then G contains an infinite countable number 

of proper S-special definite subgroups.  

The following result is a direct consequence of Proposition 2.5. 

Corollary 2.6 If G is S-special definite group, then G contains an infinite countable number of 

subgroups. 

The converse of this corollary is not true in general for example. 

Example 2.7 The infinite direct sum  p, p runs over all prime numbers is not a S-special 

definite group but it contains an infinite number of subgroups.  

Theorem 2.8 Let H be a subgroup of a group G, then H is a S-special definite subgroup if and 

only if aHa
-1

 is S-special definite subgroup for each aG.

Proof: Suppose that H is a S-special definite group, then there exist x H such that x is a 

torsion free element. Then axa
-1

 is a torsion free element of aHa
-1

, because if (axa
-1

)
n
=e for

some n  
+
 , then  a x

n
 a

-1
=e then x

n
 =e   which is a contradiction with x is a torsion free

element. So aHa
-1

 is a S-special definite group. Conversely suppose that aHa
-1

 is a S-special

definite group for each aG. Take a=e , so H=eHe
-1

 is a S-special definite group.

Definition 2.9,[3]  Let G be a S-special definite group, H be a normal subgroup of G, we call 

H to be a Smarandache Special definite normal subgroup of G if H is itself a S-special definite 

group. If G has no S-special definite normal subgroups but G is a S-special definite group 

then we call G to be a Smarandache definite Special simple group(S-special definite simple 

group). 

Proposition 2.10 If G is a commutative S-special definite group, then G can not be a         

S-special definite simple group. 

Proof: Let G be a commutative S-special definite group. Then by Theorem 2.4, G contains a 

proper subset H such that H is S-special definite subgroup, since G is commutative then H is 

S-special definite normal subgroup, so G can not be S-special definite simple group.  

Theorem 2.11 Let a  G be a torsion free element and the centralizer of a, C (a) =G, then 

G can not be S-special definite simple group. 

Proof : Let H ={ a
2n

; n  } .Then H is a proper subset of G and H is a S-special definite

subgroup, since C(a)=G , then gHg
-1

 =H for every g G, that is  H is a S-special definite

normal subgroup, then G can not be  S-special definite simple group.  

      The following example illustrated Theorem 2.11. 

Example 2.12 

1) GL2(R) under multiplication is an infinite non Commutative group and

(
2 0
0 2

) GL2(R) is a torsion free element and   𝐶 ((
2 0
0 2

))  = GL2(R), then GL2(R) 

can not be S-special definite simple group. 

2) Let G={a+bi+cj +dk ; a,b, c,dR} then (G-{0},.)  can not be S-special definite simple

group because  2 is a torsion free element of G and C(2)=G  .

    The condition that there exist a torsion free element a of G such that C (a) =G in 

Theorem 2.11, is not necessary as it is shown in the following example and G is not a 

S-special definite simple group and C (a)  G for all aG. 

Example 2.13 Let G={ (a,b) ; a,bR and a≠0 where R the set of real numbers } and define 

(a,b) *(c,d) =(a c,bc+d) . Then G is an infinite non commutative group and (1,0) is identity the  

element of G and  (a,b)
-1

= (1a , -ba) [8] .  Now C ((a,b)) ≠ G for every (a,b) ≠ (1,0) ,  because

if a≠1 then (a,b) ( a, b+1) ≠ ( a, b+1) (a,b) , then ( a, b+1) C((a,b)) and  
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if  b≠0  then  (a,b)* (a+1, b) ≠ (a+1, b)* (a,b) , so  (a+1, b) C((a,b)). So C((a,b) ) ≠ G.

Clearly H= {(1, a); aR} is a subgroup of G. Since (1, 1) H and (1,1) is a torsion 

free element , then H is a S-special definite subgroup. Let (a,b)  G and (1,c)  H ,  then   

(a,b) *(1,c) *(a,b)
-1

=(a,b+c) *(1a,-ba) =(1,ca) H. Then H is normal subgroup, consequently

H is S-special definite normal subgroup. Then by Theorem 2.11, G is not a   S-special definite 

simple group. 

Proposition 2.14 Let G be a group and H and K be subgroups of G. If H  K is S-special 

definite subgroup, then H and K are S-special definite subgroup. 

Proof: Let H  K be a S-special definite subgroup, By Theorem 1.4, there exist a H  K 

such that a is a torsion free element, then both of  H and K contain a which is a torsion free 

element, so both of H and K  are S-special definite subgroup .  

        The converse of Proposition 2.14, need not be true in general for example. 

Example 2.15 Let <2>= {2
n
,n} and <3>={3

n
,n} are two  S-special definite subgroup of

(Q-{0},.) But <2><3>= {1} is not S-special definite group. 

In the following Theorem a necessary and sufficient condition is given under which 

the product of two subgroup is a S-special definite subgroup. 

Theorem 2.16 Let G be a commutative group, H and K be two subgroups of G. Then HK is a 

S-special definite subgroup of G if and only if at least one of H or K is a S-special definite 

subgroup. 

Proof: Suppose that H is a S-special definite subgroup, then by Theorem 1.4, there exist a 

torsion free element a H, then a=aeHK Consequently H K is S-special definite subgroup. 

Similarly if K is a S-special definite subgroup. Conversely suppose that HK is a S-special 

definite subgroup. Since HKHK , then by Proposition 1.11, and Proposition 1.8, we get at 

least one of H or K is a S-special definite subgroup.     
At the end of the paper we discuss some types S-special definite ideals. 

Definition 2.17, [9] A nonempty subset T of a semigroup S is said to be an ideal of S  if  sS, 

tT imply that st, ts T. 

Definition 2.18, [3] Let G is a S-special definite group. A proper subset P of G is said to be 

Smarandache special definite ideal (S-special definite ideal) of G if P is an ideal with respect 

to some semigroup T of G. 

Proposition 2.19. Let G be a S-special definite group. Then every S-special definite ideal of G 

contains a torsion free element. 

Proof : Let I be a S-special definite ideal  of G . Then there exists S   G such that S is just a 

semigroup of G and I is ideal of S. By Lemma 1.3, S contain torsion a free element x. 

Let a I, then a x I. If ax is torsion free element, then the proof is complete. Otherwise is a  

(a x )
n
=e for some n  

+
 , then  (a x)

n-1 
a x=e , so  x

-1
= (a x)

n-1 
a I, then  x

-1
  I and

x
-1

 torsion free element. 

Definition 2.20 , [3] Let G be a S-special definite group, T be a semigroup of G. We say P is a 

Smarandache special definite maximal ideal (S-special definite maximal ideal) of G related to 

T if for any other S-special definite ideal M related to T such that P M  T then either 

P = M or M =T. We say U is a S-special definite minimal ideal (S-special definite minimal 

ideal) related to T if for any other ideal V related to T with V  U then V= U. We call an 

S -Special definite ideal W related to T to be a S- Special definite prime ideal (S-special 

definite prime ideal) if a b W implies aW or bW where a,b T. 

Lemma 2.21 If  I is S- special definite ideal of a S-special definite group G related to a 

semigroup S and I contain identity element e, then I=S. 

Proof: Since IS and for each aS implies that a=a eI, then I=S.  
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Theorem 2.22 Let G be a commutative S-special definite group, then G has no S- special 

definite minimal ideal. 

Proof: Let I be a S-special definite ideal of G related to the semigroup S. Then I is not a 

subgroup of G, since if I is subgroup of G, then eI by Lemma 2.21, I=S which is a 

contradiction. By Corollary 1.13, there exists x I such that x I  I.     

Let sS and x ix I where i I, thus i sI. Then ( x i) s =x (i s)  x I, so x I  I is a S-special 

definite ideal of G related to semigroup S. Therefore I is not S-special definite minimal ideal, 

so G contains no S-special definite minimal ideal.  

Theorem 2.23 Let G be a S-special definite group and T  G be a commutative semigroup 

with identity, then every S-special definite maximal ideal of G related to T is a S-special 

definite prime ideal of G related to T. 

Proof: Let M be a S-special definite maximal ideal of G related to T. Let a bM such that 

aM and a,bT. Put J=aT∪M , since if tT and rJ, then r=m or r=at2 for some mM and 

t2T, thus  rt=mtM or rt=a(t2t) aT, then rt aTM but T is a commutative  semigroup, 

hence tr=rt aT∪M, so J is a S-special definite ideal  of G related to T. Now a=ae aTM, 

then M J T but M is a S-special definite maximal ideal of G related to T, so J=T , then 

e aTM but eM, then e aT, e=at3  for some t3T. Since baM and t3T and M is a 

S-special definite maximal ideal of G related to T, then b=b e=b (at3) = (ba) t3M. Then M is 

a S-special definite prime ideal of G related to T.   

    Finally, we show by an example the condition that T contains an identity in 

Theorem 2.23 is necessary. 

Example 2.24 (ℚ-{0},.) is a  S-special definite group and (9-{0},.) is S-special definite 

maximal ideal of G related to (3-{0},.),but not S-special definite prime ideal of G related to 

(3-{0},.) by 3.39-{0} but 39-{0}. 

References 

1. Padilla R, Smarandache algebraic structures, Bulletin of pure and applied science, Delhi, India,

Vol.17E, No.1, 119-121,(1998).

2. Smarandache , F., Special algebraic structures, in Collected papers , abadda, Orade ,Vol.3,78-81 ,

(2000).

3. W.B.Vasantha Kandasamy, Smarandache special definite algebraic structures, American research press,

(2009).

4. Derek .J.S.Robinson , a course in the theory of groups , Springer-Verlag New York. (1982).

5. Vijay k kana and S K Bhambri , A course in abstract algebra, Vikas publishing house,(2005).

6. Irving kaplansky , Infinite abelian groups, University of Michigan press (1962).

7. W.B.Vasantha Kandasamy, Smarandache Semigroups, American research press, (2002).

8. Peter.J.Cameon, Introduction to algebra, Oxford University press ins, New York,(2008).

9. Mario Petrich , Introduction to semigroups , Bell and Howell Company, (1973).

https://www.researchgate.net/publication/265333102_Infinite_Abelian_Groups?el=1_x_8&enrichId=rgreq-50118982e1de984449273bf75b818ae0-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA0NDE3MTtBUzozOTk2Mzc4Nzg5ODQ3MDRAMTQ3MjI5MjUwMzEwNg==
https://www.researchgate.net/publication/268606280_Introduction_to_Semigroups?el=1_x_8&enrichId=rgreq-50118982e1de984449273bf75b818ae0-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA0NDE3MTtBUzozOTk2Mzc4Nzg5ODQ3MDRAMTQ3MjI5MjUwMzEwNg==
https://www.researchgate.net/publication/24013966_Smarandache_Special_Definite_Algebraic_Structures?el=1_x_8&enrichId=rgreq-50118982e1de984449273bf75b818ae0-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA0NDE3MTtBUzozOTk2Mzc4Nzg5ODQ3MDRAMTQ3MjI5MjUwMzEwNg==
https://www.researchgate.net/publication/24013966_Smarandache_Special_Definite_Algebraic_Structures?el=1_x_8&enrichId=rgreq-50118982e1de984449273bf75b818ae0-XXX&enrichSource=Y292ZXJQYWdlOzMwNzA0NDE3MTtBUzozOTk2Mzc4Nzg5ODQ3MDRAMTQ3MjI5MjUwMzEwNg==

